Tag Archives: McGill University

Islamic art inspires stretchy metamaterials

A March 16, 2016 article by Jonathan Webb for BBC (British Broadcasting Corporation) News Online describes research on metamaterials from McGill University (Montréal, Canada),

Metamaterials are engineered to have properties that don’t occur naturally, such as getting wider when stretched instead of just longer and thinner.

These perforated rubber sheets made by a Canadian team do just that – and then remain stable in their expanded state until they are squeezed back again.

Such designs could help make expandable stents or spacecraft components.

“In conventional materials, when you pull in one direction it will contract in other directions,” said Dr Ahmad Rafsanjani, from McGill University in Montreal.

“But with ‘auxetic’ materials, due to their internal architecture, when you pull in one direction they expand in the lateral direction.”

A March 16, 2016 article by Shannon Hall in the New Scientist provides more details,

This property comes from their geometric substructure, which when stationary looks like a series of connected squares. When the squares turn relative to each other, however, the material’s density lowers but its thickness increases, allowing it to grow when stretched.

But this twisting means that the materials lose their original shape as they expand. So Ahmad Rafsanjani and Damiano Pasini of McGill University in Montreal, Canada, set out to create a material that would grow when stretched yet keep its form.

To do this, they turned to a beautiful kind of geometry.

“There is a huge library of geometries when you look at Islamic architectures,” says Rafsanjani. The team picked their design from the walls of the Kharraqan towers, two mausoleums built in 1067 and 1093 in the plains in northern Iran.

Both Webb’s and Hall’s articles are embedded with images of the architecture. There’s also a New Scientist video demonstrating stretchability,

The researchers discussed this work in a presentation titled:  Multistable Compliant Auxetic Metamaterials Inspired by Geometric Patterns in Islamic Arts at the American Physical Society’s March 2016 meeting (March 14 – 18, 2016).

Disinfectant for backyard pools could be key to new nanomaterials

Research from McGill University (Québec, Canada) focuses on cyanuric acid, one of the chemicals used to disinfect backyard pools. according to a March 1, 2016 McGill University news release (received by email; it can also be found in a March 1, 2016 news item on Nanowerk *and on EurekAlert*),

Cyanuric acid is commonly used to stabilize chlorine in backyard pools; it binds to free chlorine and releases it slowly in the water. But researchers at McGill University have now discovered that this same small, inexpensive molecule can also be used to coax DNA into forming a brand new structure: instead of forming the familiar double helix, DNA’s nucleobases — which normally form rungs in the DNA ladder — associate with cyanuric acid molecules to form a triple helix.

The discovery “demonstrates a fundamentally new way to make DNA assemblies,” says Hanadi Sleiman, Canada Research Chair in DNA Nanoscience at McGill and senior author of the study, published in Nature Chemistry. “This concept may apply to many other molecules, and the resulting DNA assemblies could have applications in a range of technologies.”

The DNA alphabet, composed of the four letters A, T, G and C, is the underlying code that gives rise to the double helix famously discovered by Watson and Crick more than 60 years ago. The letters, or bases, of DNA can also interact in other ways to form a variety of DNA structures used by scientists in nanotechnology applications – quite apart from DNA’s biological role in living cells.

For years, scientists have sought to develop a larger, designer alphabet of DNA bases that would enable the creation of more DNA structures with unique, new properties. For the most part, however, devising these new molecules has involved costly and complex procedures.

The road to the McGill team’s discovery began some eight years ago, when Sleiman mentioned to others in her lab that cyanuric acid might be worth experimenting with because of its properties. The molecule has three faces with the same binding features as thymine (T in the DNA alphabet), the natural complement to adenine (A).  “One of my grad students tried it,” she recalls, “and came back and said he saw fibres” through an atomic force microscope.

The researchers later discovered that these fibres have a unique underlying structure. Cyanuric acid is able to coax strands composed of adenine bases into forming a novel motif in DNA assembly. The adenine and cyanuric acid units associate into flower-like rosettes; these form the cross-section of a triple helix.  The strands then combine to form long fibres.

“The nanofibre material formed in this way is easy to access, abundant and highly structured,” says Nicole Avakyan, a PhD student in Sleiman’s lab and first author of the study. “With further development, we can envisage a variety of applications of this material, from medicinal chemistry to tissue engineering and materials science.”

Here’s a link to and a citation for the paper,

Reprogramming the assembly of unmodified DNA with a small molecule by Nicole Avakyan, Andrea A. Greschner, Faisal Aldaye, Christopher J. Serpell, Violeta Toader,    Anne Petitjean, & Hanadi F. Sleiman. Nature Chemistry (2016) doi:10.1038/nchem.2451 Published online 22 February 2016

This paper is behind a paywall.

*’also on EurekAlert’ added on March 2, 2016.

Biological supercomputers (living, breathing supercomputers) and an international collaboration spearheaded by Canadian scientists

A living, breathing supercomputer is a bit mind-boggling but scientists at McGill University (Canada) and their international colleagues have created a working model according to a Feb. 26, 2016 McGill University news release on EurekAlert (and received via email), Note: A link has been removed,

The substance that provides energy to all the cells in our bodies, Adenosine triphosphate (ATP), may also be able to power the next generation of supercomputers. That is what an international team of researchers led by Prof. Nicolau, the Chair of the Department of Bioengineering at McGill, believe. They’ve published an article on the subject earlier this week in the Proceedings of the National Academy of Sciences (PNAS), in which they describe a model of a biological computer that they have created that is able to process information very quickly and accurately using parallel networks in the same way that massive electronic super computers do.

