Tag Archives: McGill University

Inaugural Italian Scientists and Scholars of North America Foundation (ISSNAF) annual meeting

Thanks to a May 17, 2017 announcement I received via email from the ArtSci Salon, I’ve learned of a rather intriguing annual meeting to be held May 19-20, 2017 in Toronto, Ontario,

We are pleased to invite you to attend the Italian Scientists and
Scholars of North America Foundation (ISSNAF) inaugural annual
conference in Canada, which will be held on May 19-20th, 2017 at the
Istituto Italiano di Cultura, Toronto, Ontario.

During the event, the Italian scientific community will meet the
institutions, the industry, academia to discuss breakthrough ideas, to
network, and to award projects of young Italians through the ISSNAF
Young Investigators Awards.

The event is organized under the auspices of H.E. Ambassador CLAUDIO
TAFFURI, Consul General of Italy in Toronto, GIUSEPPE PASTORELLI,
Director of the Istituto Italiano di Cultura in Toronto, ALESSANDRO
RUGGERA and Scientific Attaché of the Italian Embassy in Ottawa, ANNA
GALLUCCIO. This year’s exciting conference will focus on innovation,
exploring innovation as invention and transformation, as well as its
impact on how we live and think.

After an introduction by H.E. Ambassador of Italy, CLAUDIO TAFFURI,
and other representatives of Italian institutions, the event will open
with two prominent speakers: PAOLO MACCARIO, Chief Operating Officer
and General Manager at Silfab Ontario Inc. and FRANCO VACCARINO,
President and Vice-Chancellor of Guelph University, who will discuss
current and future strategies in academia and industry required for
students and workers to deal with the disruptive technologies and the
exponential increase in knowledge.

The later part of the day will feature speakers from different
institutions from all over Canada. CORRADO PAINA, President of the
Italian Chamber of Commerce, will address the importance of innovation
and research from the industry prospective. UMBERTO BERARDI, Associate
Professor, Faculty of Engineering and Architecture, Ryerson
University, will bring his experience as winner of the Franco
Strazzabosco Award for Engineers. Nicola Fameli, Research Associate of
Anesthesiology, Pharmacology and Therapeutics, U. of British Columbia
and Franco Mammarella, Group leader [TRIUMF] Canada’s National Laboratory for
Particle and Nuclear Physics, president and vice-president of ARPICO
(Society of Italian Researchers & Professionals in Western Canada),
will explain the importance of developing a global network amongst
researchers. The day will be closed by GABRIELLA GOBBI, Associate
Professor, Dept. Psychiatry, McGill University on the current status
of the Italian Scientific Community in Quebec.

Day One of ISSNAF’s Annual event will conclude with a reception at the
Istituto. Day Two of the event is dedicated to young Italian
researchers and scientists who will present their work and will
receive the ISSNAF Certificate for Young Investigators. The day will
end with a round table and a discussion directed by the ISSNAF Ontario
chapter Chairs, BARBARA CIFRA, VITO MENNELLA AND LEONARDO SALMENA on
how to build a successful academic network and how ISSNAF can
contribute to the process.

The event is limited to 50 people only [emphasis mine]. Please confirm your presence
by May 17th [2017] by sending an email to: iictoronto@esteri.it

Sorry to be posting this so late in the day (fingers crossed it’s not too late).

I did do some searching and found this description of the event on the ARPICO website,

On May 19-20th SIRO (Society of Italian researcher in Ontario) official Chapter of the Italian Scientists and Scholars of North America Foundation (ISSNAF) will host in cooperation with the Embassy of Italy in Ottawa the inaugural Canadian Annual ISSNAF meeting.

The event is organized under the auspices of H.E. Ambassador Claudio Taffuri, Consul General of Italy in Toronto, Giuseppe Pastorelli, and Director of the Istituto Italiano di Cultura in Toronto, Alessandro Ruggera and Scientific Attache’ of the Italian Embassy in Ottawa, Anna Galluccio. This year’s exciting conference will focus on innovation, exploring innovation as invention and transformation and its impact on how we live and think.

During the event, the italian scientific community meets the institutions, the industry, academia to discuss breakthrough ideas, to network, and to award projects of young Italians through the ISSNAF Young Investigators Awards.

For this year the event will be attended by 60 selected researchers and scholars working in Canada. [emphasis mine]

For more information email issnafontario@gmail.com

Good luck at getting to attend the event whether there are 50 or 60 participants.

Vector Institute and Canada’s artificial intelligence sector

On the heels of the March 22, 2017 federal budget announcement of $125M for a Pan-Canadian Artificial Intelligence Strategy, the University of Toronto (U of T) has announced the inception of the Vector Institute for Artificial Intelligence in a March 28, 2017 news release by Jennifer Robinson (Note: Links have been removed),

A team of globally renowned researchers at the University of Toronto is driving the planning of a new institute staking Toronto’s and Canada’s claim as the global leader in AI.

Geoffrey Hinton, a University Professor Emeritus in computer science at U of T and vice-president engineering fellow at Google, will serve as the chief scientific adviser of the newly created Vector Institute based in downtown Toronto.

“The University of Toronto has long been considered a global leader in artificial intelligence research,” said U of T President Meric Gertler. “It’s wonderful to see that expertise act as an anchor to bring together researchers, government and private sector actors through the Vector Institute, enabling them to aim even higher in leading advancements in this fast-growing, critical field.”

As part of the Government of Canada’s Pan-Canadian Artificial Intelligence Strategy, Vector will share $125 million in federal funding with fellow institutes in Montreal and Edmonton. All three will conduct research and secure talent to cement Canada’s position as a world leader in AI.

In addition, Vector is expected to receive funding from the Province of Ontario and more than 30 top Canadian and global companies eager to tap this pool of talent to grow their businesses. The institute will also work closely with other Ontario universities with AI talent.

(See my March 24, 2017 posting; scroll down about 25% for the science part, including the Pan-Canadian Artificial Intelligence Strategy of the budget.)

Not obvious in last week’s coverage of the Pan-Canadian Artificial Intelligence Strategy is that the much lauded Hinton has been living in the US and working for Google. These latest announcements (Pan-Canadian AI Strategy and Vector Institute) mean that he’s moving back.

A March 28, 2017 article by Kate Allen for TorontoStar.com provides more details about the Vector Institute, Hinton, and the Canadian ‘brain drain’ as it applies to artificial intelligence, (Note:  A link has been removed)

Toronto will host a new institute devoted to artificial intelligence, a major gambit to bolster a field of research pioneered in Canada but consistently drained of talent by major U.S. technology companies like Google, Facebook and Microsoft.

The Vector Institute, an independent non-profit affiliated with the University of Toronto, will hire about 25 new faculty and research scientists. It will be backed by more than $150 million in public and corporate funding in an unusual hybridization of pure research and business-minded commercial goals.

The province will spend $50 million over five years, while the federal government, which announced a $125-million Pan-Canadian Artificial Intelligence Strategy in last week’s budget, is providing at least $40 million, backers say. More than two dozen companies have committed millions more over 10 years, including $5 million each from sponsors including Google, Air Canada, Loblaws, and Canada’s five biggest banks [Bank of Montreal (BMO). Canadian Imperial Bank of Commerce ({CIBC} President’s Choice Financial},  Royal Bank of Canada (RBC), Scotiabank (Tangerine), Toronto-Dominion Bank (TD Canada Trust)].

The mode of artificial intelligence that the Vector Institute will focus on, deep learning, has seen remarkable results in recent years, particularly in image and speech recognition. Geoffrey Hinton, considered the “godfather” of deep learning for the breakthroughs he made while a professor at U of T, has worked for Google since 2013 in California and Toronto.

Hinton will move back to Canada to lead a research team based at the tech giant’s Toronto offices and act as chief scientific adviser of the new institute.

Researchers trained in Canadian artificial intelligence labs fill the ranks of major technology companies, working on tools like instant language translation, facial recognition, and recommendation services. Academic institutions and startups in Toronto, Waterloo, Montreal and Edmonton boast leaders in the field, but other researchers have left for U.S. universities and corporate labs.

The goals of the Vector Institute are to retain, repatriate and attract AI talent, to create more trained experts, and to feed that expertise into existing Canadian companies and startups.

Hospitals are expected to be a major partner, since health care is an intriguing application for AI. Last month, researchers from Stanford University announced they had trained a deep learning algorithm to identify potentially cancerous skin lesions with accuracy comparable to human dermatologists. The Toronto company Deep Genomics is using deep learning to read genomes and identify mutations that may lead to disease, among other things.

