Tag Archives: Michigan Technological University

Revival of dead pig brains raises moral questions about life and death

The line between life and death may not be what we thought it was according to some research that was reported in April 2019. Ed Wong’s April 17, 2019 article (behind a paywall) for The Atlantic was my first inkling about the life-death questions raised by some research performed at Yale University, (Note: Links have been removed)

The brain, supposedly, cannot long survive without blood. Within seconds, oxygen supplies deplete, electrical activity fades, and unconsciousness sets in. If blood flow is not restored, within minutes, neurons start to die in a rapid, irreversible, and ultimately fatal wave.

But maybe not? According to a team of scientists led by Nenad Sestan at Yale School of Medicine, this process might play out over a much longer time frame, and perhaps isn’t as inevitable or irreparable as commonly believed. Sestan and his colleagues showed this in dramatic fashion—by preserving and restoring signs of activity in the isolated brains of pigs that had been decapitated four hours earlier.

The team sourced 32 pig brains from a slaughterhouse, placed them in spherical chambers, and infused them with nutrients and protective chemicals, using pumps that mimicked the beats of a heart. This system, dubbed BrainEx, preserved the overall architecture of the brains, preventing them from degrading. It restored flow in their blood vessels, which once again became sensitive to dilating drugs. It stopped many neurons and other cells from dying, and reinstated their ability to consume sugar and oxygen. Some of these rescued neurons even started to fire. “Everything was surprising,” says Zvonimir Vrselja, who performed most of the experiments along with Stefano Daniele.

… “I don’t see anything in this report that should undermine confidence in brain death as a criterion of death,” says Winston Chiong, a neurologist at the University of California at San Francisco. The matter of when to declare someone dead has become more controversial since doctors began relying more heavily on neurological signs, starting around 1968, when the criteria for “brain death” were defined. But that diagnosis typically hinges on the loss of brainwide activity—a line that, at least for now, is still final and irreversible. After MIT Technology Review broke the news of Sestan’s work a year ago, he started receiving emails from people asking whether he could restore brain function to their loved ones. He very much cannot. BrainEx isn’t a resurrection chamber.

“It’s not going to result in human brain transplants,” adds Karen Rommelfanger, who directs Emory University’s neuroethics program. “And I don’t think this means that the singularity is coming, or that radical life extension is more possible than before.”

So why do the study? “There’s potential for using this method to develop innovative treatments for patients with strokes or other types of brain injuries, and there’s a real need for those kinds of treatments,” says L. Syd M Johnson, a neuroethicist at Michigan Technological University. The BrainEx method might not be able to fully revive hours-dead brains, but Yama Akbari, a critical-care neurologist at the University of California at Irvine, wonders whether it would be more successful if applied minutes after death. Alternatively, it could help to keep oxygen-starved brains alive and intact while patients wait to be treated. “It’s an important landmark study,” Akbari says.

Yong notes that the study still needs to be replicated in his article which also probes some of the ethical issues associated with the latest neuroscience research.

Nature published the Yale study,

Restoration of brain circulation and cellular functions hours post-mortem by Zvonimir Vrselja, Stefano G. Daniele, John Silbereis, Francesca Talpo, Yury M. Morozov, André M. M. Sousa, Brian S. Tanaka, Mario Skarica, Mihovil Pletikos, Navjot Kaur, Zhen W. Zhuang, Zhao Liu, Rafeed Alkawadri, Albert J. Sinusas, Stephen R. Latham, Stephen G. Waxman & Nenad Sestan. Nature 568, 336–343 (2019) DOI: https://doi.org/10.1038/s41586-019-1099-1 Published 17 April 2019 Issue Date 18 April 2019

This paper is behind a paywall.

Two neuroethicists had this to say (link to their commentary in Nature follows) as per an April 71, 2019 news release from Case Western Reserve University (also on EurekAlert), Note: Links have been removed,

The brain is more resilient than previously thought. In a groundbreaking experiment published in this week’s issue of Nature, neuroscientists created an artificial circulation system that successfully restored some functions and structures in donated pig brains–up to four hours after the pigs were butchered at a USDA food processing facility. Though there was no evidence of restored consciousness, brains from the pigs were without oxygen for hours, yet could still support key functions provided by the artificial system. The result challenges the notion that mammalian brains are fully and irreversibly damaged by a lack of oxygen.

“The assumptions have always been that after a couple minutes of anoxia, or no oxygen, the brain is ‘dead,'” says Stuart Youngner, MD, who co-authored a commentary accompanying the study with Insoo Hyun, PhD, both professors in the Department of Bioethics at Case Western Reserve University School of Medicine. “The system used by the researchers begs the question: How long should we try to save people?”

In the pig experiment, researchers used an artificial perfusate (a type of cell-free “artificial blood”), which helped brain cells maintain their structure and some functions. Resuscitative efforts in humans, like CPR, are also designed to get oxygen to the brain and stave off brain damage. After a period of time, if a person doesn’t respond to resuscitative efforts, emergency medical teams declare them dead.

The acceptable duration of resuscitative efforts is somewhat uncertain. “It varies by country, emergency medical team, and hospital,” Youngner said. Promising results from the pig experiment further muddy the waters about the when to stop life-saving efforts.

At some point, emergency teams must make a critical switch from trying to save a patient, to trying to save organs, said Youngner. “In Europe, when emergency teams stop resuscitation efforts, they declare a patient dead, and then restart the resuscitation effort to circulate blood to the organs so they can preserve them for transplantation.”

The switch can involve extreme means. In the commentary, Youngner and Hyun describe how some organ recovery teams use a balloon to physically cut off blood circulation to the brain after declaring a person dead, to prepare the organs for transplantation.

