Tag Archives: Max Ortiz-Catalan

Man with world’s first implanted bionic arm participates in first Cybathlon (olympics for cyborgs)

The world’s first Cybathlon is being held on Oct. 8, 2016 in Zurich, Switzerland. One of the participants is an individual who took part in some groundbreaking research into implants which was featured in my Oct. 10, 2014 posting. There’s more about the Cybathlon and the participant in an Oct. 4, 2016 news item on phys.org,

A few years ago, a patient was implanted with a bionic arm for the first time in the world using control technology developed at Chalmers University of Technology. He is now taking part in Cybathlon, a new international competition in which 74 participants with physical disabilities will compete against each other, using the latest robotic prostheses and other assistive technologies – a sort of ‘Cyborg Olympics’.

The Paralympics will now be followed by the Cybathlon, which takes place in Zürich on October 8th [2016]. This is the first major competition to show that the boundaries between human and machine are becoming more and more blurred. The participants will compete in six different disciplines using the machines they are connected to as well as possible.

Cybathlon is intended to drive forward the development of prostheses and other types of assistive aids. Today, such technologies are often highly advanced technically, but provide limited value in everyday life.

An Oct. 4, 2016 Chalmers University of Technology press release by Johanna Wilde, which originated the news item, provides details about the competitor, his prosthetic device, and more,

Magnus, one of the participants, has now had his biomechatronically integrated arm prosthesis for almost four years. He says that his life has totally changed since the implantation, which was performed by Dr Rickard Brånemark, associate professor at Sahlgrenska University Hospital.

“I don’t feel handicapped since I got this arm”, says Magnus. “I can now work full time and can perform all the tasks in both my job and my family life. The prosthesis doesn’t feel like a machine, but more like my own arm.”

Magnus lives in northern Sweden and works as a lorry driver. He regularly visits Gothenburg in southern Sweden and carries out tests with researcher Max Ortiz Catalan, assistant professor at Chalmers University of Technology, who has been in charge of developing the technology and leads the team competing in the Cybathlon.

“This is a completely new research field in which we have managed to directly connect the artificial limb to the skeleton, nerves and muscles,” says Dr Max Ortiz Catalan. “In addition, we are including direct neural sensory feedback in the prosthetic arm so the patient can intuitively feel with it.”

Today Magnus can feel varying levels of pressure in his artificial hand, something which is necessary to instinctively grip an object firmly enough. He is unique in the world in having a permanent sensory connection between the prosthesis and his nervous system, working outside laboratory conditions. Work is now under way to add more types of sensations.

At the Cybathlon he will be competing for the Swedish team, which is formed by Chalmers University of Technology, Sahlgrenska University Hospital and the company Integrum AB.

The competition has a separate discipline for arm prostheses. In this discipline Magnus has to complete a course made up of six different stations at which the prosthesis will be put to the test. For example, he has to open a can with a can opener, load a tray with crockery and open a door with the tray in his hand. The events at the Cybathlon are designed to be spectator-friendly while being based on various operations that the participants have to cope with in their daily lives.

“However, the competition will not really show the unique advantages of our technology, such as the sense of touch and the bone-anchored attachment which makes the prosthesis comfortable enough to wear all day,” says Max Ortiz Catalan.

Magnus is the only participant with an amputation above the elbow. This naturally makes the competition more difficult for him than for the others, who have a natural elbow joint.

“From a competitive perspective Cybathlon is far from ideal to demonstrate clinically viable technology,” says Max Ortiz Catalan. “But it is a major and important event in the human-machine interface field in which we would like to showcase our technology. Unlike several of the other participants, Magnus will compete in the event using the same technology he uses in his everyday life.”

Facts about Cybathlon
•    The very first Cybathlon is being organised by the Swiss university ETH Zürich.
•    The €5 million event will take place in Zürich´s 7600 spectator ice hockey stadium, Swiss Arena.
•    74 participants are competing for 59 different teams from 25 countries around the world. In total, the teams consist of about 300 scientists, engineers, support staff and competitors.
•    The teams range from small ad hoc teams to the world’s largest manufacturers of advanced prostheses.
•    The majority of the teams are groups from research labs and many of the prostheses have come straight out of the lab.
•    Unlike the Olympics and Paralympics, the Cybathlon participants are not athletes but ordinary people with various disabilities. The aims of the competition are to establish a dialogue between academia and industry, to facilitate discussion between technology developers and people with disabilities and to promote the use of robotic assistive aids to the general public.
•    Cybathlon will return in 2020, as a seven-day event in Tokyo, to coincide with the Olympics.

Facts about the Swedish team
The Opra Osseointegration team is a multidisciplinary team comprising technical and medical partners. The team is led by Dr Max Ortiz Catalan, assistant professor at Chalmers University of Technology, who has been in charge of developing the technology in close collaboration with Dr Rickard Brånemark, who is a surgeon at Sahlgrenska University Hospital and an associate professor at Gothenburg University. Dr Brånemark led the team performing the implantation of the device. Integrum AB, a Swedish company, complements the team as the pioneering provider of bone-anchored limb prostheses.