Intelligent algorithms can also be applied to tasks that might seem less virtuous, like reading private data to better target advertising. Zemel [Richard Zemel, the institute’s research director and a professor of computer science at U of T] says the centre is creating an ethics working group [emphasis mine] and maintaining ties with organizations that promote fairness and transparency in machine learning. As for privacy concerns, “that’s something we are well aware of. We don’t have a well-formed policy yet but we will fairly soon.”

The institute’s annual funding pales in comparison to the revenues of the American tech giants, which are measured in tens of billions. The risk the institute’s backers are taking is simply creating an even more robust machine learning PhD mill for the U.S.

“They obviously won’t all stay in Canada, but Toronto industry is very keen to get them,” Hinton said. “I think Trump might help there.” Two researchers on Hinton’s new Toronto-based team are Iranian, one of the countries targeted by U.S. President Donald Trump’s travel bans.

Ethics do seem to be a bit of an afterthought. Presumably the Vector Institute’s ‘ethics working group’ won’t include any regular folks. Is there any thought to what the rest of us think about these developments? As there will also be some collaboration with other proposed AI institutes including ones at the University of Montreal (Université de Montréal) and the University of Alberta (Kate McGillivray’s article coming up shortly mentions them), might the ethics group be centered in either Edmonton or Montreal? Interestingly, two Canadians (Timothy Caulfield at the University of Alberta and Eric Racine at Université de Montréa) testified at the US Commission for the Study of Bioethical Issues Feb. 10 – 11, 2014 meeting, the Brain research, ethics, and nanotechnology. Still speculating here but I imagine Caulfield and/or Racine could be persuaded to extend their expertise in ethics and the human brain to AI and its neural networks.

Getting back to the topic at hand the ‘AI sceneCanada’, Allen’s article is worth reading in its entirety if you have the time.

Kate McGillivray’s March 29, 2017 article for the Canadian Broadcasting Corporation’s (CBC) news online provides more details about the Canadian AI situation and the new strategies,

With artificial intelligence set to transform our world, a new institute is putting Toronto to the front of the line to lead the charge.

The Vector Institute for Artificial Intelligence, made possible by funding from the federal government revealed in the 2017 budget, will move into new digs in the MaRS Discovery District by the end of the year.

Vector’s funding comes partially from a $125 million investment announced in last Wednesday’s federal budget to launch a pan-Canadian artificial intelligence strategy, with similar institutes being established in Montreal and Edmonton.

“[A.I.] cuts across pretty well every sector of the economy,” said Dr. Alan Bernstein, CEO and president of the Canadian Institute for Advanced Research, the organization tasked with administering the federal program.

“Silicon Valley and England and other places really jumped on it, so we kind of lost the lead a little bit. I think the Canadian federal government has now realized that,” he said.

Stopping up the brain drain

Critical to the strategy’s success is building a homegrown base of A.I. experts and innovators — a problem in the last decade, despite pioneering work on so-called “Deep Learning” by Canadian scholars such as Yoshua Bengio and Geoffrey Hinton, a former University of Toronto professor who will now serve as Vector’s chief scientific advisor.

With few university faculty positions in Canada and with many innovative companies headquartered elsewhere, it has been tough to keep the few graduates specializing in A.I. in town.

“We were paying to educate people and shipping them south,” explained Ed Clark, chair of the Vector Institute and business advisor to Ontario Premier Kathleen Wynne.

The existence of that “fantastic science” will lean heavily on how much buy-in Vector and Canada’s other two A.I. centres get.

Toronto’s portion of the $125 million is a “great start,” said Bernstein, but taken alone, “it’s not enough money.”

“My estimate of the right amount of money to make a difference is a half a billion or so, and I think we will get there,” he said.

Jessica Murphy’s March 29, 2017 article for the British Broadcasting Corporation’s (BBC) news online offers some intriguing detail about the Canadian AI scene,

Canadian researchers have been behind some recent major breakthroughs in artificial intelligence. Now, the country is betting on becoming a big player in one of the hottest fields in technology, with help from the likes of Google and RBC [Royal Bank of Canada].

In an unassuming building on the University of Toronto’s downtown campus, Geoff Hinton laboured for years on the “lunatic fringe” of academia and artificial intelligence, pursuing research in an area of AI called neural networks.

Also known as “deep learning”, neural networks are computer programs that learn in similar way to human brains. The field showed early promise in the 1980s, but the tech sector turned its attention to other AI methods after that promise seemed slow to develop.

“The approaches that I thought were silly were in the ascendancy and the approach that I thought was the right approach was regarded as silly,” says the British-born [emphasis mine] professor, who splits his time between the university and Google, where he is a vice-president of engineering fellow.

Neural networks are used by the likes of Netflix to recommend what you should binge watch and smartphones with voice assistance tools. Google DeepMind’s AlphaGo AI used them to win against a human in the ancient game of Go in 2016.

Foteini Agrafioti, who heads up the new RBC Research in Machine Learning lab at the University of Toronto, said those recent innovations made AI attractive to researchers and the tech industry.

“Anything that’s powering Google’s engines right now is powered by deep learning,” she says.

Developments in the field helped jumpstart innovation and paved the way for the technology’s commercialisation. They also captured the attention of Google, IBM and Microsoft, and kicked off a hiring race in the field.

The renewed focus on neural networks has boosted the careers of early Canadian AI machine learning pioneers like Hinton, the University of Montreal’s Yoshua Bengio, and University of Alberta’s Richard Sutton.

Money from big tech is coming north, along with investments by domestic corporations like banking multinational RBC and auto parts giant Magna, and millions of dollars in government funding.

Former banking executive Ed Clark will head the institute, and says the goal is to make Toronto, which has the largest concentration of AI-related industries in Canada, one of the top five places in the world for AI innovation and business.

The founders also want it to serve as a magnet and retention tool for top talent aggressively head-hunted by US firms.

Clark says they want to “wake up” Canadian industry to the possibilities of AI, which is expected to have a massive impact on fields like healthcare, banking, manufacturing and transportation.

Google invested C$4.5m (US$3.4m/£2.7m) last November [2016] in the University of Montreal’s Montreal Institute for Learning Algorithms.

Microsoft is funding a Montreal startup, Element AI. The Seattle-based company also announced it would acquire Montreal-based Maluuba and help fund AI research at the University of Montreal and McGill University.

Thomson Reuters and General Motors both recently moved AI labs to Toronto.

RBC is also investing in the future of AI in Canada, including opening a machine learning lab headed by Agrafioti, co-funding a program to bring global AI talent and entrepreneurs to Toronto, and collaborating with Sutton and the University of Alberta’s Machine Intelligence Institute.

Canadian tech also sees the travel uncertainty created by the Trump administration in the US as making Canada more attractive to foreign talent. (One of Clark’s the selling points is that Toronto as an “open and diverse” city).

This may reverse the ‘brain drain’ but it appears Canada’s role as a ‘branch plant economy’ for foreign (usually US) companies could become an important discussion once more. From the ‘Foreign ownership of companies of Canada’ Wikipedia entry (Note: Links have been removed),

Historically, foreign ownership was a political issue in Canada in the late 1960s and early 1970s, when it was believed by some that U.S. investment had reached new heights (though its levels had actually remained stable for decades), and then in the 1980s, during debates over the Free Trade Agreement.

But the situation has changed, since in the interim period Canada itself became a major investor and owner of foreign corporations. Since the 1980s, Canada’s levels of investment and ownership in foreign companies have been larger than foreign investment and ownership in Canada. In some smaller countries, such as Montenegro, Canadian investment is sizable enough to make up a major portion of the economy. In Northern Ireland, for example, Canada is the largest foreign investor. By becoming foreign owners themselves, Canadians have become far less politically concerned about investment within Canada.

Of note is that Canada’s largest companies by value, and largest employers, tend to be foreign-owned in a way that is more typical of a developing nation than a G8 member. The best example is the automotive sector, one of Canada’s most important industries. It is dominated by American, German, and Japanese giants. Although this situation is not unique to Canada in the global context, it is unique among G-8 nations, and many other relatively small nations also have national automotive companies.

It’s interesting to note that sometimes Canadian companies are the big investors but that doesn’t change our basic position. And, as I’ve noted in other postings (including the March 24, 2017 posting), these government investments in science and technology won’t necessarily lead to a move away from our ‘branch plant economy’ towards an innovative Canada.

You can find out more about the Vector Institute for Artificial Intelligence here.