The pig experiment implies that sophisticated efforts to perfuse the brain might maintain brain cells. If technologies like those used in the pig experiment could be adapted for humans (a long way off, caution Youngner and Hyun), some people who, today, are typically declared legally dead after a catastrophic loss of oxygen could, tomorrow, become candidates for brain resuscitation, instead of organ donation.

Said Youngner, “As we get better at resuscitating the brain, we need to decide when are we going to save a patient, and when are we going to declare them dead–and save five or more who might benefit from an organ.”

Because brain resuscitation strategies are in their infancy and will surely trigger additional efforts, the scientific and ethics community needs to begin discussions now, says Hyun. “This study is likely to raise a lot of public concerns. We hoped to get ahead of the hype and offer an early, reasoned response to this scientific advance.”

Both Youngner and Hyun praise the experiment as a “major scientific advancement” that is overwhelmingly positive. It raises the tantalizing possibility that the grave risks of brain damage caused by a lack of oxygen could, in some cases, be reversible.
“Pig brains are similar in many ways to human brains, which makes this study so compelling,” Hyun said. “We urge policymakers to think proactively about what this line of research might mean for ongoing debates around organ donation and end of life care.”

Here’s a link to and a citation to the Nature commentary,

Pig experiment challenges assumptions around brain damage in people by Stuart Youngner and Insoo Hyun. Nature 568, 302-304 (2019) DOI: 10.1038/d41586-019-01169-8 April 17, 2019

This paper is open access.

I was hoping to find out more about BrainEx, but this April 17, 2019 US National Institute of Mental Health news release is all I’ve been able to find in my admittedly brief online search. The news release offers more celebration than technical detail.

Quick comment

Interestingly, there hasn’t been much of a furor over this work. Not yet.

Watching a nanosized space rocket under a microscope

That is a silent video depicting the research. For anyone who may be puzzled, there’s an Aug. 8, 2016 news item on Nanowerk featuring the research announcement from Michigan Technological University (Note: A link has been removed),

Researchers at the University of Maryland and Michigan Technological University have operated a tiny proposed satellite ion rocket under a microscope to see how it works (Nanotechnology, “Radiation-induced solidification of ionic liquid under extreme electric field”).

The rocket, called an electrospray thruster, is a drop of molten salt. When electricity is applied, it creates a field on the tip of the droplet, until ions begin streaming off the end. The force created by the rocket is less than the weight of a human hair, but in the vacuum of space it is enough to push a small object forward with a constant acceleration. Many of these tiny thrusters packed together could propel a spacecraft over great distances, maybe even to the nearest exoplanet, and they are particularly useful for Earth-orbiting nanosatellites, which can be as small as a shoe box. These thrusters are currently being tested on the European Space Agency’s LISA Pathfinder, which hopes to poise objects in space so precisely that they would only be disturbed by gravitational waves.

An Aug, 8, 2016 Michigan Technological University news release on EurekAlert, which originated the news item, explains further,

these droplet engines have a problem: sometimes they form needle-like spikes that disrupt the way the thruster works – they get in the way of the ions flowing outward and turn the liquid to a gel. Lyon B. King and Kurt Terhune, mechanical engineers at Michigan Tech, wanted to find out how this actually happens.

“The challenge is making measurements of features as small as a few molecules in the presence of a strong electric field, which is why we turned to John Cumings at the University of Maryland,” King says, explaining Cumings is known for his work with challenging materials and that they needed to look for a needle in a haystack. “Getting a close look at these droplets is like looking through a straw to find a penny somewhere on the floor of a room–and if that penny moves out of view, like the tip of the molten salt needles do–then you have to start searching for it all over again.”

At the Advanced Imaging and Microscopy Lab at the University of Maryland, Cumings put the tiny thruster in a transmission electron microscope – an advanced scope that can see things down to millionths of a meter. They watched as the droplet elongated and sharpened to a point, and then started emitting ions. Then the tree-like defects began to appear.

The researchers say that figuring out why these branched structures grow could help prevent them from forming. The problem occurs when high-energy electrons, like those used in the microscope’s imaging beam, impact the fluid causing damage to the molecules that they strike. This damages the molten salt’s molecular structure, so it thickens into a gel and no longer flows properly.

“We were able to watch the dendritic structures accumulate in real time,” says Kurt Terhune, a mechanical engineering graduate student and the study’s lead author. “The specific mechanism still needs to be investigated, but this could have importance for spacecraft in high-radiation environments.”

He adds that the microscope’s electron beam is more powerful than natural settings, but the gelling effect could affect the lifetime of electrospray thrusters in low-Earth and geosynchronous orbit.

Here’s a link to and a citation for the paper,

Radiation-induced solidification of ionic liquid under extreme electric field by Kurt J Terhune, Lyon B King, Kai He, and John Cumings. Nanotechnology, Volume 27, Number 37 DOI: http://dx.doi.org/10.1088/0957-4484/27/37/375701 Published 3 August 2016

© 2016 IOP Publishing Ltd

This paper is behind a paywall.

Carbon nanotubes, acoustics, and heat

I have a longstanding interest in carbon nanotubes and acoustics, which I first encountered in 2008. This latest work comes from the Michigan Technological University according to a July 28, 2015 news item on Nanowerk,

Troy Bouman reaches over, presses play, and the loudspeaker sitting on the desk starts playing the university fight song. But this is no ordinary loudspeaker. This is a carbon nanotube transducer—and it makes sound with heat.

Bouman and Mahsa Asgarisabet, both graduate students at Michigan Technological University, recently won a Best of Show Award at SAE International’s Noise and Vibration Conference and Exhibition 2015 for their acoustic research on carbon nanotube speakers. They work with Andrew Barnard, an assistant professor of mechanical engineering at Michigan Tech, to tease out the fundamental physics of these unusual loudspeakers.