Except that the model bio supercomputer they have created is a whole lot smaller than current supercomputers, uses much less energy, and uses proteins present in all living cells to function.

Doodling on the back of an envelope

“We’ve managed to create a very complex network in a very small area,” says Dan Nicolau, Sr. with a laugh. He began working on the idea with his son, Dan Jr., more than a decade ago and was then joined by colleagues from Germany, Sweden and The Netherlands, some 7 years ago [there is also one collaborator from the US according the journal’s [PNAS] list of author affiliations, read on for the link to the paper]. “This started as a back of an envelope idea, after too much rum I think, with drawings of what looked like small worms exploring mazes.”

The model bio-supercomputer that the Nicolaus (father and son) and their colleagues have created came about thanks to a combination of geometrical modelling and engineering knowhow (on the nano scale). It is a first step, in showing that this kind of biological supercomputer can actually work.

The circuit the researchers have created looks a bit like a road map of a busy and very organized city as seen from a plane. Just as in a city, cars and trucks of different sizes, powered by motors of different kinds, navigate through channels that have been created for them, consuming the fuel they need to keep moving.

More sustainable computing

But in the case of the biocomputer, the city is a chip measuring about 1.5 cm square in which channels have been etched. Instead of the electrons that are propelled by an electrical charge and move around within a traditional microchip, short strings of proteins (which the researchers call biological agents) travel around the circuit in a controlled way, their movements powered by ATP, the chemical that is, in some ways, the juice of life for everything from plants to politicians.

Because it is run by biological agents, and as a result hardly heats up at all, the model bio-supercomputer that the researchers have developed uses far less energy than standard electronic supercomputers do, making it more sustainable. Traditional supercomputers use so much electricity that they heat up a lot and then need to be cooled down, often requiring their own power plant to function.

Moving from model to reality

Although the model bio supercomputer was able to very efficiently tackle a complex classical mathematical problem by using parallel computing of the kind used by supercomputers, the researchers recognize that there is still a lot of work ahead to move from the model they have created to a full-scale functional computer.

”Now that this model exists as a way of successfully dealing with a single problem, there are going to be many others who will follow up and try to push it further, using different biological agents, for example,” says Nicolau. “It’s hard to say how soon it will be before we see a full scale bio super-computer. One option for dealing with larger and more complex problems may be to combine our device with a conventional computer to form a hybrid device. Right now we’re working on a variety of ways to push the research further.”

What was once the stuff of science fiction, is now just science.

The funding for this project is interesting,

This research was funded by: The European Union Seventh Framework Programme; [US] Defense Advanced Research Projects Agency [DARPA]; NanoLund; The Miller Foundation; The Swedish Research Council; The Carl Trygger Foundation; the German Research Foundation; and by Linnaeus University.

I don’t see a single Canadian funding agency listed.

In any event, here’s a link to and a citation for the paper,

Parallel computation with molecular-motor-propelled agents in nanofabricated networks by Dan V. Nicolau, Jr., Mercy Lard, Till Kortend, Falco C. M. J. M. van Delft, Malin Persson, Elina Bengtsson, Alf Månsson, Stefan Diez, Heiner Linke, and Dan V. Nicolau. Proceedings of the National Academy of Sciences (PNAS): http://www.pnas.org/content/early/2016/02/17/1510825113

This paper appears to be open access.

Finally, the researchers have provided an image illustrating their work,

Caption: Strands of proteins of different lengths move around the chip in the bio computer in directed patterns, a bit like cars and trucks navigating the streets of a city. Credit: Till Korten

Caption: Strands of proteins of different lengths move around the chip in the bio computer in directed patterns, a bit like cars and trucks navigating the streets of a city. Credit: Till Korten

ETA Feb. 29 2016: Technical University Dresden’s Feb. 26, 2016 press release on EurekAlert also announces the bio-computer albeit from a rather different perspective,

The pioneering achievement was developed by researchers from the Technische Universität Dresden and the Max Planck Institute of Molecular Cell Biology and Genetics, Dresden in collaboration with international partners from Canada, England, Sweden, the US, and the Netherlands.

Conventional electronic computers have led to remarkable technological advances in the past decades, but their sequential nature -they process only one computational task at a time- prevents them from solving problems of combinatorial nature such as protein design and folding, and optimal network routing. This is because the number of calculations required to solve such problems grows exponentially with the size of the problem, rendering them intractable with sequential computing. Parallel computing approaches can in principle tackle such problems, but the approaches developed so far have suffered from drawbacks that have made up-scaling and practical implementation very difficult. The recently reported parallel-computing approach aims to address these issues by combining well established nanofabrication technology with molecular motors which are highly energy efficient and inherently work in parallel.

In this approach, which the researchers demonstrate on a benchmark combinatorial problem that is notoriously hard to solve with sequential computers, the problem to be solved is ‘encoded’ into a network of nanoscale channels (Fig. 1a). This is done, on the one hand by mathematically designing a geometrical network that is capable of representing the problem, and on the other hand by fabricating a physical network based on this design using so-called lithography, a standard chip-manufacturing technique.

The network is then explored in parallel by many protein filaments (here actin filaments or microtubules) that are self-propelled by a molecular layer of motor proteins (here myosin or kinesin) covering the bottom of the channels (Fig. 3a). The design of the network using different types of junctions automatically guides the filaments to the correct solutions to the problem (Fig. 1b). This is realized by different types of junctions, causing the filaments to behave in two different ways. As the filaments are rather rigid structures, turning to the left or right is only possible for certain angles of the crossing channels. By defining these options (‘split junctions’ Fig. 2a + 3b and ‘pass junctions’, Fig. 2b + 3c) the scientists achieved an ‘intelligent’ network giving the filaments the opportunity either to cross only straight or to decide between two possible channels with a 50/50 probability.

