Tag Archives: metamaterials

University of Toronto’s (Canada) invisibility cloak

University of Toronto researchers, Michael Selvanayagam and George V. Eleftheriades, have offered a popular summary of their work. from the popular summary (on the website where they’ve published their academic paper),

We “see” a physical object by detecting electromagnetic waves scattered from the object. A device that can “correct” or cancel that scattering would take the notion of a magic invisibility cloak from the realm of science fiction to reality. In fact, such physical devices already exist, accomplishing their feat based on metamaterials that bend light around the object to be cloaked, “correcting” the scattering. Designing metamaterials with the right light-bending properties for this purpose is, however, quite challenging, and the designs often require a thick “cloak.” An alternative approach to this problem is “active cloaking”: surrounding the object to be cloaked with electromagnetic sources that are carefully tuned to cancel the electromagnetic field scattered by the object. In this work, we demonstrate the first experimental realization of such a thin active cloak for microwaves.

The sources we have used are specially designed antennas and phase shifters, which can be configured into thin layers with flexibility in shape. We have succeeded in cloaking a sizable metallic cylinder by properly tuning the phase of the radiation from the antennas so that the radiation cancels the field scattered by the cylinder. We have gone a step further than cloaking and have also demonstrated how the object can be disguised as another object by tuning the antennas in a controlled way. The catch with active cloaking, however, is that knowledge of the incident field is required to tune the antennas. To tackle this issue, we have discussed some potential solutions that also utilize the antennas as sensors to detect the incident field.

Future work along this line will aim to extend the bandwidth of the cloak (with respect to pulsed incident fields) as well as design active cloaks that can adaptively respond to an incident field.

A Nov. 12, 2013 news item on ScienceDaily, offers information augmenting the popular summary,

Professor George Eleftheriades and PhD student Michael Selvanayagam have designed and tested a new approach to cloaking — by surrounding an object with small antennas that collectively radiate an electromagnetic field. The radiated field cancels out any waves scattering off the cloaked object. Their paper ‘Experimental demonstration of active electromagnetic cloaking’ appears today in the journal Physical Review X.

“We’ve taken an electrical engineering approach, but that’s what we are excited about,” says Eleftheriades. “It’s very practical.”

Picture a mailbox sitting on the street. When light hits the mailbox and bounces back into your eyes, you see the mailbox. When radio waves hit the mailbox and bounce back to your radar detector, you detect the mailbox. Eleftheriades and Selvanyagam’s system wraps the mailbox in a layer of tiny antennas that radiate a field away from the box, cancelling out any waves that would bounce back. In this way, the mailbox becomes undetectable to radar.

The Nov. 13, 2013 University of Toronto news release, which originated the news item and was posted a day later, provides more specific details about the research,

“We’ve demonstrated a different way of doing it,” says Eleftheriades. “It’s very simple: instead of surrounding what you’re trying to cloak with a thick metamaterial shell, we surround it with one layer of tiny antennas, and this layer radiates back a field that cancels the reflections from the object.”

Their experimental demonstration effectively cloaked a metal cylinder from radio waves using one layer of loop antennas. The system can be scaled up to cloak larger objects using more loops, and Eleftheriades says the loops could become printed and flat, like a blanket or skin.

For now, the antenna loops must be manually attuned to the electromagnetic frequency they need to cancel. But in future, researchers say, they could function both as sensors and active antennas, adjusting to different waves in real time, much like the technology behind noise-cancelling headphones.

Work on developing a functional invisibility cloak began around 2006, but early systems were necessarily large and clunky – if you wanted to cloak a car, for example, in practice you would have to completely envelop the vehicle in many layers of metamaterials in order to effectively “shield” it from electromagnetic radiation. The sheer size and inflexibility of that approach makes it impractical for real-world uses.

Earlier attempts to make thin cloaks were not adaptive and active, and could work only for specific small objects.

The cloaking technology holds possiblities that go beyond obvious applications such as hiding military vehicles or conducting surveillance operations. For example, structures that interrupt signals from cellular base stations could be cloaked to allow signals to pass by freely.

The system can also alter the signature of a cloaked object, making it appear bigger, smaller, or even shifting it in space. And though their tests showed the cloaking system works with radio waves, re-tuning it to work with Terahertz (T-rays) or light waves could use the same principle as the necessary antenna technology matures.