While still a fledgling technology, the potential applications are nearly endless. Everything from de-icing helicopter blades to making lighter loudspeakers to doubling as a car speaker and heating filament for back windshield defrosters.

Here’s a few sound sound files featuring the students and their carbon nanotube speakers,


A July 28, 2015 Michigan Technological University news release, which originated the news item, goes on to describe how these carbon nanotubes are making sound,

The freestanding speaker itself is rather humble. In fact, it’s a bit flimsy. A teflon base props up two copper rods, and what seems like a see-through black cloth stretches between them.

“A little wind gust across them, and they would just blow away,” Barnard says. “But you could shake them as much as you want—since they have such low mass, there is virtually no inertia.”

The material is strong side to side, because what the naked eye can’t see is the collection of black nanotubes that make up that thin film.

The nanotubes are straw-like structures with walls only one carbon atom-thick and they can heat up and cool down up to 100,000 times each second. By comparison, a platinum sheet about 700 nanometers thick can only heat up and cool down about 16 times each second. The heating and cooling of the carbon nanotubes causes the adjacent air to expand and contract. That pushes air molecules around and creates sound waves.

“Traditional speakers use a moving coil, and that’s how they create sound waves,” Bouman says. “There are completely different physics behind carbon nanotube speakers.”

And because of these differences, the nearly weightless carbon nanotube speakers produce sound in a way that isn’t initially understood by our ears. Bouman’s research focuses on processing the sound waves to make them more intelligible. Take a listen.

Acoustics

To date, most research on carbon nanotubes has been on the materials side. Carbon nanotube speakers were discovered accidently in 2008, showing that the idea was viable. As mechanical engineers studying acoustics, Barnard, Bouman and Asgarisabet are refining the technology.

“They are very light weight and have no moving parts,” Asgarisabet says, which is ideal for her work in active noise control, where the carbon nanotube films could cancel out engine noise in airplanes or road noise in cars. But first, she says, “I want to focus first on getting a good thermal model of the speakers.”

Having an accurate model, Bouman adds, is a reflection of understanding the carbon nanotube loudspeakers themselves. The modeling work he and Asgarisabet are doing lays down the foundation to build up new applications for the technology.

While a lot of research remains on sorting out the underlying physics of carbon nanotube speakers, being able to use both the heat and sound properties makes them versatile. The thinness and weightlessness is also appealing.

“They’re basically conformable speakers,” Barnard says. The thin film could be draped over dashboards, windows, walls, seats and maybe even clothing. To get the speakers to that point, Barnard and his students will continue refining the technology’s efficiency and ruggedness, one carbon nanotube thin-film at a time.

As I mentioned earlier I’m quite interested in carbon nanotubes speakers and, for that matter, all other nanomaterial speakers. For example, there was a November 18, 2013 posting titled: World’s* smallest FM radio transmitter made out of graphene which also featured the Zettl Group’s (University of California at Berkeley) carbon nanotube radio (unfortunately those sound files are no longer accessible).

Dexter Johnson in a July 30, 2015 posting (on his Nanoclast blog on the Institute of Electrical and Electronics Engineers [IEEE] website) provides some additional insights (Note: Links have been removed),

It’s been some time since we covered the use of nanomaterials in audio speakers. While not a hotly pursued research field, there is some tradition for it dating back to the first development of carbon nanotube-based speakers in 2008. While nanomaterial-based speakers are not going to win any audiophile prize anytime soon, they do offer some unusual characteristics that mainly stem from their magnet-less design.

Synthesizing nerve tissues with 3D printers and cellulose nanocrystals (CNC)

There are lots of stories about bioprinting and tissue engineering here and I think it’s time (again) for one which one has some good, detailed descriptions and, bonus, it features cellulose nanocrystals (CNC) and graphene. From a May 13, 2015 news item on Azonano,

The printer looks like a toaster oven with the front and sides removed. Its metal frame is built up around a stainless steel circle lit by an ultraviolet light. Stainless steel hydraulics and thin black tubes line the back edge, which lead to an inner, topside box made of red plastic.

In front, the metal is etched with the red Bio Bot logo. All together, the gray metal frame is small enough to fit on top of an old-fashioned school desk, but nothing about this 3D printer is old school. In fact, the tissue-printing machine is more like a sci-fi future in the flesh—and it has very real medical applications.

Researchers at Michigan Technological University hope to use this newly acquired 3D bioprinter to make synthesized nerve tissue. The key is developing the right “bioink” or printable tissue. The nanotechnology-inspired material could help regenerate damaged nerves for patients with spinal cord injuries, says Tolou Shokuhfar, an assistant professor of mechanical engineering and biomedical engineering at Michigan Tech.

Shokuhfar directs the In-Situ Nanomedicine and Nanoelectronics Laboratory at Michigan Tech, and she is an adjunct assistant professor in the Bioengineering Department and the College of Dentistry at the University of Illinois at Chicago.

In the bioprinting research, Shokuhfar collaborates with Reza Shahbazian-Yassar, the Richard and Elizabeth Henes Associate Professor in the Department of Mechanical Engineering-Engineering Mechanics at Michigan Tech. Shahbazian-Yassar’s highly interdisciplinary background on cellulose nanocrystals as biomaterials, funded by the National Science Foundation’s (NSF) Biomaterials Program, helped inspire the lab’s new 3D printing research. “Cellulose nanocrystals with extremely good mechanical properties are highly desirable for bioprinting of scaffolds that can be used for live tissues,” says Shahbazian-Yassar. [emphases mine]

A May 11, 2015 Michigan Technological University (MTU) news release by Allison Mills, which originated the news item, explains the ‘why’ of the research,

“We wanted to target a big issue,” Shokuhfar says, explaining that nerve regeneration is a particularly difficult biomedical engineering conundrum. “We are born with all the nerve cells we’ll ever have, and damaged nerves don’t heal very well.”