The time to solve combinatorial problems of size N using this parallel-computing approach scales approximately as N2, which is a dramatic improvement over the exponential (2N) time scales required by conventional, sequential computers. Importantly, the approach is fully scalable with existing technologies and uses orders of magnitude less energy than conventional computers, thus circumventing the heating issues that are currently limiting the performance of conventional computing.

The diagrams mentioned were not included with the press release.

Montreal Neuro goes open science

The Montreal Neurological Institute (MNI) in Québec, Canada, known informally and widely as Montreal Neuro, has ‘opened’ its science research to the world. David Bruggeman tells the story in a Jan. 21, 2016 posting on his Pasco Phronesis blog (Note: Links have been removed),

The Montreal Neurological Institute (MNI) at McGill University announced that it will be the first academic research institute to become what it calls ‘Open Science.’  As Science is reporting, the MNI will make available all research results and research data at the time of publication.  Additionally it will not seek patents on any of the discoveries made on research at the Institute.

Will this catch on?  I have no idea if this particular combination of open access research data and results with no patents will spread to other university research institutes.  But I do believe that those elements will continue to spread.  More universities and federal agencies are pursuing open access options for research they support.  Elon Musk has opted to not pursue patent litigation for any of Tesla Motors’ patents, and has not pursued patents for SpaceX technology (though it has pursued litigation over patents in rocket technology). …

Montreal Neuro and its place in Canadian and world history

Before pursuing this announcement a little more closely, you might be interested in some of the institute’s research history (from the Montreal Neurological Institute Wikipedia entry and Note: Links have been removed),

The MNI was founded in 1934 by the neurosurgeon Dr. Wilder Penfield (1891–1976), with a $1.2 million grant from the Rockefeller Foundation of New York and the support of the government of Quebec, the city of Montreal, and private donors such as Izaak Walton Killam. In the years since the MNI’s first structure, the Rockefeller Pavilion was opened, several major structures were added to expand the scope of the MNI’s research and clinical activities. The MNI is the site of many Canadian “firsts.” Electroencephalography (EEG) was largely introduced and developed in Canada by MNI scientist Herbert Jasper, and all of the major new neuroimaging techniques—computer axial tomography (CAT), positron emission tomography (PET), and magnetic resonance imaging (MRI) were first used in Canada at the MNI. Working under the same roof, the Neuro’s scientists and physicians made discoveries that drew world attention. Penfield’s technique for epilepsy neurosurgery became known as the Montreal procedure. K.A.C. Elliott identified γ-aminobutyric acid (GABA) as the first inhibitory neurotransmitter. Brenda Milner revealed new aspects of brain function and ushered in the field of neuropsychology as a result of her groundbreaking study of the most famous neuroscience patient of the 20th century, H.M., who had anterograde amnesia and was unable to form new memories. In 2007, the Canadian government recognized the innovation and work of the MNI by naming it one of seven national Centres of Excellence in Commercialization and Research.

For those with the time and the interest, here’s a link to an interview (early 2015?) with Brenda Milner (and a bonus, related second link) as part of a science podcast series (from my March 6, 2015 posting),

Dr. Wendy Suzuki, a Professor of Neural Science and Psychology in the Center for Neural Science at New York University, whose research focuses on understanding how our brains form and retain new long-term memories and the effects of aerobic exercise on memory. Her book Healthy Brain, Happy Life will be published by Harper Collins in the Spring of 2015.

  • Totally Cerebral: Untangling the Mystery of Memory: Neuroscientist Wendy Suzuki introduces us to scientists who have uncovered some of the deepest secrets about our brains. She begins by talking with experimental psychologist Brenda Milner [interviewed in her office at McGill University, Montréal, Quebéc], who in the 1950s, completely changed our understanding of the parts of the brain important for forming new long-term memories.
  • Totally Cerebral: The Man Without a Memory: Imagine never being able to form a new long term memory after the age of 27. Welcome to the life of the famous amnesic patient “HM”. Neuroscientist Suzanne Corkin studied HM for almost half a century, and gives us a glimpse of what daily life was like for him, and his tremendous contribution to our understanding of how our memories work.

Brief personal anecdote
For those who just want the science, you may want to skip this section.

About 15 years ago, I had the privilege of talking with Mary Filer, a former surgical nurse and artist in glass. Originally from Saskatchewan, she, a former member of Wilder Penfield’s surgical team, was then in her 80s living in Vancouver and still associated with Montreal Neuro, albeit as an artist rather than a surgical nurse.

Penfield had encouraged her to pursue her interest in the arts (he was an art/science aficionado) and at this point her work could be seen many places throughout the world and, if memory serves, she had just been asked to go MNI for the unveiling of one of her latest pieces.

Her husband, then in his 90s, had founded the School of Architecture at McGill University. This couple had known all the ‘movers and shakers’ in Montreal society for decades and retired to Vancouver where their home was in a former chocolate factory.

It was one of those conversations, you just don’t forget.

More about ‘open science’ at Montreal Neuro

Brian Owens’ Jan. 21, 2016 article for Science Magazine offers some insight into the reason for the move to ‘open science’,

Guy Rouleau, the director of McGill University’s Montreal Neurological Institute (MNI) and Hospital in Canada, is frustrated with how slowly neuroscience research translates into treatments. “We’re doing a really shitty job,” he says. “It’s not because we’re not trying; it has to do with the complexity of the problem.”