This video gives you an idea of what it’s in store on Oct. 8, 2016,

Mind-controlled prostheses ready for real world activities

There’s some exciting news from Sweden’s Chalmers University of Technology about prosthetics. From an Oct. 8, 2014 news item on ScienceDaily,

For the first time, robotic prostheses controlled via implanted neuromuscular interfaces have become a clinical reality. A novel osseointegrated (bone-anchored) implant system gives patients new opportunities in their daily life and professional activities.

In January 2013 a Swedish arm amputee was the first person in the world to receive a prosthesis with a direct connection to bone, nerves and muscles. …

An Oct. 8, 2014 Chalmers University press release (also on EurekAlert), which originated the news item, provides more details about the research and this ‘real world’ prosthetic device,

“Going beyond the lab to allow the patient to face real-world challenges is the main contribution of this work,” says Max Ortiz Catalan, research scientist at Chalmers University of Technology and leading author of the publication.

“We have used osseointegration to create a long-term stable fusion between man and machine, where we have integrated them at different levels. The artificial arm is directly attached to the skeleton, thus providing mechanical stability. Then the human’s biological control system, that is nerves and muscles, is also interfaced to the machine’s control system via neuromuscular electrodes. This creates an intimate union between the body and the machine; between biology and mechatronics.”

The direct skeletal attachment is created by what is known as osseointegration, a technology in limb prostheses pioneered by associate professor Rickard Brånemark and his colleagues at Sahlgrenska University Hospital. Rickard Brånemark led the surgical implantation and collaborated closely with Max Ortiz Catalan and Professor Bo Håkansson at Chalmers University of Technology on this project.

The patient’s arm was amputated over ten years ago. Before the surgery, his prosthesis was controlled via electrodes placed over the skin. Robotic prostheses can be very advanced, but such a control system makes them unreliable and limits their functionality, and patients commonly reject them as a result.

Now, the patient has been given a control system that is directly connected to his own. He has a physically challenging job as a truck driver in northern Sweden, and since the surgery he has experienced that he can cope with all the situations he faces; everything from clamping his trailer load and operating machinery, to unpacking eggs and tying his children’s skates, regardless of the environmental conditions (read more about the benefits of the new technology below).

The patient is also one of the first in the world to take part in an effort to achieve long-term sensation via the prosthesis. Because the implant is a bidirectional interface, it can also be used to send signals in the opposite direction – from the prosthetic arm to the brain. This is the researchers’ next step, to clinically implement their findings on sensory feedback.

“Reliable communication between the prosthesis and the body has been the missing link for the clinical implementation of neural control and sensory feedback, and this is now in place,” says Max Ortiz Catalan. “So far we have shown that the patient has a long-term stable ability to perceive touch in different locations in the missing hand. Intuitive sensory feedback and control are crucial for interacting with the environment, for example to reliably hold an object despite disturbances or uncertainty. Today, no patient walks around with a prosthesis that provides such information, but we are working towards changing that in the very short term.”

The researchers plan to treat more patients with the novel technology later this year.

“We see this technology as an important step towards more natural control of artificial limbs,” says Max Ortiz Catalan. “It is the missing link for allowing sophisticated neural interfaces to control sophisticated prostheses. So far, this has only been possible in short experiments within controlled environments.”

The researchers have provided an image of the patient using his prosthetic arm in the context of his work as a truck driver,

[downloaded from http://www.chalmers.se/en/news/Pages/Mind-controlled-prosthetic-arms-that-work-in-daily-life-are-now-a-reality.aspx]

[downloaded from http://www.chalmers.se/en/news/Pages/Mind-controlled-prosthetic-arms-that-work-in-daily-life-are-now-a-reality.aspx]

The news release offers some additional information about the device,

The new technology is based on the OPRA treatment (osseointegrated prosthesis for the rehabilitation of amputees), where a titanium implant is surgically inserted into the bone and becomes fixated to it by a process known as osseointegration (Osseo = bone). A percutaneous component (abutment) is then attached to the titanium implant to serve as a metallic bone extension, where the prosthesis is then fixated. Electrodes are implanted in nerves and muscles as the interfaces to the biological control system. These electrodes record signals which are transmitted via the osseointegrated implant to the prostheses, where the signals are finally decoded and translated into motions.

There are also some videos of the patient demonstrating various aspects of this device available here (keep scrolling) along with more details about what makes this device so special.

Here’s a link to and a citation for the research paper,

An osseointegrated human-machine gateway for long-term sensory feedback and motor control of artificial limbs by Max Ortiz-Catalan, Bo Håkansson, and Rickard Brånemark. Sci Transl Med 8 October 2014: Vol. 6, Issue 257, p. 257re6 Sci. Transl. Med. DOI: 10.1126/scitranslmed.3008933

This article is behind a paywall and it appears to be part of a special issue or a special section in an issue, so keep scrolling down the linked to page to find more articles on this topic.

I have written about similar research in the past. Notably, there’s a July 19, 2011 post about work on Intraosseous Transcutaneous Amputation Prosthesis (ITAP) and a May 17, 2012 post featuring a video of a woman reaching with a robotic arm for a cup of coffee using her thoughts alone to control the arm.