Other facilities are trying to address this issue as well. Many feature large, room-sized machines that have built-in cell culture hoods, incubators and refrigeration. The precision of this equipment allows them to print full organs. But innovation is more nimble at smaller scales.

“We can pursue nerve regeneration research with a simpler printer set-up,” says Shayan Shafiee, a PhD student working with Shokuhfar. He gestures to the small gray box across the lab bench.

He opens the red box under the top side of the printer’s box. Inside the plastic casing, a large syringe holds a red jelly-like fluid. Shafiee replenishes the needle-tipped printer, pulls up his laptop and, with a hydraulic whoosh, he starts to print a tissue scaffold.

The news release expands on the theme,

At his lab bench in the nanotechnology lab at Michigan Tech, Shafiee holds up a petri dish. Inside is what looks like a red gummy candy, about the size of a half-dollar.

Here’s a video from MTU illustrating the printing process,

Back to the news release, which notes graphene could be instrumental in this research,

“This is based on fractal geometry,” Shafiee explains, pointing out the small crenulations and holes pockmarking the jelly. “These are similar to our vertebrae—the idea is to let a nerve pass through the holes.”

Making the tissue compatible with nerve cells begins long before the printer starts up. Shafiee says the first step is to synthesize a biocompatible polymer that is syrupy—but not too thick—that can be printed. That means Shafiee and Shokuhfar have to create their own materials to print with; there is no Amazon.com or even a specialty shop for bioprinting nerves.

Nerves don’t just need a biocompatible tissue to act as a carrier for the cells. Nerve function is all about electric pulses. This is where Shokuhfar’s nanotechnology research comes in: Last year, she was awarded a CAREER grant from NSF for her work using graphene in biomaterials research. [emphasis mine] “Graphene is a wonder material,” she says. “And it has very good electrical conductivity properties.”

The team is extending the application of this material for nerve cell printing. “Our work always comes back to the question, is it printable or not?” Shafiee says, adding that a successful material—a biocompatible, graphene-bound polymer—may just melt, mush or flat out fail under the pressure of printing. After all, imagine building up a substance more delicate than a soufflé using only the point of a needle. And in the nanotechnology world, a needlepoint is big, even clumsy.

Shafiee and Shokuhfar see these issues as mechanical obstacles that can be overcome.

“It’s like other 3D printers, you need a design to work from,” Shafiee says, adding that he will tweak and hone the methodology for printing nerve cells throughout his dissertation work. He is also hopeful that the material will have use beyond nerve regeneration.

This looks like a news release designed to publicize work funded at MTU by the US National Science Foundation (NSF) which is why there is no mention of published work.

One final comment regarding cellulose nanocrystals (CNC). They have also been called nanocrystalline cellulose (NCC), which you will still see but it seems CNC is emerging as the generic term. NCC has been trademarked by CelluForce, a Canadian company researching and producing CNC (or if you prefer, NCC) from forest products.

Taking the baking out of aircraft manufacture

It seems that ovens are an essential piece of equipment when manufacturing aircraft parts but that may change if research from MIT (Massachusetts Institute of Technology) proves successful. An April 14, 2015 news item on ScienceDaily describes the current process and the MIT research,

Composite materials used in aircraft wings and fuselages are typically manufactured in large, industrial-sized ovens: Multiple polymer layers are blasted with temperatures up to 750 degrees Fahrenheit, and solidified to form a solid, resilient material. Using this approach, considerable energy is required first to heat the oven, then the gas around it, and finally the actual composite.

Aerospace engineers at MIT have now developed a carbon nanotube (CNT) film that can heat and solidify a composite without the need for massive ovens. When connected to an electrical power source, and wrapped over a multilayer polymer composite, the heated film stimulates the polymer to solidify.

The group tested the film on a common carbon-fiber material used in aircraft components, and found that the film created a composite as strong as that manufactured in conventional ovens — while using only 1 percent of the energy.

The new “out-of-oven” approach may offer a more direct, energy-saving method for manufacturing virtually any industrial composite, says Brian L. Wardle, an associate professor of aeronautics and astronautics at MIT.

“Typically, if you’re going to cook a fuselage for an Airbus A350 or Boeing 787, you’ve got about a four-story oven that’s tens of millions of dollars in infrastructure that you don’t need,” Wardle says. “Our technique puts the heat where it is needed, in direct contact with the part being assembled. Think of it as a self-heating pizza. … Instead of an oven, you just plug the pizza into the wall and it cooks itself.”

Wardle says the carbon nanotube film is also incredibly lightweight: After it has fused the underlying polymer layers, the film itself — a fraction of a human hair’s diameter — meshes with the composite, adding negligible weight.

An April 14, 2015 MIT news release, which originated the news item, describes the origins of the team’s latest research, the findings, and the implications,

Carbon nanotube deicers

Wardle and his colleagues have experimented with CNT films in recent years, mainly for deicing airplane wings. The team recognized that in addition to their negligible weight, carbon nanotubes heat efficiently when exposed to an electric current.

The group first developed a technique to create a film of aligned carbon nanotubes composed of tiny tubes of crystalline carbon, standing upright like trees in a forest. The researchers used a rod to roll the “forest” flat, creating a dense film of aligned carbon nanotubes.

In experiments, Wardle and his team integrated the film into airplane wings via conventional, oven-based curing methods, showing that when voltage was applied, the film generated heat, preventing ice from forming.

The deicing tests inspired a question: If the CNT film could generate heat, why not use it to make the composite itself?