BTW, I noted that reference to Hinton as ‘British-born’ in the BBC article. He was educated in the UK and subsidized by UK taxpayers (from his Wikipedia entry; Note: Links have been removed),

Hinton was educated at King’s College, Cambridge graduating in 1970, with a Bachelor of Arts in experimental psychology.[1] He continued his study at the University of Edinburgh where he was awarded a PhD in artificial intelligence in 1977 for research supervised by H. Christopher Longuet-Higgins.[3][12]

It seems Canadians are not the only ones to experience  ‘brain drains’.

Finally, I wrote at length about a recent initiative taking place between the University of British Columbia (Vancouver, Canada) and the University of Washington (Seattle, Washington), the Cascadia Urban Analytics Cooperative in a Feb. 28, 2017 posting noting that the initiative is being funded by Microsoft to the tune $1M and is part of a larger cooperative effort between the province of British Columbia and the state of Washington. Artificial intelligence is not the only area where US technology companies are hedging their bets (against Trump’s administration which seems determined to terrify people from crossing US borders) by investing in Canada.

For anyone interested in a little more information about AI in the US and China, there’s today’s (March 31, 2017)earlier posting: China, US, and the race for artificial intelligence research domination.

2016 thoughts and 2017 hopes from FrogHeart

This is the 4900th post on this blog and as FrogHeart moves forward to 5000, I’m thinking there will be some changes although I’m not sure what they’ll be. In the meantime, here are some random thoughts on the year that was in Canadian science and on the FrogHeart blog.

Changeover to Liberal government: year one

Hopes were high after the Trudeau government was elected. Certainly, there seems to have been a loosening where science communication policies have been concerned although it may not have been quite the open and transparent process people dreamed of. On the plus side, it’s been easier to participate in public consultations but there has been no move (perceptible to me) towards open government science or better access to government-funded science papers.

Open Science in Québec

As far as I know, la crème de la crème of open science (internationally) is the Montreal Neurological Institute (Montreal Neuro; affiliated with McGill University. They bookended the year with two announcements. In January 2016, Montreal Neuro announced it was going to be an “Open Science institution (my Jan. 22, 2016 posting),

The Montreal Neurological Institute (MNI) in Québec, Canada, known informally and widely as Montreal Neuro, has ‘opened’ its science research to the world. David Bruggeman tells the story in a Jan. 21, 2016 posting on his Pasco Phronesis blog (Note: Links have been removed),

The Montreal Neurological Institute (MNI) at McGill University announced that it will be the first academic research institute to become what it calls ‘Open Science.’  As Science is reporting, the MNI will make available all research results and research data at the time of publication.  Additionally it will not seek patents on any of the discoveries made on research at the Institute.

Will this catch on?  I have no idea if this particular combination of open access research data and results with no patents will spread to other university research institutes.  But I do believe that those elements will continue to spread.  More universities and federal agencies are pursuing open access options for research they support.  Elon Musk has opted to not pursue patent litigation for any of Tesla Motors’ patents, and has not pursued patents for SpaceX technology (though it has pursued litigation over patents in rocket technology). …

Then, there’s my Dec. 19, 2016 posting about this Montreal Neuro announcement,

It’s one heck of a Christmas present. Canadian businessmen Larry Tannenbaum and his wife Judy have given the Montreal Neurological Institute (Montreal Neuro), which is affiliated with McGill University, a $20M donation. From a Dec. 16, 2016 McGill University news release,

The Prime Minister of Canada, Justin Trudeau, was present today at the Montreal Neurological Institute and Hospital (MNI) for the announcement of an important donation of $20 million by the Larry and Judy Tanenbaum family. This transformative gift will help to establish the Tanenbaum Open Science Institute, a bold initiative that will facilitate the sharing of neuroscience findings worldwide to accelerate the discovery of leading edge therapeutics to treat patients suffering from neurological diseases.

‟Today, we take an important step forward in opening up new horizons in neuroscience research and discovery,” said Mr. Larry Tanenbaum. ‟Our digital world provides for unprecedented opportunities to leverage advances in technology to the benefit of science.  That is what we are celebrating here today: the transformation of research, the removal of barriers, the breaking of silos and, most of all, the courage of researchers to put patients and progress ahead of all other considerations.”

Neuroscience has reached a new frontier, and advances in technology now allow scientists to better understand the brain and all its complexities in ways that were previously deemed impossible. The sharing of research findings amongst scientists is critical, not only due to the sheer scale of data involved, but also because diseases of the brain and the nervous system are amongst the most compelling unmet medical needs of our time.

Neurological diseases, mental illnesses, addictions, and brain and spinal cord injuries directly impact 1 in 3 Canadians, representing approximately 11 million people across the country.

“As internationally-recognized leaders in the field of brain research, we are uniquely placed to deliver on this ambitious initiative and reinforce our reputation as an institution that drives innovation, discovery and advanced patient care,” said Dr. Guy Rouleau, Director of the Montreal Neurological Institute and Hospital and Chair of McGill University’s Department of Neurology and Neurosurgery. “Part of the Tanenbaum family’s donation will be used to incentivize other Canadian researchers and institutions to adopt an Open Science model, thus strengthening the network of like-minded institutes working in this field.”

Chief Science Advisor

Getting back to the federal government, we’re still waiting for a Chief Science Advisor. Should you be interested in the job, apply here. The job search was launched in early Dec. 2016 (see my Dec. 7, 2016 posting for details) a little over a year after the Liberal government was elected. I’m not sure why the process is taking so long. It’s not like the Canadian government is inventing a position or trailblazing in this regard. Many, many countries and jurisdictions have chief science advisors. Heck the European Union managed to find their first chief science advisor in considerably less time than we’ve spent on the project. My guess, it just wasn’t a priority.

Prime Minister Trudeau, quantum, nano, and Canada’s 150th birthday

In April 2016, Prime Minister Justin Trudeau stunned many when he was able to answer, in an articulate and informed manner, a question about quantum physics during a press conference at the Perimeter Institute in Waterloo, Ontario (my April 18, 2016 post discussing that incident and the so called ‘quantum valley’ in Ontario).

In Sept. 2016, the University of Waterloo publicized the world’s smallest Canadian flag to celebrate the country’s upcoming 150th birthday and to announce its presence in QUANTUM: The Exhibition (a show which will tour across Canada). Here’s more from my Sept. 20, 2016 posting,

The record-setting flag was unveiled at IQC’s [Institute of Quantum Computing at the University of Waterloo] open house on September 17 [2016], which attracted nearly 1,000 visitors. It will also be on display in QUANTUM: The Exhibition, a Canada 150 Fund Signature Initiative, and part of Innovation150, a consortium of five leading Canadian science-outreach organizations. QUANTUM: The Exhibition is a 4,000-square-foot, interactive, travelling exhibit IQC developed highlighting Canada’s leadership in quantum information science and technology.

“I’m delighted that IQC is celebrating Canadian innovation through QUANTUM: The Exhibition and Innovation150,” said Raymond Laflamme, executive director of IQC. “It’s an opportunity to share the transformative technologies resulting from Canadian research and bring quantum computing to fellow Canadians from coast to coast to coast.”

The first of its kind, the exhibition will open at THEMUSEUM in downtown Kitchener on October 14 [2016], and then travel to science centres across the country throughout 2017.

You can find the English language version of QUANTUM: The Exhibition website here and the French language version of QUANTUM: The Exhibition website here.

There are currently four other venues for the show once finishes its run in Waterloo. From QUANTUM’S Join the Celebration webpage,

2017

  • Science World at TELUS World of Science, Vancouver
  • TELUS Spark, Calgary
  • Discovery Centre, Halifax
  • Canada Science and Technology Museum, Ottawa

I gather they’re still looking for other venues to host the exhibition. If interested, there’s this: Contact us.

Other than the flag which is both nanoscale and microscale, they haven’t revealed what else will be included in their 4000 square foot exhibit but it will be “bilingual, accessible, and interactive.” Also, there will be stories.

Hmm. The exhibition is opening in roughly three weeks and they have no details. Strategy or disorganization? Only time will tell.

Calgary and quantum teleportation

This is one of my favourite stories of the year. Scientists at the University of Calgary teleported photons six kilometers from the university to city hall breaking the teleportation record. What I found particularly interesting was the support for science from Calgary City Hall. Here’s more from my Sept. 21, 2016 post,

Through a collaboration between the University of Calgary, The City of Calgary and researchers in the United States, a group of physicists led by Wolfgang Tittel, professor in the Department of Physics and Astronomy at the University of Calgary have successfully demonstrated teleportation of a photon (an elementary particle of light) over a straight-line distance of six kilometres using The City of Calgary’s fibre optic cable infrastructure. The project began with an Urban Alliance seed grant in 2014.