So he and his colleagues at the renowned institute decided to try a radical solution. Starting this year, any work done there will conform to the principles of the “open-
science” movement—all results and data will be made freely available at the time of publication, for example, and the institute will not pursue patents on any of its discoveries. …

“It’s an experiment; no one has ever done this before,” he says. The intent is that neuroscience research will become more efficient if duplication is reduced and data are shared more widely and earlier. …”

After a year of consultations among the institute’s staff, pretty much everyone—about 70 principal investigators and 600 other scientific faculty and staff—has agreed to take part, Rouleau says. Over the next 6 months, individual units will hash out the details of how each will ensure that its work lives up to guiding principles for openness that the institute has developed. …

Owens’ article provides more information about implementation and issues about sharing. I encourage you to read it in its entirety.

As for getting more research to the patient, there’s a Jan. 26, 2016 Cafe Scientifique talk in Vancouver (my Jan. 22, 2016 ‘Events’ posting; scroll down about 40% of the way) regarding that issue although there’s no hint that the speakers will be discussing ‘open science’.

A nanoparticle ‘printing press’

This research comes from Montréal, Canada via a Jan. 7, 2016 McGill University news release (also on EurekAlert*),

Gold nanoparticles have unusual optical, electronic and chemical properties, which scientists are seeking to put to use in a range of new technologies, from nanoelectronics to cancer treatments.

Some of the most interesting properties of nanoparticles emerge when they are brought close together – either in clusters of just a few particles or in crystals made up of millions of them. Yet particles that are just millionths of an inch in size are too small to be manipulated by conventional lab tools, so a major challenge has been finding ways to assemble these bits of gold while controlling the three-dimensional shape of their arrangement.

One approach that researchers have developed has been to use tiny structures made from synthetic strands of DNA to help organize nanoparticles. Since DNA strands are programmed to pair with other strands in certain patterns, scientists have attached individual strands of DNA to gold particle surfaces to create a variety of assemblies. But these hybrid gold-DNA nanostructures are intricate and expensive to generate, limiting their potential for use in practical materials. The process is similar, in a sense, to producing books by hand.

Enter the nanoparticle equivalent of the printing press. It’s efficient, re-usable and carries more information than previously possible. In results reported online in Nature Chemistry, researchers from McGill’s Department of Chemistry outline a procedure for making a DNA [deoxyribonucleic acid] structure with a specific pattern of strands coming out of it; at the end of each strand is a chemical “sticky patch.”  When a gold nanoparticle is brought into contact to the DNA nanostructure, it sticks to the patches. The scientists then dissolve the assembly in distilled water, separating the DNA nanostructure into its component strands and leaving behind the DNA imprint on the gold nanoparticle. …

The researchers have made an illustration of their concept available,

Credit: Thomas Edwardson

Credit: Thomas Edwardson

“These encoded gold nanoparticles are unprecedented in their information content,” says senior author Hanadi Sleiman, who holds the Canada Research Chair in DNA Nanoscience. “The DNA nanostructures, for their part, can be re-used, much like stamps in an old printing press.”

The news release includes suggestions for possible future applications,

From stained glass to optoelectronics

Some of the properties of gold nanoparticles have been recognized for centuries.  Medieval artisans added gold chloride to molten glass to create the ruby-red colour in stained-glass windows – the result, as chemists figured out much later, of the light-scattering properties of tiny gold particles.

Now, the McGill researchers hope their new production technique will help pave the way for use of DNA-encoded nanoparticles in a range of cutting-edge technologies. First author Thomas Edwardson says the next step for the lab will be to investigate the properties of structures made from these new building blocks. “In much the same way that atoms combine to form complex molecules, patterned DNA gold particles can connect to neighbouring particles to form well-defined nanoparticle assemblies.”

These could be put to use in areas including optoelectronic nanodevices and biomedical sciences, the researchers say. The patterns of DNA strands could, for example, be engineered to target specific proteins on cancer cells, and thus serve to detect cancer or to selectively destroy cancer cells.

Here’s a link to and a citation for the paper,

Transfer of molecular recognition information from DNA nanostructures to gold nanoparticles by Thomas G. W. Edwardson, Kai Lin Lau, Danny Bousmail, Christopher J. Serpell, & Hanadi F. Sleiman. Nature Chemistry (2016)  doi:10.1038/nchem.2420 Published online 04 January 2016

This paper is behind a paywall.

*’also on EurekAlert’ added on Jan. 8, 2016.

Promising new technique for controlled fabrication of nanowires

This research is the result of a collaboration between French, Italian, Australian, and Canadian researchers. From a Jan. 5, 2016 news item on *phys.org,

An international team of researchers including Professor Federico Rosei and members of his group at INRS (Institut national de la recherche scientifique) has developed a new strategy for fabricating atomically controlled carbon nanostructures used in molecular carbon-based electronics. An article just published in the prestigious journal Nature Communications presents their findings: the complete electronic structure of a conjugated organic polymer, and the influence of the substrate on its electronic properties.

A Jan. 5, 2016 INRS news release by Gisèle Bolduc, which originated the news item, indicates this is the beginning rather than an endpoint (Note: A link has been removed),

The researchers combined two procedures previously developed in Professor Rosei’s lab—molecular self-assembly and chain polymerization—to produce a network of long-range poly(para-phenylene) (PPP) nanowires on a copper (Cu) surface. Using advanced technologies such as scanning tunneling microscopy and photoelectron spectroscopy as well as theoretical models, they were able to describe the morphology and electronic structure of these nanostructures.