How hot can you go?

In initial experiments, the researchers investigated the film’s potential to fuse two types of aerospace-grade composite typically used in aircraft wings and fuselages. Normally the material, composed of about 16 layers, is solidified, or cross-linked, in a high-temperature industrial oven.

The researchers manufactured a CNT film about the size of a Post-It note, and placed the film over a square of Cycom 5320-1. They connected electrodes to the film, then applied a current to heat both the film and the underlying polymer in the Cycom composite layers.

The team measured the energy required to solidify, or cross-link, the polymer and carbon fiber layers, finding that the CNT film used one-hundredth the electricity required for traditional oven-based methods to cure the composite. Both methods generated composites with similar properties, such as cross-linking density.

Wardle says the results pushed the group to test the CNT film further: As different composites require different temperatures in order to fuse, the researchers looked to see whether the CNT film could, quite literally, take the heat.

“At some point, heaters fry out,” Wardle says. “They oxidize, or have different ways in which they fail. What we wanted to see was how hot could this material go.”

To do this, the group tested the film’s ability to generate higher and higher temperatures, and found it topped out at over 1,000 F. In comparison, some of the highest-temperature aerospace polymers require temperatures up to 750 F in order to solidify.

“We can process at those temperatures, which means there’s no composite we can’t process,” Wardle says. “This really opens up all polymeric materials to this technology.”

The team is working with industrial partners to find ways to scale up the technology to manufacture composites large enough to make airplane fuselages and wings.

“There needs to be some thought given to electroding, and how you’re going to actually make the electrical contact efficiently over very large areas,” Wardle says. “You’d need much less power than you are currently putting into your oven. I don’t think it’s a challenge, but it has to be done.”

Gregory Odegard, a professor of computational mechanics at Michigan Technological University, says the group’s carbon nanotube film may go toward improving the quality and efficiency of fabrication processes for large composites, such as wings on commercial aircraft. The new technique may also open the door to smaller firms that lack access to large industrial ovens.

“Smaller companies that want to fabricate composite parts may be able to do so without investing in large ovens or outsourcing,” says Odegard, who was not involved in the research. “This could lead to more innovation in the composites sector, and perhaps improvements in the performance and usage of composite materials.”

It can be interesting to find out who funds the research (from the news release),

This research was funded in part by Airbus Group, Boeing, Embraer, Lockheed Martin, Saab AB, TohoTenax, ANSYS Inc., the Air Force Research Laboratory at Wright-Patterson Air Force Base, and the U.S. Army Research Office.

Here’s a link to and citation for the research paper,

Impact of carbon nanotube length on electron transport in aligned carbon nanotube networks by Jeonyoon Lee, Itai Y. Stein, Mackenzie E. Devoe, Diana J. Lewis, Noa Lachman, Seth S. Kessler, Samuel T. Buschhorn, and Brian L. Wardle. Appl. Phys. Lett. 106, 053110 (2015); http://dx.doi.org/10.1063/1.4907608

This paper is behind a paywall.

For the smell of it

Having had a tussle with a fellow student some years ago about what constituted multimedia, I wanted to discuss smell as a possible means of communication and he adamantly disagreed (he won),  these  two items that feature the sense of smell  are of particular interest, especially (tongue firmly in cheek) as one of these items may indicate I was* ahead of my time.

The first is about about a phone-like device that sends scent (from a Feb. 11, 2014 news item on ScienceDaily),

A Paris laboratory under the direction of David Edwards, Michigan Technological University alumnus, has created the oPhone, which will allow odors — oNotes — to be sent, via Bluetooth and smartphone attachments, to oPhones across the state, country or ocean, where the recipient can enjoy American Beauties or any other variety of rose.

It can be sent via email, tweet, or text.

Edwards says the idea started with student designers in his class at Harvard, where he is a professor.

“We invite young students to bring their design dreams,” he says. “We have a different theme each year, and that year it was virtual worlds.”

The all-female team came up with virtual aromas, and he brought two of the students to Paris to work on the project. Normally, he says, there’s a clear end in sight, but with their project no one had a clue who was going to pay for the research or if there was even a market.

A Feb. 11, 2014 Michigan Technological University news release by Dennis Walikainen, which originated the news item, provides more details about the project development and goals,

“We create unique aromatic profiles,” says Blake Armstrong, director of business communications at Vapor Communications, an organization operating out of Le Laboratorie (Le Lab) in Paris. “We put that into the oChip that faithfully renders that smell.”

Edwards said that the initial four chips that will come with the first oPhones can be combined into thousands different odors—produced for 20 to 30 seconds—creating what he calls “an evolution of odor.”

The secret is in accurate scent reproduction, locked in those chips plugged into the devices. Odors are first captured in wax after they are perfected using “The Nose”– an aroma expert at Le Lab, Marlène Staiger — who deconstructs the scents.

For example, with coffee, “the most universally recognized aroma,” she replaces words like “citrus” or “berry” with actual scents that will be created by ordering molecules and combining them in different percentages.

In fact, Le Lab is working with Café Coutume, the premier coffee shop in Paris, housing baristas in their building and using oPhones to create full sensory experiences.

“Imagine you are online and want to know what a particular brand of coffee would smell like,” Edwards says. “Or, you are in an actual long line waiting to order. You just tap on the oNote and get the experience.”

The result for Coutume, and all oPhone recipients, is a pure cloud of scent close to the device. Perhaps six inches in diameter, it is released and then disappears, retaining its personal and subtle aura.

And there other sectors that could benefit, Edwards says.

“Fragrance houses, of course, culinary, travel, but also healthcare.”