For those who feel inclined to explore this work further,

Experimental Demonstration of Active Electromagnetic Cloaking by Michael Selvanayagam and George V. Eleftheriades. Phys. Rev. X (Volume 3 Issue 4) or Phys. Rev. X 3, 041011 (2013) [13 pages]  DOI: 10.1103/PhysRevX.3.041011

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.

This article is open access.

Protein cages, viruses, and nanoparticles

The Dec. 19, 2012 news release on EurekAlert about a study published by researchers at Aalto University (Finland) describes a project where virus particles are combined with nanoparticles to create new metamaterials,

Scientists from Aalto University, Finland, have succeeded in organising virus particles, protein cages and nanoparticles into crystalline materials. These nanomaterials studied by the Finnish research group are important for applications in sensing, optics, electronics and drug delivery.

… biohybrid superlattices of nanoparticles and proteins would allow the best features of both particle types to be combined. They would comprise the versatility of synthetic nanoparticles and the highly controlled assembly properties of biomolecules.

The gold nanoparticles and viruses adopt a special kind of crystal structure. It does not correspond to any known atomic or molecular crystal structure and it has previously not been observed with nano-sized particles.

Virus particles – the old foes of mankind – can do much more than infect living organisms. Evolution has rendered them with the capability of highly controlled self-assembly properties. Ultimately, by utilising their building blocks we can bring multiple functions to hybrid materials that consist of both living and synthetic matter, Kostiainen [Mauri A. Kostiainen, postdoctoral researcher] trusts.

The article which has been published in Nature Nanotechnology is free,

Electrostatic assembly of binary nanoparticle superlattices using protein cages by Mauri A. Kostiainen, Panu Hiekkataipale, Ari Laiho, Vincent Lemieux, Jani Seitsonen, Janne Ruokolainen & Pierpaolo Ceci in Nature Nanotechnology (2012) doi:10.1038/nnano.2012.220  Published online 16 December 2012

There’s a video demonstrating the assembly,

From the YouTube page, here’s a description of what the video is demonstrating,

Aalto University-led research group shows that CCMV virus or ferritin protein cages can be used to guide the assembly of RNA molecules or iron oxide nanoparticles into three-dimensional binary superlattices. The lattices are formed through tuneable electrostatic interactions with charged gold nanoparticles.

Bravo and thank  you to  Kostiainen who seems to have written the news release and prepared all of the additional materials (image and video). There are university press offices that could take lessons from Kostiainen’s efforts to communicate about the work.

From Cornell University, a liquid that remembers its shape

Sometimes one experiences a frisson (shiver) when reading about a piece of research. Let’s see how you do with this Dec. 4, 2012 news item on Nanowerk,

A bit reminiscent of the Terminator T-1000, a new material created by Cornell researchers is so soft that it can flow like a liquid and then, strangely, return to its original shape.

Rather than liquid metal, it is a hydrogel, a mesh of organic molecules with many small empty spaces that can absorb water like a sponge. It qualifies as a “metamaterial” with properties not found in nature and may be the first organic metamaterial with mechanical meta-properties.

The Dec. 3, 2012 Cornell University news article by Bill Steele, which originated the news item,goes on to explain the interest in hydrogels and what makes this particular formulation so special,

Hydrogels have already been considered for use in drug delivery — the spaces can be filled with drugs that release slowly as the gel biodegrades — and as frameworks for tissue rebuilding. The ability to form a gel into a desired shape further expands the possibilities. For example, a drug-infused gel could be formed to exactly fit the space inside a wound.

The new hydrogel is made of synthetic DNA. In addition to being the stuff genes are made of, DNA can serve as a building block for self-assembling materials. Single strands of DNA will lock onto other single stands that have complementary coding, like tiny organic Legos. By synthesizing DNA with carefully arranged complementary sections Luo’s [Dan Luo, professor of biological and environmental engineering] research team previously created short stands that link into shapes such as crosses or Y’s, which in turn join at the ends to form meshlike structures to form the first successful all-DNA hydrogel. Trying a new approach, they mixed synthetic DNA with enzymes that cause DNA to self-replicate and to extend itself into long chains, to make a hydrogel without DNA linkages.

“During this process they entangle, and the entanglement produces a 3-D network,” Luo explained. But the result was not what they expected: The hydrogel they made flows like a liquid, but when placed in water returns to the shape of the container in which it was formed.

“This was not by design,” Luo said.