“We provide a complete description of the band structure and also highlight the strong interaction between the polymer and the substrate, which explains both the decreased bandgap and the metallic nature of the new chains. Even with this hybridization, the PPP bands display a quasi one-dimensional dispersion in conductive polymeric nanowires,” said Professor Federico Rosei, one of the authors of the study.

Although further research is needed to fully describe the electronic properties of these nanostructures, the polymer’s dispersion provides a spectroscopic record of the polymerization process of certain types of molecules on gold, silver, copper, and other surfaces. It’s a promising approach for similar semiconductor studies—an essential step in the development of actual devices.

The results of the study could be used in designing organic nanostructures, with significant potential applications in nanoelectronics, including photovoltaic devices, field-effect transistors, light-emitting diodes, and sensors.

About the article

This study was designed by Yannick Fagot-Revurat and Daniel Malterre of Université de Lorraine/CNRS, Federico Rosei of INRS, Josh Lipton-Duffin of the Institute for Future Environments (Australia), Giorgio Contini of the Italian National Research Council, and Dmytro F. Perepichka of McGill University. […]The researchers were generously supported by Conseil Franco-Québécois de coopération universitaire, the France–Italy International Program for Scientific Cooperation, the Natural Sciences and Engineering Research Council of Canada, Fonds québécois de recherche – Nature et technologies, and a Québec MEIE grant (in collaboration with Belgium).

Here’s a link to and a citation for the paper,

Quasi one-dimensional band dispersion and surface metallization in long-range ordered polymeric wires by Guillaume Vasseur, Yannick Fagot-Revurat, Muriel Sicot, Bertrand Kierren, Luc Moreau, Daniel Malterre, Luis Cardenas, Gianluca Galeotti, Josh Lipton-Duffin, Federico Rosei, Marco Di Giovannantonio, Giorgio Contini, Patrick Le Fèvre, François Bertran, Liangbo Liang, Vincent Meunier, Dmitrii F. Perepichka. Nature Communications 7, Article number:  10235 doi:10.1038/ncomms10235 Published 04 January 2016

This is an open access paper.

*’ScienceDaily’ corrected to ‘phys.org’ on Tues., Jan. 5, 2016 at 1615 PST.

Self-assembly for stunning structural colour

Researchers from McGill University (Montréal, Canada) have developed a computational model which they believe explains how nature achieves structural colo(u)r as exemplified by this tulip,

 Caption: The Queen of the Night tulip displays an iridescent shimmer caused by microscopic ridges on its petals that diffract light. Credit: S. Vignolini/


Caption: The Queen of the Night tulip displays an iridescent shimmer caused by microscopic ridges on its petals that diffract light.
Credit: S. Vignolini/

A Sept. 16, 2015 news item on phys.org describes the phenomenon,

The tulip called Queen of the Night has a fitting name. Its petals are a lush, deep purple that verges on black. An iridescent shimmer dances on top of the nighttime hues, almost like moonlight glittering off regal jewels.

Certain rainforest plants in Malaysia demonstrate an even more striking color feature: Their iridescent blue leaves turn green when dunked in water.

Both the tulip’s rainbow sparkle and the Malaysian plants’ color change are examples of structural color—an optical effect that is produced by a physical structure, instead of a chemical pigment.

Now researchers have shown how plant cellulose can self-assemble [emphasis mine] into wrinkled surfaces that give rise to effects like iridescence and color change. Their findings provide a foundation to understand structural color in nature, as well as yield insights that could guide the design of devices like optical humidity sensors. …

A Sept. 15, 2015 American Institute of Physics news release on EurekAlert, which originated the news item, describes the research into cellulose and structural colour in more detail,

Cellulose is one of the most abundant organic materials on Earth. It forms a key part of the cell wall of green plants, where the cellulose fibers are found in layers. The fibers in a single layer tend to align in a single direction. However, when you move up or down a layer the axis of orientation of the fibers can shift. If you imagined an arrow pointing in the direction of the fiber alignment, it would often spin in a circle as you moved through the layers of cellulose. This twisting pattern is called a cholesteric phase, because it was first observed while studying cholesterol molecules.

Scientists think that cellulose twists mainly to provide strength. “The fibers reinforce in the direction they are oriented,” said Alejandro Rey, a chemical engineer at McGill University in Montreal, Canada. “When the orientation rotates you get multi-directional stiffness.”

Rey and his colleagues, however, weren’t primarily interested in cellulose’s mechanical properties. Instead, they wondered if the twisting structure could produce striking optical effects, as seen in plants like iridescent tulips.

The team constructed a computational model to examine the behavior of cholesteric phase cellulose. In the model, the axis of twisting runs parallel to the surface of the cellulose. The researchers found that subsurface helices naturally caused the surface to wrinkle. The tiny ridges had a height range in the nanoscale and were spaced apart on the order of microns.

The pattern of parallel ridges resembled the microscopic pattern on the petals of the Queen of the Night tulip. The ridges split white light into its many colored components and create an iridescent sheen — a process called diffraction. The effect can also be observed when light hits the microscopic grooves in a CD.

The researchers also experimented with how the amount of water in the cellulose layers affected the optical properties. More water made the layers twist less tightly, which in turn made the ridges farther apart. How tightly the cellulose helices twist is called the pitch. The team found that a surface with spatially varying pitch (in which some areas were more hydrated than others) was less iridescent and reflected a longer primary wavelength of light than surfaces with a constant pitch. The wavelength shift from around 460 nm (visible blue light) to around 520 nm (visible green light) could explain some plants’ color changing properties, Rey said.