This accomplishment, which set a new record for distance of transferring a quantum state by teleportation, has landed the researchers a spot in the prestigious Nature Photonics scientific journal. The finding was published back-to-back with a similar demonstration by a group of Chinese researchers.

The research could not be possible without access to the proper technology. One of the critical pieces of infrastructure that support quantum networking is accessible dark fibre. Dark fibre, so named because of its composition — a single optical cable with no electronics or network equipment on the alignment — doesn’t interfere with quantum technology.

The City of Calgary is building and provisioning dark fibre to enable next-generation municipal services today and for the future.

“By opening The City’s dark fibre infrastructure to the private and public sector, non-profit companies, and academia, we help enable the development of projects like quantum encryption and create opportunities for further research, innovation and economic growth in Calgary,” said Tyler Andruschak, project manager with Innovation and Collaboration at The City of Calgary.

As for the science of it (also from my post),

A Sept. 20, 2016 article by Robson Fletcher for CBC (Canadian Broadcasting News) online provides a bit more insight from the lead researcher (Note: A link has been removed),

“What is remarkable about this is that this information transfer happens in what we call a disembodied manner,” said physics professor Wolfgang Tittel, whose team’s work was published this week in the journal Nature Photonics.

“Our transfer happens without any need for an object to move between these two particles.”

A Sept. 20, 2016 University of Calgary news release by Drew Scherban, which originated the news item, provides more insight into the research,

“Such a network will enable secure communication without having to worry about eavesdropping, and allow distant quantum computers to connect,” says Tittel.

Experiment draws on ‘spooky action at a distance’

The experiment is based on the entanglement property of quantum mechanics, also known as “spooky action at a distance” — a property so mysterious that not even Einstein could come to terms with it.

“Being entangled means that the two photons that form an entangled pair have properties that are linked regardless of how far the two are separated,” explains Tittel. “When one of the photons was sent over to City Hall, it remained entangled with the photon that stayed at the University of Calgary.”

Next, the photon whose state was teleported to the university was generated in a third location in Calgary and then also travelled to City Hall where it met the photon that was part of the entangled pair.

“What happened is the instantaneous and disembodied transfer of the photon’s quantum state onto the remaining photon of the entangled pair, which is the one that remained six kilometres away at the university,” says Tittel.

Council of Canadian Academies and The State of Science and Technology and Industrial Research and Development in Canada

Preliminary data was released by the CCA’s expert panel in mid-December 2016. I reviewed that material briefly in my Dec. 15, 2016 post but am eagerly awaiting the full report due late 2017 when, hopefully, I’ll have the time to critique the material, and which I hope will have more surprises and offer greater insights than the preliminary report did.

Colleagues

Thank you to my online colleagues. While we don’t interact much it’s impossible to estimate how encouraging it is to know that these people continually participate and help create the nano and/or science blogosphere.

David Bruggeman at his Pasco Phronesis blog keeps me up-to-date on science policy both in the US, Canada, and internationally, as well as, keeping me abreast of the performing arts/science scene. Also, kudos to David for raising my (and his audience’s) awareness of just how much science is discussed on late night US television. Also, I don’t know how he does it but he keeps scooping me on Canadian science policy matters. Thankfully, I’m not bitter and hope he continues to scoop me which will mean that I will get the information from somewhere since it won’t be from the Canadian government.

Tim Harper of Cientifica Research keeps me on my toes as he keeps shifting his focus. Most lately, it’s been on smart textiles and wearables. You can download his latest White Paper titled, Fashion, Smart Textiles, Wearables and Disappearables, from his website. Tim consults on nanotechnology and other emerging technologies at the international level.

Dexter Johnson of the Nanoclast blog on the IEEE (Institute of Electrical and Electronics Engineers) website consistently provides informed insight into how a particular piece of research fits into the nano scene and often provides historical details that you’re not likely to get from anyone else.

Dr. Andrew Maynard is currently the founding Director of the Risk Innovation Lab at the University of Arizona. I know him through his 2020 Science blog where he posts text and videos on many topics including emerging technologies, nanotechnologies, risk, science communication, and much more. Do check out 2020 Science as it is a treasure trove.

2017 hopes and dreams

I hope Canada’s Chief Science Advisor brings some fresh thinking to science in government and that the Council of Canadian Academies’ upcoming assessment on The State of Science and Technology and Industrial Research and Development in Canada is visionary. Also, let’s send up some collective prayers for the Canada Science and Technology Museum which has been closed since 2014 (?) due to black mold (?). It would be lovely to see it open in time for Canada’s 150th anniversary.

I’d like to see the nanotechnology promise come closer to a reality, which benefits as many people as possible.

As for me and FrogHeart, I’m not sure about the future. I do know there’s one more Steep project (I’m working with Raewyn Turner on a multiple project endeavour known as Steep; this project will involve sound and gold nanoparticles).

Should anything sparkling occur to me, I will add it at a future date.

In the meantime, Happy New Year and thank you from the bottom of my heart for reading this blog!

Montreal Neuro creates a new paradigm for technology transfer?

It’s one heck of a Christmas present. Canadian businessmen Larry Tannenbaum and his wife Judy have given the Montreal Neurological Institute (Montreal Neuro), which is affiliated with McGill University, a $20M donation. From a Dec. 16, 2016 McGill University news release,

The Prime Minister of Canada, Justin Trudeau, was present today at the Montreal Neurological Institute and Hospital (MNI) for the announcement of an important donation of $20 million by the Larry and Judy Tanenbaum family. This transformative gift will help to establish the Tanenbaum Open Science Institute, a bold initiative that will facilitate the sharing of neuroscience findings worldwide to accelerate the discovery of leading edge therapeutics to treat patients suffering from neurological diseases.

‟Today, we take an important step forward in opening up new horizons in neuroscience research and discovery,” said Mr. Larry Tanenbaum. ‟Our digital world provides for unprecedented opportunities to leverage advances in technology to the benefit of science.  That is what we are celebrating here today: the transformation of research, the removal of barriers, the breaking of silos and, most of all, the courage of researchers to put patients and progress ahead of all other considerations.”

Neuroscience has reached a new frontier, and advances in technology now allow scientists to better understand the brain and all its complexities in ways that were previously deemed impossible. The sharing of research findings amongst scientists is critical, not only due to the sheer scale of data involved, but also because diseases of the brain and the nervous system are amongst the most compelling unmet medical needs of our time.

Neurological diseases, mental illnesses, addictions, and brain and spinal cord injuries directly impact 1 in 3 Canadians, representing approximately 11 million people across the country.

“As internationally-recognized leaders in the field of brain research, we are uniquely placed to deliver on this ambitious initiative and reinforce our reputation as an institution that drives innovation, discovery and advanced patient care,” said Dr. Guy Rouleau, Director of the Montreal Neurological Institute and Hospital and Chair of McGill University’s Department of Neurology and Neurosurgery. “Part of the Tanenbaum family’s donation will be used to incentivize other Canadian researchers and institutions to adopt an Open Science model, thus strengthening the network of like-minded institutes working in this field.”

What they don’t mention in the news release is that they will not be pursuing any patents (for five years according to one of the people in the video but I can’t find text to substantiate that time limit*; there are no time limits noted elsewhere) on their work. For this detail and others, you have to listen to the video they’ve created,

The CBC (Canadian Broadcasting Corporation) news online Dec. 16, 2016 posting (with files from Sarah Leavitt and Justin Hayward) adds a few personal details about Tannenbaum,

“Our goal is simple: to accelerate brain research and discovery to relieve suffering,” said Tanenbaum.

Tanenbaum, a Canadian businessman and chairman of Maple Leaf Sports and Entertainment, said many of his loved ones suffered from neurological disorders.

“I lost my mother to Alzheimer’s, my father to a stroke, three dear friends to brain cancer, and a brilliant friend and scientist to clinical depression,” said Tanenbaum.

He hopes the institute will serve as the template for science research across the world, a thought that Trudeau echoed.

“This vision around open science, recognizing the role that Canada can and should play, the leadership that Canadians can have in this initiative is truly, truly exciting,” said Trudeau.

The Neurological Institute says the pharmaceutical industry is supportive of the open science concept because it will provide crucial base research that can later be used to develop drugs to fight an array of neurological conditions.