See the material for yourself,

Hydrogels made in the form of the letters D, N and A collapse into a liquid-like state on their own but return to the original shape when surrounded by water Provided/Luo Lab

Nature Nanotechnology published the team’s research online Dec. 2, 2012 and, unusually, the article is open access (at least for now),

A mechanical metamaterial made from a DNA hydrogel by Jong Bum Lee, Songming Peng, Dayong Yang,  Young Hoon Roh, Hisakage Funabashi, Nokyoung Park, Edward J. Rice, Liwei Chen, Rong Long, Mingming Wu & Dan Luo in Nature Nanotechnology  (2012) doi:10.1038/nnano.2012.211 published online Dec. 2, 2012

Depending on your reading interests and time available, Bill Steele’s Cornell University article has more detail than I’ve provided here or you can check out the well illustrated article in Nature Nanotechnology. As these things go, it’s quite readable as you can see with the abstract (Note: I have removed footnotes),

Metamaterials are artificial substances that are structurally engineered to have properties not typically found in nature. To date, almost all metamaterials have been made from inorganic materials such as silicon and copper, which have unusual electromagnetic or acoustic properties that allow them to be used, for example, as invisible cloaks superlenses or super absorbers for sound. Here, we show that metamaterials with unusual mechanical properties can be prepared using DNA as a building block. We used a polymerase enzyme to elongate DNA chains and weave them non-covalently into a hydrogel. The resulting material, which we term a meta-hydrogel, has liquid-like properties when taken out of water and solid-like properties when in water. Moreover, upon the addition of water, and after complete deformation, the hydrogel can be made to return to its original shape. The meta-hydrogel has a hierarchical internal structure and, as an example of its potential applications, we use it to create an electric circuit that uses water as a switch.

For anyone not familiar with the Terminator movies, here’s an essay in Wikipedia about the ‘franchise’. Pay special note to the second movie in the series, Terminator 2: Judgment Day which introduced a robot (played by Robert Patrick) that could morph from a liquidlike state into various lethal entities.

Flipping chirality at the Lawrence Berkeley National Laboratory

First, it might be a good idea to define chirality. From the Lawrence Berkeley National Laboratory (Berkeley Lab) July 10, 2012 news release by LynnYarris,

Chirality is the distinct left/right orientation or “handedness” of some types of molecules, meaning the molecule can take one of two mirror image forms. The right-handed and left-handed forms of such molecules, called “enantiomers,” can exhibit strikingly different properties. For example, one enantiomer of the chiral molecule limonene smells of lemon, the other smells of orange. The ability to observe or even switch the chirality of molecules using terahertz (trillion-cycles-per-second) electromagnetic radiation is a much coveted asset in the world of high technology.

As for why anyone would want  to flip molecules back and forth between left- and right-handedness (from the news release),

A multi-institutional team of researchers that included scientists with the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) has created the first artificial molecules whose chirality can be rapidly switched from a right-handed to a left-handed orientation with a  beam of light. This holds potentially important possibilities for the application of terahertz technologies across a wide range of fields, including reduced energy use for data-processing, homeland security and ultrahigh-speed communications.

Here’s how the technique works, from the July 10, 2012 news item on physorg.com,

Working with terahertz (THz) metamaterials engineered from nanometer-sized gold strips with air as the dielectric – Zhang [Xiang Zhang, one of the leaders of this research and a principal investigator with Berkeley Lab's Materials Sciences Division] and his colleagues fashioned a delicate artificial chiral molecule which they then incorporated with a photoactive silicon medium. Through photoexcitation of their metamolecules with an external beam of light, the researchers observed handedness flipping in the form of circularly polarized emitted THz light. Furthermore, the photoexcitation enabled this chirality flipping and the circular polarization of THz light to be dynamically controlled.

“In contrast to previous demonstrations where chirality was merely switched on or off in metamaterials using photoelectric stimulation, we used an optical switch to actually reverse the chirality of our THz metamolecules,” Zhang says.

The researchers describe in more detail the potential for this new technique,

“The observed giant switchable chirality we can engineer into our metamaterials provides a viable approach towards creating high performance polarimetric devices that are largely not available at terahertz frequencies,” says corresponding author Antoinette Taylor. “This frequency range is particularly interesting because it uniquely reveals information about physical phenomena such as the interactions between or within biologically relevant molecules, and may enable control of electronic states in novel material systems, such as cyclotron resonances in graphene and topological insulators.”

Taylor and her co-authors say that the general design principle of their optically switchable chiral THz metamolecules is not limited to handedness switching but could also be applied to the dynamic reversing of other electromagnetic properties.

From what I understand metamaterials are very expensive and difficult to produce which means this exciting advance is likely to remain in the laboratory of at least 10 years.