Insights into Nature and Inspiration for New Technologies

Although proving that diffractive surfaces in nature form in the same way will require further work, the model does offer a good foundation to further explore structural color, the researchers said. They imagine the model could also guide the design of new optical devices, for example sensors that change color to indicate a change in humidity.

“The results show the optics [of cholesteric cellulose] are just as exciting as the mechanical properties,” Rey said. He said scientists tend to think of the structures as biological armor, because of their reinforcing properties. “We’ve shown this armor can also have striking colors,” he said.

Here’s a link to and a citation for the paper,

Tunable nano-wrinkling of chiral surfaces: Structure and diffraction optics by P. Rofouie, D. Pasini, and A. D. Rey. J. Chem. Phys. 143, 114701 (2015); http://dx.doi.org/10.1063/1.4929337

This is an open access paper.

Science blogging session at 2015 Canadian Science Policy Conference? Hmmm. Really, really really?

Who can resist a Carly Rae Jepsen reference (specifically, the “I really like you” song with its over 60 instances of the word, ‘really’)? Not me.

I have a few things to say about the Science Blogging: The Next Generation session organized by Science Borealis (?) for the Seventh Canadian Science Policy Conference, being held in Ottawa, Ontario from Nov. 25 – 27, 2015 at the Delta Ottawa City Centre Hotel.

First, congratulations to the session organizer(s) for a successful conference submission. (A few years ago I chatted with someone from an institution that I thought would gain almost automatic acceptance whose submission had been rejected. So, there is competition for these spots.) Second, I know it’s tough to pull a panel together. The process can range from merely challenging to downright hellacious.

That said, I have a few comments and suggestions. There seem to be a few oddities regarding the blogging session. Let’s start with the biographies where you’d expect to see something about science blogging credentials, i.e., the name of his or her science blog, how long they’ve publishing/writing, their topics, etc.

Brian Owens [moderator]
General Science editor, Research Canada/Science Borealis
Brian is an experienced science policy journalist. He is editor of Research Canada, the newest publication of the international science policy publisher Research Professional. He is also General Science editor of Science Borealis.

Our moderator does not mention having a blog or writing for one regularly although he does edit for Science Borealis (a Canadian science blog aggregator). How long has he been doing that and how do you edit a science blog aggregator?

Moving on, Owens’ LinkedIn profile indicates he returned to Canada from  the UK in November 2012. So, by the time the conference rolls round, he will have been back in the country three years. (Shades of Michael Ignatieff!) It’s possible he’s kept up with Canada’s science policy while he was in London but he does seem to have held a high pressure job suggesting he wouldn’t have had the bandwidth to regularly keep up with the Canadian science policy scene.

His LinkedIn profile shows this experience,

Online news editor
Nature Publishing Group
January 2011 – November 2012 (1 year 11 months)London, United Kingdom

Responsible for all online news and blog content, including running daily news meetings, assigning stories, editing copy and managing an international team of staff and freelance reporters. Also led on developing Nature’s social media strategy. [emphasis mine]

It’s always good to have Nature on your résumé, although the journal has a somewhat spotty reputation where social media is concerned. Perhaps he helped turn it around?

So, how does guy who’s never had a blog (editing is not the same thing) and has about three years experience back home in New Brunswick after several years abroad moderate a Canadian science blogging panel with a policy focus?

Given the information at hand, it seems a little sketchy but doable provided your panel has solid experience.

Let’s check out the panel (Note: All the excerpts come from this session description):

Amelia Buchanan
blogger, Journalism student at Algonquin College
A recent convert to science communication, Amelia Buchanan is a journalism student with a Bachelor’s degree in biology. She writes stories about science and technology at school and blogs about urban wildlife in her spare time.

What’s Buchanan’s blog called? After searching, I found this, lab bench to park bench. Her blog archives indicate that she started in April 2014. Unless she’s owned other blogs, she will have approximately 18 months experience writing about the natural world, for the most part, when the conference session takes place.

That’s not much experience although someone with a fresh perspective can be a good addition to panels like this. Let’s see who’s next.

Chris Buddle
Associate Professor and Associate Dean at McGill University’s Macdonald Campus, University of Montreal/Science Borealis
Dr. Chris Buddle is an Associate Professor and Associate Dean at McGill University’s Macdonald Campus. He is an enthusiastic and devoted science communicator and blogger, and a member of the Science Borealis board of directors.

What is his blog called? It turns out to be, Arthropod Ecology. The earliest date I could find for any mention of it was in 2012. Unfortunately, the About this blog description is relatively uninformative with regard to its inception so I’m stuck with that one reference to a 2012 posting on Buddle’s blog. This one, too, focuses on the natural world.

So, Buddle has possibly three years experience. He does write more extensive pieces but, more frequently, he illustrates* his posts liberally with images while making extensive use of bullet points and links elsewhere. He’s mixing two styles for his postings, ‘illustrated essay writing’ and ‘picture book with lots of linked resources’. It can be a way to address different audiences and attention spans.