Jack Stilgoe in a Dec. 16, 2016 posting on the Guardian blogs explains what this donation could mean (Note: Links have been removed),

With the help of Tanenbaum’s gift of 20 million Canadian dollars (£12million) the ‘Neuro’, the Montreal Neurological Institute and Hospital, is setting up an experiment in experimentation, an Open Science Initiative with the express purpose of finding out the best way to realise the potential of scientific research.

Governments in science-rich countries are increasingly concerned that they do not appear to reaping the economic returns they feel they deserve from investments in scientific research. Their favoured response has been to try to bridge what they see as a ‘valley of death’ between basic scientific research and industrial applications. This has meant more funding for ‘translational research’ and the flowering of technology transfer offices within universities.

… There are some success stories, particularly in the life sciences. Patents from the work of Richard Axel at Columbia University at one point brought the university almost $100 million per year. The University of Florida received more than $150 million for inventing Gatorade in the 1960s. The stakes are high in the current battle between Berkely and MIT/Harvard over who owns the rights to the CRISPR/Cas9 system that has revolutionised genetic engineering and could be worth billions.

Policymakers imagine a world in which universities pay for themselves just as a pharmaceutical research lab does. However, for critics of technology transfer, such stories blind us to the reality of university’s entrepreneurial abilities.

For most universities, evidence of their money-making prowess is, to put it charitably, mixed. A recent Bloomberg report shows how quickly university patent incomes plunge once we look beyond the megastars. In 2014, just 15 US universities earned 70% of all patent royalties. British science policy researchers Paul Nightingale and Alex Coad conclude that ‘Roughly 9/10 US universities lose money on their technology transfer offices… MIT makes more money from selling T-shirts than it does from licensing’. A report from the Brookings institute concluded that the model of technology transfer ‘is unprofitable for most universities and sometimes even risks alienating the private sector’. In the UK, the situation is even worse. Businesses who have dealings with universities report that their technology transfer offices are often unrealistic in negotiations. In many cases, academics are, like a small child who refuses to let others play with a brand new football, unable to make the most of their gifts. And areas of science outside the life sciences are harder to patent than medicines, sports drinks and genetic engineering techniques. Trying too hard to force science towards the market may be, to use the phrase of science policy professor Keith Pavitt, like pushing a piece of string.

Science policy is slowly waking up to the realisation that the value of science may lie in people and places rather than papers and patents. It’s an idea that the Neuro, with the help of Tanenbaum’s gift, is going to test. By sharing data and giving away intellectual property, the initiative aims to attract new private partners to the institute and build Montreal as a hub for knowledge and innovation. The hypothesis is that this will be more lucrative than hoarding patents.

This experiment is not wishful thinking. It will be scientifically measured. It is the job of Richard Gold, a McGill University law professor, to see whether it works. He told me that his first task is ‘to figure out what to counts… There’s going to be a gap between what we would like to measure and what we can measure’. However, he sees an open-mindedness among his colleagues that is unusual. Some are evangelists for open science; some are sceptics. But they share a curiosity about new approaches and a recognition of a problem in neuroscience: ‘We haven’t come up with a new drug for Parkinson’s in 30 years. We don’t even understand the biological basis for many of these diseases. So whatever we’re doing at the moment doesn’t work’. …

Montreal Neuro made news on the ‘open science’ front in January 2016 when it formally announced its research would be freely available and that researchers would not be pursuing patents (see my January 22, 2016 posting).

I recommend reading Stilgoe’s posting in its entirety and for those who don’t know or have forgotten, Prime Minister’s Trudeau’s family has some experience with mental illness. His mother has been very open about her travails. This makes his presence at the announcement perhaps a bit more meaningful than the usual political presence at a major funding announcement.

*The five-year time limit is confirmed in a Feb. 17, 2017 McGill University news release about their presentations at the AAAS (American Association for the Advancement of Science) 2017 annual meeting) on EurekAlert,

umpstarting Neurological Research through Open Science – MNI & McGill University

Friday, February 17, 2017, 1:30-2:30 PM/ Room 208

Neurological research is advancing too slowly according to Dr. Guy Rouleau, director of the Montreal Neurological Institute (MNI) of McGill University. To speed up discovery, MNI has become the first ever Open Science academic institution in the world. In a five-year experiment, MNI is opening its books and making itself transparent to an international group of social scientists, policymakers, industrial partners, and members of civil society. They hope, by doing so, to accelerate research and the discovery of new treatments for patients with neurological diseases, and to encourage other leading institutions around the world to consider a similar model. A team led by McGill Faculty of Law’s Professor Richard Gold will monitor and evaluate how well the MNI Open Science experiment works and provide the scientific and policy worlds with insight into 21st century university-industry partnerships. At this workshop, Rouleau and Gold will discuss the benefits and challenges of this open-science initiative.

Nanotechnology at the University of McGill (Montréal, Canada) and other Canadian universities

On the occasion of the McGill University’s new minor program in nanotechnology, I decided to find other Canadian university nanotechnology programs.

First, here’s more about the McGill program from an Oct. 25, 2016 article by Miguel Principe for The McGill Tribune (Note: Links have been removed),

McGill’s Faculty of Engineering launched a new minor program this year that explores into the world of nanotechnology. It’s a relatively young field that focuses on nanomaterials—materials that have one dimension measuring 100 nanometres or less. …

“Nanomaterials are going to be very prominent in our everyday lives,” Assistant Professor Nathalie Tufenkji, of McGill’s Department of Chemical Engineering, said.  “We’re incorporating these materials into our everyday consumer products […] we’re putting these materials on our skin, […] in our paints, and electronics that we are contacting everyday.”

The new engineering minor program aims to introduce undergraduates to techniques in nanomaterial characterization and detection, as well as nanomaterial synthesis and processing. These concepts will be covered in courses such as Nanoscience and Nanotechnology, Supramolecular Chemistry, and Design and Manufacture of Microdevices.

Tufenkji, along with Professor Peter Grutter in the Department of Physics were instrumental in organizing this program. The minor is interdepartmental and includes courses in physics and engineering.

“Of course there’s a flipside on how do we best develop nanotechnology to […] take advantage of its promise,” Tufenkji said. “One of the questions […] is what are the potential impacts on our health and environment of nanomaterials?”

Tufenkji believes it is important that Canada has scientists and engineers that are educated in emerging scientific concepts and cutting-edge technology. Giving undergraduate students exposure to nanotechnology research early in their studies is a good stepping stone for further investigation into the evolving field.

The most comprehensive list of nanotechnology degree programs in Canada (16 programs) is at Nanowerk (Note: Links have been removed and you may find some repetition),

Carleton University – BSc Chemistry with a concentration in Nanotechnology
This concentration allows students to study atoms and molecules used to create computer chips and other devices that are the size of a few nanometres – thousands of times smaller than current technology permits. Such discoveries will be useful in a number of fields, including aerospace, medicine, and electronics.

Carleton University – BSc Nanoscience
At Carleton, you will examine nanoscience through the disciplines of physical chemistry and electrical engineering to understand the physical, chemical and electronic characteristics of matter in this size regime. The combination of these two areas of study will equip you to fully understand nanoscience in photonic, electronic, energy and communication technologies. The focus of the program will be on materials – their use in electronic devices, their scalability and control of their properties.

McGill University – Bachelor of Engineering, Minor Nanotechnology
Through courses already offered in the Faculties of Science, Engineering, and Medicine, depending on the courses completed, undergraduate students will acquire knowledge in areas related to nanotechnology.

Northern Alberta Institute of Technology – Nanotechnology Systems Diploma Program
The two year program will provide graduates with the skills to operate systems and equipment associated with Canada’s emerging nanotechnology industry and lead to a Diploma in Nanotechnology Systems.

University of Alberta – BSc Computer Engineering with Nanoscale System Design Option
This options provides an introduction to the processes involved in the fabrication of nanoscale integrated circuits and to the computer aided design (CAD) tools necessary for the engineering of large scale system on a chip. By selecting this option, students will learn about fault tolerance in nanoscale systems and gain an understanding of quantum phenomena in systems design.

University of Alberta – BSc Electrical Engineering with Nanoengineering Option
This option provides an introduction to the principles of electronics, electromagnetics and photonics as they apply at the nanoscale level. By selecting this option, students will learn about the process involved in the fabrication of nanoscale structures and become familiar with the computer aided design (CAD) tools necessary for analyzing phenomena at these very high levels of miniaturization.