He cites an example at an exhibition last fall in London when someone with brain damage came forward. He had lost memory, and with it his sense of taste and smell.  The oPhone can help bring that memory back, Edwards says.

“We think there could be help for Alzheimer’s patients, related to the decline and loss of memory and olfactory sensation,” he says.

There is an image accompanying the news release which I believe are variations of the oPhone device,

Sending scents is closer than you think. [downloaded from http://www.mtu.edu/news/stories/2014/february/story102876.html]

Sending scents is closer than you think. [downloaded from http://www.mtu.edu/news/stories/2014/february/story102876.html]

You can find David Edwards’ Paris lab, Le Laboratoire (Le Lab), ici. From Le Lab’s homepage,

Opened since 2007, Le Laboratoire is a contemporary art and design center in central Paris, where artists and designers experiment at frontiers of science. Exhibition of works-in-progress from these experiments are frequently first steps toward larger scale cultural humanitarian and commercial works of art and design.

 

Le Laboratoire was founded in 2007 by David Edwards as the core-cultural lab of the international network, Artscience Labs.

Le Lab also offers a Mar. ?, 2013 news release describing the project then known as The Olfactive Project Or, The Third Dimension Global Communication (English language version ou en français).

The second item is concerned with some research from l’Université de Montréal as a Feb. 11, 2014 news item on ScienceDaily notes,

According to Simona Manescu and Johannes Frasnelli of the University of Montreal’s Department of Psychology, an odour is judged differently depending on whether it is accompanied by a positive or negative description when it is smelled. When associated with a pleasant label, we enjoy the odour more than when it is presented with a negative label. To put it another way, we also smell with our eyes!

This was demonstrated by researchers in a study recently published in the journal Chemical Senses.

A Feb. 11, 2014 Université de Montréal news release, which originated the news item, offers details about the research methodology and the conclusions,

For their study, they recruited 50 participants who were asked to smell the odours of four odorants (essential oil of pine, geraniol, cumin, as well as parmesan cheese). Each odour (administered through a mask) was randomly presented with a positive or negative label displayed on a computer screen. In this way, pine oil was presented either with the label “Pine Needles” or the label “Old Solvent”; geraniol was presented with the label “Fresh Flowers” or “Cheap Perfume”; cumin was presented with the label “Indian Food” or “Dirty Clothes; and finally, parmesan cheese was presented with the label of either the cheese or dried vomit.

The result was that all participants rated the four odours more positively when they were presented with positive labels than when presented with negative labels. Specifically, participants described the odours as pleasant and edible (even those associated with non-food items) when associated with positive labels. Conversely, the same odours were considered unpleasant and inedible when associated with negative labels – even the food odours. “It shows that odour perception is not objective: it is affected by the cognitive interpretation that occurs when one looks at a label,” says Manescu. “Moreover, this is the first time we have been able to influence the edibility perception of an odour, even though the positive and negative labels accompanying the odours showed non-food words,” adds Frasnelli.

Here’s a link to and a citation for the paper,

Now You Like Me, Now You Don’t: Impact of Labels on Odor Perception by  Simona Manescu, Johannes Frasnelli, Franco Lepore, and Jelena Djordjevic. Chem. Senses (2013) doi: 10.1093/chemse/bjt066 First published online: December 13, 2013

This paper is behind a paywall.

* Added ‘I was’ to sentence June 18, 2014. (sigh) Maybe I should spend less time with my tongue in cheek and give more time to my grammar.

3D printing and the environment (a panel discussion at the Woodrow Wilson International Center for Scholars), and new developments with metal 3D printing

I have combined two 3D printing items here. The first is an announcement from the Woodrow Wilson International Center for Scholars about an upcoming panel discussion (from the Nov. 25, 2013 announcement),

The Environmental Impacts of 3D Printing

3D printing allows for cheaper and quicker production of complex and novel items. The technology has been used by industry to build prototypes and specialized parts since the 1980s, but interest in desktop applications of the technology has increased in recent years as prices for the machines have dropped.

Proponents of the technology often cite the environmental benefits of 3D printing, though fundamental questions remain: What technologies are involved in 3D printing? How efficient are these technologies in the use of materials and energy? Does the design of printed objects reduce end-of-life options? Does more localized production reduce the carbon footprint? Will simplicity and ubiquity cause us to overprint things, just as we do with paper?

Robert Olson explored some of these questions in his article “3D Printing: A Boon or a Bane?” in the November/December 2013 issue of the Environmental Forum. The article discusses the enormous potential of 3D printing and examines the paucity of research on the environmental impacts of the technology.

Join us at the Wilson Center on Dec. 13 for an event looking at the growth of additive manufacturing and the potential environmental implications of the technology.

When: Dec. 13, 2013 from 9 a.m. – 11 a.m. EST

Who:

  • Robert Olson, Senior Fellow, Institute for Alternative Futures
  • David Rejeski, Director, Science and Technology Innovation Program, Wilson Center
  • John Pendergrass, Senior Attorney & Director of the State Center, Environmental Law Institute

There is more information on the Event page.

While this panel discussion is likely to be focused on polymer 3D printing, there are other developments in the 3D printing world as per a Nov. 26, 2013 Michigan Technological University (MTU) news release (also on EurekAlert, Dec. 2, 2013),

OK, so maybe you aren’t interested in making your own toys, cellphone cases, or glow-in-the-dark Christmas decorations. How about a brake drum?

Until now, 3D printing has been a polymer affair, with most people in the maker community using the machines to make all manner of plastic consumer goods, from tent stakes to chess sets. A new low-cost 3D printer developed by Michigan Technological University’s Joshua Pearce and his team could add hammers to that list. The detailed plans, software and firmware are all freely available and open-source, meaning anyone can use them to make their own metal 3D printer.