***ETA: Aug. 20, 2015: Chris Buddle has kindly provided more information about his blog via twitter:

@CMBuddle
Aug 20
@frogheart yes it is called “arthropod ecology”, I post 1-2 times per week, since 2012. Some posts are ‘link-fests’ hence the bullets 3/n

@frogheart many other posts are long-form research blogging. Had about 300K + unique visitors, & avg b/w 600-900 visits per day 4/n

@frogheart audience is other scientists, students, colleagues, broader public. Try to write in ‘plain language’ to make accessible

Thank you, Chris for providing more details about your blog and passing on a link to this posting with its criticisms and suggestions to the session organizers.***

* ‘illustrate’ changed to ‘illustrates’ Aug. 20, 2015.

The fourth panelist in this group is,

Sabrina Doyle
Canadian Geographic
Sabrina Doyle is the new media editor at Canadian Geographic. She is fascinated by arctic exploration, enjoys triathlons, and has a deep fondness for all things edible. Hates dirt under her fingernails but loves activities that get it there. Tweet her at @sab_jad |

I gather this bio is something she uses elsewhere. Unfortunately, it doesn’t answer the question: what is she doing on this panel?

It turns out she writes the posts for the Canadian Geographic Compass Blog. From her LinkedIn profile, she’s been working for Canadian Geographic since July 2013 and became responsible for the blog in Oct. 2014. She doesn’t seem to have blogged prior to that time, which gives her approximately 13 months experience once she’s at the science blogging session in November 2015. While she, too, writes much about the natural world, she offers the most diverse range of topics amongst the panelists.

There is one more panelist,

Paul Dufour
Principal/adjunct professor, PaulicyWorks/University of Ottawa
Paul Dufour is Principal of PaulicyWorks, a science and technology policy consulting firm based in Gatineau, Quebec, and an adjunct professor at the University of Ottawa’s Institute for Science, Society and Policy.

Dufour does not seem to own and/or write a blog and, as far as I’m aware, has no media background of any kind (Dufour’s LinkedIn profile). He seems to a science policy wonk which makes sense for the conference but leaves the question: what he is doing on this panel? Other media experience might have given him some comparative insight into how blogs have affected the science media and science policy spaces. But perhaps he reads blogs and is going to share how they’ve influenced his work in science policy?

Here’s what they’re supposed to be talking about, from the session description,

Science blogs serve many communities, including research, policy, the mainstream media and the public at large. They validate successful science, challenge weak conclusions, and are an increasingly important tool for providing valuable context and understanding of research via an open and public forum that encourages debate. Further, science blogging fills the void left by the changing media landscape with fewer resources invested in science writing and reporting. Policy makers are looking to trusted blogs and social channels for insight and information.

This session will provide an in-depth and hands-on look at science blogging and its impact on the Transformation of Science, Society and Research in the Digital Age. With a particular focus on tools and platforms, best practices, the current Canadian blogging landscape, and some predictions for the future, this interactive session will demonstrate how blogs are a platform for engagement, discussion and sharing of science.

Canada has many talented science bloggers, representing both the science reporting and documentary approaches. Our science blogging community has strengthened and grown in recent years, with Science Borealis, launched at the 2013 CSPC, providing a cohesive platform for discussion, discovery and delivery. The proposed panel will address how science blogs are useful for both policymakers and scientists.

Tapping into the power of the crowd, the session will interactively engage the audience in the creation of a quality, high-impact, policy-oriented blog post that will later be published on Science Borealis. The panel will provide audience members with hands-on experience in good blogging practice: goals, approaches, dos and don’ts — and more — to create a well-designed post accessible to government, the broader scientific community, industry and the public.

The panel will discuss the current state of science blogging in Canada showcasing best examples and demonstrating their impacts on the public perception of science and the transformation of science and research and. It will briefly explore this type of digital engagement with an eye to the future. [this para seems redundant]

The validity of at least some of the assertions in the first paragraph are due to work by researchers such as Dominique Brossard and Dietram Sheufele (New media landscapes and the science information consumer) at the University of Wisconsin-Madison. It would have been nice to have seen a few citations (I’d really like to see the research supporting the notion that policymakers read and are influenced by science bloggers) replacing that somewhat redundant final paragraph.

I highlighted a number of words and terms, “platform,” “engagement,” “interactive,” “high-impact,” and “Tapping into the power of the crowd,” which I imagine helped them sell this panel to the organizers.

Despite some statements suggesting otherwise, it seems the main purpose of this session is to focus on and write a science policy posting, “the session will interactively engage the audience in the creation of a quality, high-impact, policy-oriented blog post .” That should be an interesting trick since none of the panelists write that type of blog and the one science policy type doesn’t seem to write for any kind of blog. I gather the panelists are going to tap into ‘the power of each other’. More puzzling, this session seems like a workshop not a panel. Just how are the participants going to have a “hands-on” experience of “interactively writing up a science policy blog post?” There aren’t that many ways to operationalize this endeavour. It’s either a session where people have access to computers and collectively write and post individual pieces under one banner or they submit their posts and someone edits in real time or someone is acting as secretary taking notes from the discussion and summarizing it in a post (not exactly hands-on for anyone except the writer).

As for the ‘tips and tricks’ to be offered by the panelists, is there going to be a handout and/or accessible webpage with the information? I also don’t see any mention about building an audience for your work, search engine optimization, and/or policies for your blog (e.g., what do you do when someone wants to send you a book for review? how do you handle comments [sometimes people get pretty angry]?).

I hope there’s an opportunity to update the bios. in the ways I’ve suggested: list your blog, explain what you write, how long you’ve been posting, how you’ve built up your audience, etc. For the participants who don’t have blogs perhaps they could discuss how blogs have affected their work, or not. In any event, I wish the organizers and panelists good luck. Especially since the session is scheduled for the very end of the conference. (I’ve been in that position; everyone at that conference laughed when they learned when my session was scheduled.)