University of Alberta – BSc Engineering Physics with Nanoengineering Option
The Nanoengineering Option provides broad skills suitable for entry to the nanotechnology professions, combining core Electrical Engineering and Physics courses with additional instruction in biochemistry and chemistry, and specialized instruction in nanoelectronics, nanobioengineering, and nanofabrication.

University of Alberta – BSc Materials Engineering with Nano and Functional Materials Option
Students entering this option will be exposed to the exciting and emerging field of nano and functional materials. Subject areas covered include electronic, optical and magnetic materials, nanomaterials and their applications, nanostructured molecular sieves, nano and functional materials processing and fabrication. Employment opportunities exist in several sectors of Canadian industry, such as microelectronic/optoelectronic device fabrication, MEMS processing and fuel cell development.

University of Calgary – B.Sc. Concentration in Nanoscience
Starting Fall 2008/Winter 2009, students can enroll in the only process learning driven Nanoscience program in North America. Courses offered are a B.Sc. Minor in Nanoscience and a B.Sc. Concentration in Nanoscience.

University of Calgary – B.Sc. Minor in Nanoscience
Starting Fall 2008/Winter 2009, students can enroll in the only process learning driven Nanoscience program in North America. Courses offered are a B.Sc. Minor in Nanoscience and a B.Sc. Concentration in Nanoscience.

University of Guelph – Nanoscience B.Sc. Program
At Guelph we have created a unique approach to nanoscience studies. Fundamental science course are combined with specially designed courses in nanoscience covering material that would previously only be found in graduate programs.

University of Toronto – BASc in Engineering Science (Nanoengineering Option)
This option transcends the traditional boundaries between physics, chemistry, and biology. Starting with a foundation in materials engineering and augmented by research from the leading-edge of nanoengineering, students receive an education that is at the forefront of this constantly evolving area.

University of Waterloo – Bachelor of Applied Science Nanotechnology Engineering
The Nanotechnology Engineering honours degree program is designed to provide a practical education in key areas of nanotechnology, including the fundamental chemistry, physics, and engineering of nanostructures or nanosystems, as well as the theories and techniques used to model, design, fabricate, or characterize them. Great emphasis is placed on training with modern instrumentation techniques as used in the research and development of these emerging technologies.

University of Waterloo – Master of Applied Science Nanotechnology
The interdisciplinary research programs, jointly offered by three departments in the Faculty of Science and four in the Faculty of Engineering, provide students with a stimulating educational environment that spans from basic research through to application. The goal of the collaborative programs is to allow students to gain perspectives on nanotechnology from a wide community of scholars within and outside their disciplines in both course and thesis work. The MASc and MSc degree collaborative programs provide a strong foundation in the emerging areas of nano-science or nano-engineering in preparation for the workforce or for further graduate study and research leading to a doctoral degree.

University of Waterloo – Master of Science Nanotechnology
The interdisciplinary research programs, jointly offered by three departments in the Faculty of Science and four in the Faculty of Engineering, provide students with a stimulating educational environment that spans from basic research through to application. The goal of the collaborative programs is to allow students to gain perspectives on nanotechnology from a wide community of scholars within and outside their disciplines in both course and thesis work. The MASc and MSc degree collaborative programs provide a strong foundation in the emerging areas of nano-science or nano-engineering in preparation for the workforce or for further graduate study and research leading to a doctoral degree.

University of Waterloo – Ph.D. Program in Nanotechnology
The objective of the PhD program is to prepare students for careers in academia, industrial R&D and government research labs. Students from Science and Engineering will work side-by-side in world class laboratory facilities namely, the Giga-to-Nano Electronics Lab (G2N), Waterloo Advanced Technology Lab (WatLAB) and the new 225,000 gross sq. ft. Quantum-Nano Center expected to be completed in early 2011.

The Wikipedia entry for Nanotechnology education lists a few Canadian university programs that seem to have been missed, as well as a few previously seen in the Nanowerk list (Note: Links have been removed),

  • University of Alberta – B.Sc in Engineering Physics with Nanoengineering option
  • University of Toronto – B.A.Sc in Engineering Science with Nanoengineering option
  • University of Waterloo – B.A.Sc in Nanotechnology Engineering
    • Waterloo Institute for Nanotechnology -B.Sc, B.A.Sc, master’s, Ph.D, Post Doctorate
  • McMaster University – B.Sc in Engineering Physics with Nanotechnology option
  • University of British Columbia – B.A.Sc in Electrical Engineering with Nanotechnology & Microsystems option
  • Carleton University – B.Sc in Chemistry with Concentration in Nanotechnology
  • University of Calgary – B.Sc Minor in Nanoscience, B.Sc Concentration in Nanoscience
  • University of Guelph – B.Sc in Nanoscience

So, there you have it.

Graphene Canada and its second annual conference

An Aug. 31, 2016 news item on Nanotechnology Now announces Canada’s second graphene-themed conference,

The 2nd edition of Graphene & 2D Materials Canada 2016 International Conference & Exhibition (www.graphenecanadaconf.com) will take place in Montreal (Canada): 18-20 October, 2016.

– An industrial forum with focus on Graphene Commercialization (Abalonyx, Alcereco Inc, AMO GmbH, Avanzare, AzTrong Inc, Bosch GmbH, China Innovation Alliance of the Graphene Industry (CGIA), Durham University & Applied Graphene Materials, Fujitsu Laboratories Ltd., Hanwha Techwin, Haydale, IDTechEx, North Carolina Central University & Chaowei Power Ltd, NTNU&CrayoNano, Phantoms Foundation, Southeast University, The Graphene Council, University of Siegen, University of Sunderland and University of Waterloo)
– Extensive thematic workshops in parallel (Materials & Devices Characterization, Chemistry, Biosensors & Energy and Electronic Devices)
– A significant exhibition (Abalonyx, Go Foundation, Grafoid, Group NanoXplore Inc., Raymor | Nanointegris and Suragus GmbH)

As I noted in my 2015 post about Graphene Canada and its conference, the group is organized in a rather interesting fashion and I see the tradition continues, i.e., the lead organizers seem to be situated in countries other than Canada. From the Aug. 31, 2016 news item on Nanotechnology Now,

Organisers: Phantoms Foundation [located in Spain] www.phantomsnet.net
Catalan Institute of Nanoscience and Nanotechnology – ICN2 (Spain) | CEMES/CNRS (France) | GO Foundation (Canada) | Grafoid Inc (Canada) | Graphene Labs – IIT (Italy) | McGill University (Canada) | Texas Instruments (USA) | Université Catholique de Louvain (Belgium) | Université de Montreal (Canada)

You can find the conference website here.

Very precise nanorobots redefine the administration of anti-cancer drugs

A very exuberant announcement has been made about cancer drug delivery by precise nanorobots, which have been tested in mice, in an Aug. 15, 2016 news item on ScienceDaily,

Researchers from Polytechnique Montréal, Université de Montréal and McGill University have just achieved a spectacular breakthrough in cancer research. They have developed new nanorobotic agents capable of navigating through the bloodstream to administer a drug with precision by specifically targeting the active cancerous cells of tumours. This way of injecting medication ensures the optimal targeting of a tumour and avoids jeopardizing the integrity of organs and surrounding healthy tissues. As a result, the drug dosage that is highly toxic for the human organism could be significantly reduced.

This scientific breakthrough has just been published in the prestigious journal Nature Nanotechnology in an article titled “Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions.” The article notes the results of the research done on mice, which were successfully administered nanorobotic agents into colorectal tumours.

An Aug. 15, 2016 Polytechnique Montréal news release (also on EurekAlert), which originated the news item, describes the work and the nanorobots or nanorobotic agents (bacteria) in more detail,

“These legions of nanorobotic agents were actually composed of more than 100 million flagellated bacteria – and therefore self-propelled – and loaded with drugs that moved by taking the most direct path between the drug’s injection point and the area of the body to cure,” explains Professor Sylvain Martel, holder of the Canada Research Chair in Medical Nanorobotics and Director of the Polytechnique Montréal Nanorobotics Laboratory, who heads the research team’s work. “The drug’s propelling force was enough to travel efficiently and enter deep inside the tumours.”

When they enter a tumour, the nanorobotic agents can detect in a wholly autonomous fashion the oxygen-depleted tumour areas, known as hypoxic zones, and deliver the drug to them. This hypoxic zone is created by the substantial consumption of oxygen by rapidly proliferative tumour cells. Hypoxic zones are known to be resistant to most therapies, including radiotherapy.