This open access technology is being made accessible to the maker community, preferably to the highly skilled and experienced members, (from the news release),

Pearce is the first to admit that his new printer is a work in progress. So far, the products he and his team have produced are no more intricate than a sprocket. But that’s because the technology is so raw. “Similar to the incredible churn in innovation witnessed with open-sourcing of the first RepRap plastic 3D printers, I anticipate rapid progress when the maker community gets their hands on it,” says Pearce, an associate professor of materials science and engineering/electrical and computer engineering. “Within a month, somebody will make one that’s better than ours, I guarantee it.”

Using under $1,500 worth of materials, including a small commercial MIG welder and an open-source microcontroller, Pearce’s team built a 3D metal printer than can lay down thin layers of steel to form complex geometric objects. Commercial metal printers are available, but they cost over half a million dollars.

His make-it-yourself metal printer is less expensive than off-the-shelf commercial plastic 3D printers and is affordable enough for home use, he said. However, because of safety concerns, Pearce suggests that for now it would be better off in the hands of a shop, garage or skilled DIYer, since it requires more safety gear and fire protection equipment than the typical plastic 3D printer.

While metal 3D printing opens new vistas, it also raises anew the specter of homemade firearms. Some people have already made guns with both commercial metal and plastic 3D printers, with mixed results. While Pearce admits to some sleepless nights as they developed the metal printer, he also believes that the good to come from all types of distributed manufacturing with 3D printing will far outweigh the dangers.

In previous work, his group has already shown that making products at home with a 3D printer is cheaper for the average American and that printing goods at home is greener than buying commercial goods.

In particular, expanded 3D printing would benefit people in the developing world, who have limited access to manufactured goods, and researchers, who can radically cut costs of scientific equipment to further their science, Pearce said. “Small and medium-sized enterprises would be able to build parts and equipment quickly and easily using downloadable, free and open-source designs, which could revolutionize the economy for the benefit of the many.”

“I really don’t know if we are mature enough to handle it,” he added cautiously, “but I think that with open-source approach, we are within reach of a Star Trek-like, post-scarcity society, in which ‘replicators’ can create a vast array of objects on demand, resulting in wealth for everyone at very little cost. Pretty soon, we’ll be able to make almost anything.”

There is a paper and here’s a citation,of sorts,

“A Low-Cost, Open-Source Metal 3-D Printer,” to be published Nov. 25 in IEEE Access (DOI: 10.1109/ACCESS.2013.2293018)

Unfortunately I’ve not been able to locate this paper on IEEE {Institute of Electrical and Electronics Engineers]  Access.

Another day, another solar cell improvement: replacing platinum with 3D graphene

On the plus side, this may replace platinum but it does seem to be one of a plethora of solar cell improvements that don’t make much difference in the current marketplace as this and other improvements are still at the laboratory stage.  Still, it’s encouraging to remember that scientific and technical progress in an area can be agonizingly slow in the early stages only to gain speed at an exponential rate in later stages of development. Fingers crossed this is the case with solar cells.

From the Aug. 20, 2013 Michigan Technological University news release by Marcia Goodrich (also on EurekAlert),

One of the most promising types of solar cells has a few drawbacks. …

Dye-sensitized solar cells are thin, flexible, easy to make and very good at turning sunshine into electricity. However, a key ingredient is one of the most expensive metals on the planet: platinum. While only small amounts are needed, at $1,500 an ounce, the cost of the silvery metal is still significant.

Yun Hang Hu, the Charles and Caroll McArthur Professor of Materials Science and Engineering [Michigan Technological University], has developed a new, inexpensive material that could replace the platinum in solar cells without degrading their efficiency: 3D graphene.

Regular graphene is a famously two-dimensional form of carbon just a molecule or so thick. Hu and his team invented a novel approach to synthesize a unique 3D version with a honeycomb-like structure. To do so, they combined lithium oxide with carbon monoxide in a chemical reaction that forms lithium carbonate (Li2CO3) and the honeycomb graphene. The Li2CO3 helps shape the graphene sheets and isolates them from each other, preventing the formation of garden-variety graphite.  Furthermore, the Li2CO3 particles can be easily removed from 3D honeycomb-structured graphene by an acid.

The researchers determined that the 3D honeycomb graphene had excellent conductivity and high catalytic activity, raising the possibility that it could be used for energy storage and conversion. So they replaced the platinum counter electrode in a dye-sensitized solar cell with one made of the 3D honeycomb graphene. Then they put the solar cell in the sunshine and measured its output.

The cell with the 3D graphene counter electrode converted 7.8 percent of the sun’s energy into electricity, nearly as much as the conventional solar cell using costly platinum (8 percent).

Synthesizing the 3D honeycomb graphene is neither expensive nor difficult, said Hu, and making it into a counter electrode posed no special challenges.

Here’s a link to and a citation for the research paper,

3D Honeycomb-Like Structured Graphene and Its High Efficiency as a Counter-Electrode Catalyst for Dye-Sensitized Solar Cells by Yun Hang Hu, Hui Wang, Franklin Tao, Dario J. Stacchiola, and Kai Sun. Angewandte Chemie, International Edition, Article first published online: 29 JUL 2013 DOI: 10.1002/anie.201303497

The article is behind a paywall.

Free the nano—stop patenting publicly funded research

Joshua Pearce, a professor at Michigan Technological University, has written a commentary on patents and nanotechnology for Nature magazine which claims the current patent regimes strangle rather than encourage innovation. From the free article,  Physics: Make nanotechnology research open-source by Joshua Pearce in Nature 491, 519–521 (22 November 2012) doi:10.1038/491519a (Note: I have removed footnotes),

Any innovator wishing to work on or sell products based on single-walled carbon nanotubes in the United States must wade through more than 1,600 US patents that mention them. He or she must obtain a fistful of licences just to use this tubular form of naturally occurring graphite rolled from a one-atom-thick sheet. This is because many patents lay broad claims: one nanotube example covers “a composition of matter comprising at least about 99% by weight of single-wall carbon molecules”. Tens of others make overlapping claims.