Canada and some graphene scene tidbits

For a long time It seemed as if every country in the world, except Canada, had some some sort of graphene event. According to a July 16, 2015 news item on Nanotechnology Now, Canada has now stepped up, albeit, in a peculiarly Canadian fashion. First the news,

Mid October [Oct. 14 -16, 2015], the Graphene & 2D Materials Canada 2015 International Conference & Exhibition (www.graphenecanada2015.com) will take place in Montreal (Canada).

I found a July 16, 2015 news release (PDF) announcing the Canadian event on the lead organizer’s (Phantoms Foundation located in Spain) website,

On the second day of the event (15th October, 2015), an Industrial Forum will bring together top industry leaders to discuss recent advances in technology developments and business opportunities in graphene commercialization.
At this stage, the event unveils 38 keynote & invited speakers. On the Industrial Forum 19 of them will present the latest in terms of Energy, Applications, Production and Worldwide Initiatives & Priorities.

Plenary:
Gary Economo (Grafoid Inc., Canada)
Khasha Ghaffarzadeh (IDTechEx, UK)
Shu-Jen Han (IBM T.J. Watson Research Center, USA)
Bor Z. Jang (Angstron Materials, USA)
Seongjun Park (Samsung Advanced Institute of Technology (SAIT), Korea)
Chun-Yun Sung (Lockheed Martin, USA)

Parallel Sessions:
Gordon Chiu (Grafoid Inc., Canada)
Jesus de la Fuente (Graphenea, Spain)
Mark Gallerneault (ALCERECO Inc., Canada)
Ray Gibbs (Haydale Graphene Industries, UK)
Masataka Hasegawa (AIST, Japan)
Byung Hee Hong (SNU & Graphene Square, Korea)
Tony Ling (Jestico + Whiles, UK)
Carla Miner (SDTC, Canada)
Gregory Pognon (THALES Research & Technology, France)
Elena Polyakova (Graphene Laboratories Inc, USA)
Federico Rosei (INRS–EMT, Université du Québec, Canada)
Aiping Yu (University of Waterloo, Canada)
Hua Zhang (MSE-NTU, Singapore)

Apart from the industrial forum, several industry-related activities will be organized:
– Extensive thematic workshops in parallel (Standardization, Materials & Devices Characterization, Bio & Health and Electronic Devices)
– An exhibition carried out with the latest graphene trends (Grafoid, RAYMOR NanoIntegris, Nanomagnetics Instruments, ICEX and Xerox Research Centre of Canada (XRCC) already confirmed)
– B2B meetings to foster technical cooperation in the field of Graphene

It’s still possible to contribute to the event with an oral presentation. The call for abstracts is open until July, 20 [2015]. [emphasis mine]

Graphene Canada 2015 is already supported by Canada’s leading graphene applications developer, Grafoid Inc., Tourisme Montréal and Université de Montréal.

This is what makes the event peculiarly Canadian: multiculturalism, anyone? From the news release,

Organisers: Phantoms Foundation www.phantomsnet.net & Grafoid Foundation (lead organizers)

CEMES/CNRS (France) | Grafoid (Canada) | Catalan Institute of Nanoscience and Nanotechnology – ICN2 (Spain) | IIT (Italy) | McGill University, Canada | Texas Instruments (USA) | Université Catholique de Louvain (Belgium) | Université de Montreal, Canada

It’s billed as a ‘Canada Graphene 2015’ and, as I recall, these types of events don’t usually have so many other countries listed as organizers. For example, UK Graphene 2015 would have mostly or all of its organizers (especially the leads) located in the UK.

Getting to the Canadian content, I wrote about Grafoid at length tracking some of its relationships to companies it owns, a business deal with Hydro Québec, and a partnership with the University of Waterloo, and a nonrepayable grant from the Canadian federal government (Sustainable Development Technology Canada [SDTC]) in a Feb. 23, 2015 posting. Do take a look at the post if you’re curious about the heavily interlinked nature of the Canadian graphene scene and take another look at the list of speakers and their agencies (Mark Gallerneault of ALCERECO [partially owned by Grafoid], Carla Miner of SDTC [Grafoid received monies from the Canadian federal department],  Federico Rosei of INRS–EMT, Université du Québec [another Quebec link], Aiping Yu, University of Waterloo [an academic partner to Grafoid]). The Canadian graphene community is a small one so it’s not surprising there are links between the Canadian speakers but it does seem odd that Lomiko Metals is not represented here. Still, new speakers have been announced since the news release (e.g., Frank Koppens of ICFO, Spain, and Vladimir Falko of Lancaster University, UK) so  time remains.

Meanwhile, Lomiko Metals has announced in a July 17, 2015 news item on Azonano that Graphene 3D labs has changed the percentage of its outstanding shares affecting the percentage that Lomiko owns, amid some production and distribution announcements. The bit about launching commercial sales of its graphene filament seems more interesting to me,

On March 16, 2015 Graphene 3D Lab (TSXV:GGG) (OTCQB:GPHBF) announced that it launched commercial sales of its Conductive Graphene Filament for 3D printing. The filament incorporates highly conductive proprietary nano-carbon materials to enhance the properties of PLA, a widely used thermoplastic material for 3D printing; therefore, the filament is compatible with most commercially available 3D printers. The conductive filament can be used to print conductive traces (similar to as used in circuit boards) within 3D printed parts for electronics.

So, that’s all I’ve got for Canada’s graphene scene.