But gaining access to tumours by taking paths as minute as a red blood cell and crossing complex physiological micro-environments does not come without challenges. So Professor Martel and his team used nanotechnology to do it.

Bacteria with compass

To move around, bacteria used by Professor Martel’s team rely on two natural systems. A kind of compass created by the synthesis of a chain of magnetic nanoparticles allows them to move in the direction of a magnetic field, while a sensor measuring oxygen concentration enables them to reach and remain in the tumour’s active regions. By harnessing these two transportation systems and by exposing the bacteria to a computer-controlled magnetic field, researchers showed that these bacteria could perfectly replicate artificial nanorobots of the future designed for this kind of task.

“This innovative use of nanotransporters will have an impact not only on creating more advanced engineering concepts and original intervention methods, but it also throws the door wide open to the synthesis of new vehicles for therapeutic, imaging and diagnostic agents,” Professor Martel adds. “Chemotherapy, which is so toxic for the entire human body, could make use of these natural nanorobots to move drugs directly to the targeted area, eliminating the harmful side effects while also boosting its therapeutic effectiveness.”

This news contrasts somewhat with research at the University of Toronto (my April 27, 2016 posting) investigating how many drug-carrying nanoparticles find the cancer tumours they are intended for. The answer was that less than 1% make their way to the tumour and the conclusion those scientists reached was that we don’t know enough about how materials are delivered to the cells. My question, are the bacteria/nanorobots better at finding the tumours/cells? It’s not clear from the news release.

Here’s a link to and a citation for the paper,

Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions by Ouajdi Felfoul, Mahmood Mohammadi, Samira Taherkhani, Dominic de Lanauze, Yong Zhong Xu, Dumitru Loghin, Sherief Essa, Sylwia Jancik, Daniel Houle, Michel Lafleur, Louis Gaboury, Maryam Tabrizian, Neila Kaou, Michael Atkin, Té Vuong, Gerald Batist, Nicole Beauchemin, Danuta Radzioch, & Sylvain Martel. Nature Nanotechnology (2016)  doi:10.1038/nnano.2016.137 Published online 15 August 2016

This paper is behind a paywall.

Researchers from Canada and Russia find metal-organic-frameworks in nature

To date, these ‘natural’ metal-organic-frameworks have been found only in Siberian coal mines. From an Aug, 5, 2016 news item on ScienceDaily,

One of the hottest new materials is a class of porous solids known as metal-organic frameworks, or MOFs. These human-made materials were introduced in the 1990s, and researchers around the world are working on ways to use them as molecular sponges for applications such as hydrogen storage, carbon sequestration, or photovoltaics.

Now, a surprising discovery by scientists in Canada and Russia reveals that MOFs also exist in nature — albeit in the form of rare minerals found so far only in Siberian coal mines.

The finding, published in the journal Science Advances, “completely changes the normal view of these highly popular materials as solely artificial, ‘designer’ solids,” says senior author Tomislav Friščić, an associate professor of chemistry at McGill University in Montreal. “This raises the possibility that there might be other, more abundant, MOF minerals out there.”

Caption: Individual crystals of synthetic zhemchuzhnikovite, prepared by Igor Huskić, McGill University. Credit: Igor Huskić, Friščić Research Group, McGill University

Caption: Individual crystals of synthetic zhemchuzhnikovite, prepared by Igor Huskić, McGill University. Credit: Igor Huskić, Friščić Research Group, McGill University

An Aug, 8, 2016 McGill University news release (also on EurekAlert but dated Aug. 5, 2016), which originated the news item, expands on the theme,

The twisting path to the discovery began six years ago, when Friščić came across a mention of the minerals stepanovite and zhemchuzhnikovite in a Canadian mineralogy journal. The crystal structure of the minerals, found in Russia between the 1940s and 1960s, hadn’t been fully determined. But the Russian mineralogists who discovered them had analyzed their chemical composition and the basic parameters of their structures, using a technique known as X-ray powder diffraction. To Friščić, those parameters hinted that the minerals could be structurally similar to a type of man-made MOF.

His curiosity piqued, Friščić began looking for samples of the rare minerals, reaching out to experts, museums and vendors in Russia and elsewhere. After a promising lead with a mining museum in Saint Petersburg failed to pan out, Igor Huskić, a graduate student in the Friščić research group at McGill turned his attention to synthesizing analogues of the minerals in the lab – and succeeded. But a major journal last year declined to publish the team’s work, in part because the original description of the minerals had been reported in a somewhat obscure Russian mineralogical journal.

Then, the McGill chemists caught a break: with the help of a crystallographer colleague in Venezuela, they connected with two prominent Russian mineralogists: Sergey Krivovichev, a professor at Saint Petersburg State University, and Prof. Igor Pekov of Lomonosov Moscow State University.

Krivovichev and Pekov were able to obtain the original samples of the two rare minerals, which had been found decades earlier in a coal mine deep beneath the Siberian permafrost. The Russian experts were also able to determine the crystal structures of the minerals. These findings confirmed the McGill researchers’ initial results from their lab synthesis.

Stepanovite and zhemchuzhnikovite have the elaborate, honeycomb-like structure of MOFs, characterized at the molecular level by large voids. The two minerals aren’t, however, representative of the hottest varieties of MOFs — those that are being developed for use in hydrogen-fueled cars or to capture waste carbon dioxide.

As a result, Friščić and his collaborators are now broadening their research to determine if other, more abundant minerals have porous structures that could make them suitable for uses such as hydrogen storage or even drug delivery.

In any event, the discovery of MOF structures in the two rare minerals already is “paradigm-changing” Friščić says. If scientists had been able to determine those structures in the 1960s, he notes, the development of MOF materials “might have been accelerated by 30 years.”

Here’s a link to and a citation for the paper,

Minerals with metal-organic framework structures by Igor Huskić, Igor V. Pekov, Sergey V. Krivovichev, and Tomislav Friščić. Science Advances  05 Aug 2016: Vol. 2, no. 8, e1600621 DOI: 10.1126/sciadv.1600621

This paper appears to be open access.

Interconnected performance analysis music hub shared by McGill University and Université de Montréal announced* June 2, 2016

The press releases promise the Centre for Interdisciplinary Research in Music Media and Technology (CIRMMT) will shape the future of music. The CIRMMT June 2, 2016 (Future of Music) press release (received via email) describes the funding support,

A significant investment of public and private support that will redefine the future of music research in Canada by transforming the way musicians compose,listen and perform music.

The Centre for Interdisciplinary Research in Music Media and Technology (CIRMMT), the Schulich School of Music of McGill University and the Faculty of Music of l’Université de Montréal are creating a unique interconnected research hub that will quite literally link two exceptional spaces at two of Canada’s most renowned music schools.

Imagine a new space and community where musicians, scientists and engineers join forces to gain a better understanding of the influence that music plays on individuals as well as their physical, psychological and even neurological conditions; experience the acoustics of an 18th century Viennese concert hall created with the touch of a fingertip; or attending an orchestral performance in one concert hall but hearing and seeing musicians performing from a completely different venue across town… All this and more will soon become possible here in Montreal!

The combination of public and private gifts will broaden our musical horizons exponentially thanks to significant investment for music research in Canada. With over $14.5 million in grants from the Canada Foundation for Innovation (CFI), the Government of Quebec and the Fonds de Recherche du Québec (FRQ), and a substantial contribution of an additional $2.5million gift from private philanthropy.

“We are grateful for this exceptional investment in music research from both the federal and provincial governments and from our generous donors,” says McGill Principal Suzanne Fortier. “This will further the collaboration between these two outstanding music schools and support the training of the next generation of music researchers and artists. For anyone who loves music, this is very exciting news.”

There’s not much technical detail in this one but here it is,

Digital channels coupling McGill University’s Music Multimedia Room (MMR – a large, sound-isolated performance lab) and l’Université de Montréal’s Salle Claude Champagne ([SCC -] a superb concert hall) will transform these two exceptional spaces into the world’s leading research facility for the scientific study of live performance, movement of recorded sound in space, and distributed performance (where musicians in different locations perform together).