Patent thickets occur in other high-tech fields, but the consequences for nanotechnology are dire because of the potential power and immaturity of the field. Advances are being stifled at birth because downstream innovation almost always infringes some early broad patents. By contrast, computing, lasers and software grew up without overzealous patenting at the outset.

Nanotechnology is big business. According to a 2011 report by technology consultants Cientifica, governments around the world have invested more than US$65 billion in nanotechnology in the past 11 years [my July 15, 2011 posting features an interview with Tim Harper, Cientfica CEO and founder, about the then newly released report]. The sector contributed more than $250 billion to the global economy in 2009 and is expected to reach $2.4 trillion a year by 2015, according to business analysts Lux Research. Since 2001, the United States has invested $18 billion in the National Nanotechnology Initiative; the 2013 US federal budget will add $1.8 billion more.

This investment is spurring intense patent filing by industry and academia. The number of nanotechnology patent applications to the US Patent and Trademark Office (USPTO) is rising each year and is projected to exceed 4,000 in 2012. Anyone who discovers a new and useful process, machine, manufacture or composition of matter, or any new and useful improvement thereof, may obtain a patent that prevents others from using that development unless they have the patent owner’s permission.

Pearce makes some convincing points (Note: I have removed a footnote),

Examples of patents that cover basic components include one owned by the multinational chip manufacturer Intel, which covers a method for making almost any nanostructure with a diameter less than 50 nm; another, held by nanotechnology company NanoSys of Palo Alto, California, covers composites consisting of a matrix and any form of nanostructure. And Rice University in Houston, Texas, has a patent covering “composition of matter comprising at least about 99% by weight of fullerene nanotubes”.

The vast majority of publicly announced IP licence agreements are now exclusive, meaning that only a single person or entity may use the technology or any other technology dependent on it. This cripples competition and technological development, because all other would-be innovators are shut out of the market. Exclusive licence agreements for building-block patents can restrict entire swathes of future innovation.

Pearce’s argument for open source,

This IP rush assumes that a financial incentive is necessary to innovate, and that without the market exclusivity (monopoly) offered by a patent, development of commercially viable products will be hampered. But there is another way, as decades of innovation for free and open-source software show. Large Internet-based companies such as Google and Facebook use this type of software. Others, such as Red Hat, make more than $1 billion a year from selling services for products that they give away for free, like Red Hat’s version of the computer operating system Linux.

An open-source model would leave nanotechnology companies free to use the best tools, materials and devices available. Costs would be cut because most licence fees would no longer be necessary. Without the shelter of an IP monopoly, innovation would be a necessity for a company to survive. Openness reduces the barrier for small, nimble entities entering the market.

John Timmer in his Nov. 23, 2012 article for Wired.co.uk expresses both support and criticism,

Some of Pearce’s solutions are perfectly reasonable. He argues that the National Science Foundation adopt the NIH model of making all research it funds open access after a one-year time limit. But he also calls for an end of patents derived from any publicly funded research: “Congress should alter the Bayh-Dole Act to exclude private IP lockdown of publicly funded innovations.” There are certainly some indications that Bayh-Dole hasn’t fostered as much innovation as it might (Pearce notes that his own institution brings in 100 times more money as grants than it does from licensing patents derived from past grants), but what he’s calling for is not so much a reform of Bayh-Dole as its elimination.

Pearce wants changes in patenting to extend well beyond the academic world, too. He argues that the USPTO should put a moratorium on patents for “nanotechnology-related fundamental science, materials, and concepts.” As we described above, the difference between a process innovation and the fundamental properties resulting in nanomaterial is a very difficult thing to define. The USPTO has struggled to manage far simpler distinctions; it’s unrealistic to expect it to manage a moratorium effectively.

While Pearce points to the 3-D printing sector admiringly, there are some issues even there, as per Mike Masnick’s Nov.  21, 2012 posting on Techdirt.com (Note:  I have removed links),

We’ve been pointing out for a while that one of the reasons why advancements in 3D printing have been relatively slow is because of patents holding back the market. However, a bunch of key patents have started expiring, leading to new opportunities. One, in particular, that has received a fair bit of attention was the Formlabs 3D printer, which raised nearly $3 million on Kickstarter earlier this year. It got a ton of well-deserved attention for being one of the first “low end” (sub ~$3,000) 3D printers with very impressive quality levels.

Part of the reason the company said it could offer such a high quality printer at a such a low price, relative to competitors, was because some of the key patents had expired, allowing it to build key components without having to pay astronomical licensing fees. A company called 3D Systems, however, claims that Formlabs missed one patent. It holds US Patent 5,597,520 on a “Simultaneous multiple layer curing in stereolithography.” While I find it ridiculous that 3D Systems is going legal, rather than competing in the marketplace, it’s entirely possible that the patent is valid. It just highlights how the system holds back competition that drives important innovation, though.

3D Systems claims that Formlabs “took deliberate acts to avoid learning” about 3D Systems’ live patents. The lawsuit claims that Formlabs looked only for expired patents — which seems like a very odd claim. Why would they only seek expired patents? …

I strongly suggest reading both Pearce’s and Timmer’s articles as they both provide some very interesting perspectives about nanotechnology IP (intellectual property) open access issues. I also recommend Mike Masnick’s piece for exposure to a rather odd but unfortunately not uncommon legal suit designed to limit competition in a relatively new technology (3-D printers).