“The interaction between scientific/technological research and artistic practice is one of the most fruitful avenues for future developments in both fields. This remarkable investment in music research is a wonderful recognition of the important contributions of the arts to Canadian society”, says Sean Ferguson, Dean of Schulich School of Music

The other CIRMMT June 2, 2016 (Collaborative hub) press  release (received via email) elaborates somewhat on the technology,

The MMR (McGill University’s Music Multimedia Room) will undergo complete renovations which include the addition of high quality variable acoustical treatment and a state-of-the-art rigging system. An active enhancement and sound spatialization system, together with stereoscopic projectors and displays, will provide virtual acoustic and immersive environments. At the SCC (l’Université de Montréal’s Salle Claude Champagne), the creation of a laboratory, a control room and a customizable rigging system will enable the installation and utilization of new research equipment’s in this acoustically-rich environment. These improvements will drastically augment the research possibilities in the hall, making it a unique hub in Canada for researchers to validate their experiments in a real concert hall.

“This infrastructure will provide exceptional spaces for performance analysis of multiple performers and audience members simultaneously, with equipment such as markerless motion-capture equipment and eye trackers. It will also connect both spaces for experimentations on distributed performances and will make possible new kinds of multimedia artworks.

The research and benefits

The research program includes looking at audio recording technologies, audio and video in immersive environments, and ultra-videoconferencing, leading to the development of new technologies for audio recording, film, television, distance education, and multi-media artworks; as well as a focus on cognition and perception in musical performance by large ensembles and on the rhythmical synchronization and sound blending of performers.

Social benefits include distance learning, videoconferencing, and improvements to the quality of both recorded music and live performance. Health benefits include improved hearing aids, noise reduction in airplanes and public spaces, and science-based music pedagogies and therapy. Economic benefits include innovations in sound recording, film and video games, and the training of highly qualified personnel across disciplines.

Amongst other activities they will be exploring data sonification as it relates to performance.

Hopefully, I’ll have more after the livestreamed press conference being held this afternoon, June 2, 2016,  (2:30 pm EST) at the CIRMMT.

*’opens’ changed to ‘announced’ on June 2, 2016 at 1335 hours PST.

ETA June 8, 2016: I did attend the press conference via livestream. There was some lovely violin played and the piece proved to be a demonstration of the work they’re hoping to expand on now that there will be a CIRMMT (pronounced kermit). There was a lot of excitement and I think that’s largely due to the number of years it’s taken to get to this point. One of the speakers reminisced about being a music student at McGill in the 1970s when they first started talking about getting a new music building.

They did get their building but have unable to complete it until these 2016 funds were awarded. Honestly, all the speakers seemed a bit giddy with delight. I wish them all congratulations!

The song is you: a McGill University, University of Cambridge, and Stanford University research collaboration

These days I’m thinking about sound, music, spoken word, and more as I prepare for a new art/science piece. It’s very early stages so I don’t have much more to say about it but along those lines of thought, there’s a recent piece of research on music and personality that caught my eye. From a May 11, 2016 news item on phys.org,

A team of scientists from McGill University, the University of Cambridge, and Stanford Graduate School of Business developed a new method of coding and categorizing music. They found that people’s preference for these musical categories is driven by personality. The researchers say the findings have important implications for industry and health professionals.

A May 10, 2016 McGill University news release, which originated the news item, provides some fascinating suggestions for new categories for music,

There are a multitude of adjectives that people use to describe music, but in a recent study to be published this week in the journal Social Psychological and Personality Science, researchers show that musical attributes can be grouped into three categories. Rather than relying on the genre or style of a song, the team of scientists led by music psychologist David Greenberg with the help of Daniel J. Levitin from McGill University mapped the musical attributes of song excerpts from 26 different genres and subgenres, and then applied a statistical procedure to group them into clusters. The study revealed three clusters, which they labeled Arousal, Valence, and Depth. Arousal describes intensity and energy in music; Valence describes the spectrum of emotions in music (from sad to happy); and Depth describes intellect and sophistication in music. They also found that characteristics describing music from a single genre (both rock and jazz separately) could be grouped in these same three categories.

The findings suggest that this may be a useful alternative to grouping music into genres, which is often based on social connotations rather than the attributes of the actual music. It also suggests that those in academia and industry (e.g. Spotify and Pandora) that are already coding music on a multitude of attributes might save time and money by coding music around these three composite categories instead.

The researchers also conducted a second study of nearly 10,000 Facebook users who indicated their preferences for 50 musical excerpts from different genres. The researchers were then able to map preferences for these three attribute categories onto five personality traits and 30 detailed personality facets. For example, they found people who scored high on Openness to Experience preferred Depth in music, while Extraverted excitement-seekers preferred high Arousal in music. And those who scored high on Neuroticism preferred negative emotions in music, while those who were self-assured preferred positive emotions in music. As the title from the old Kern and Hammerstein song suggests, “The Song is You”. That is, the musical attributes that you like most reflect your personality. It also provides scientific support for what Joni Mitchell said in a 2013 interview with the CBC: “The trick is if you listen to that music and you see me, you’re not getting anything out of it. If you listen to that music and you see yourself, it will probably make you cry and you’ll learn something about yourself and now you’re getting something out of it.”

The researchers hope that this information will not only be helpful to music therapists but also for health care professions and even hospitals. For example, recent evidence has showed that music listening can increase recovery after surgery. The researchers argue that information about music preferences and personality could inform a music listening protocol after surgery to boost recovery rates.

The article is another in a series of studies that Greenberg and his team have published on music and personality. This past July [2015], they published an article in PLOS ONE showing that people’s musical preferences are linked to thinking styles. And in October [2015], they published an article in the Journal of Research in Personality, identifying the personality trait Openness to Experience as a key predictor of musical ability, even in non-musicians. These series of studies tell us that there are close links between our personality and musical behavior that may be beyond our control and awareness.

Readers can find out how they score on the music and personality quizzes at www.musicaluniverse.org.

David M. Greenberg, lead author from Cambridge University and City University of New York said: “Genre labels are informative but we’re trying to transcend them and move in a direction that points to the detailed characteristics in music that are driving people preferences and emotional reactions.”

Greenberg added: “As a musician, I see how vast the powers of music really are, and unfortunately, many of us do not use music to its full potential. Our ultimate goal is to create science that will help enhance the experience of listening to music. We want to use this information about personality and preferences to increase the day-to-day enjoyment and peak experiences people have with music.”

William Hoffman in a May 11, 2016 article for Inverse describes the work in connection with recently released new music from Radiohead and an upcoming release from Chance the Rapper (along with a brief mention of Drake), Note: Links have been removed,

Music critics regularly scour Thesaurus.com for the best adjectives to throw into their perfectly descriptive melodious disquisitions on the latest works from Drake, Radiohead, or whomever. And listeners of all walks have, since the beginning of music itself, been guilty of lazily pigeonholing artists into numerous socially constructed genres. But all of that can be (and should be) thrown out the window now, because new research suggests that, to perfectly match music to a listener’s personality, all you need are these three scientific measurables [arousal, valence, depth].

This suggests that a slow, introspective gospel song from Chance The Rapper’s upcoming album could have the same depth as a track from Radiohead’s A Moon Shaped Pool. So a system of categorization based on Greenberg’s research would, surprisingly but rightfully, place the rap and rock works in the same bin.

Here’s a link to and a citation for the latest paper,

The Song Is You: Preferences for Musical Attribute Dimensions Reflect Personality by David M. Greenberg, Michal Kosinski, David J. Stillwell, Brian L. Monteiro, Daniel J. Levitin, and Peter J. Rentfrow. Social Psychological and Personality Science, 1948550616641473, first published on May 9, 2016

This paper is behind a paywall.

Here’s a link to and a citation for the October 2015 paper

Personality predicts musical sophistication by David M. Greenberg, Daniel Müllensiefen, Michael E. Lamb, Peter J. Rentfrow. Journal of Research in Personality Volume 58, October 2015, Pages 154–158 doi:10.1016/j.jrp.2015.06.002 Note: A Feb. 2016 erratum is also listed.

The paper is behind a paywall and it looks as if you will have to pay for it and for the erratum separately.

Here’s a link to and a citation for the July 2015 paper,

Musical Preferences are Linked to Cognitive Styles by David M. Greenberg, Simon Baron-Cohen, David J. Stillwell, Michal Kosinski, Peter J. Rentfrow. PLOS [Public Library of Science ONE]  http://dx.doi.org/10.1371/journal.pone.0131151 Published: July 22, 2015

This paper is open access.

I tried out the research project’s website: The Musical Universe. by filling out the Musical Taste questionnaire. Unfortunately, I did not receive my results. Since the team’s latest research has just been reported, I imagine there are many people trying do the same thing. It might be worth your while to wait a bit if you want to try this out or you can fill out one of their other questionnaires. Oh, and you might want to allot at least 20 mins.