Tag Archives: Mischa Bonn

Water talks to electrons in graphene (i.e., carbon)?

Institutions from Spain, Germany, and England collaborated on the study announced in this June 23, 2023 news item on Nanowerk, Note: A link has been removed,

For the last 20 years, scientists have been puzzled by how water behaves near carbon surfaces. It may flow much faster than expected from conventional flow theories or form strange arrangements such as square ice.

Now, an international team of researchers from the Max Plank Institute for Polymer Research of Mainz (Germany), the Catalan Institute of Nanoscience and Nanotechnology (ICN2, Spain), and the University of Manchester (England), reports in a study published in Nature Nanotechnology (“Electron cooling in graphene enhanced by plasmon–hydron resonance”) that water can interact directly with the carbon’s electrons: a quantum phenomenon that is very unusual in fluid dynamics.

Pictured above: Water-graphene quantum friction (Credits: Lucy Reading-Ikkanda / Simons Foundation)

There are two press releases with almost identical text, the June 22, 2023 Max Planck Institute press release with its additional introductory paragraph is below,

Water and carbon make a quantum couple: the flow of water on a carbon surface is governed by an unusual phenomenon dubbed quantum friction. A work published in ‘Nature Nanotechnology’ experimentally demonstrates this phenomenon – which was predicted in a previous theoretical study— at the interface between liquid water and graphene, a single layer of carbon atoms. Advanced ultrafast techniques were used to perform this study. These results could lead to applications in water purification and desalination processes and maybe even to liquid-based computers.

A liquid, such as water, is made up of small molecules that randomly move and constantly collide with each other. A solid, in contrast, is made of neatly arranged atoms that bathe in a cloud of electrons. The solid and the liquid worlds are assumed to interact only through collisions of the liquid molecules with the solid’s atoms: the liquid molecules do not “see” the solid’s electrons. Nevertheless, just over a year ago, a paradigm-shifting theoretical study proposed that at the water-carbon interface, the liquid’s molecules and the solid’s electrons push and pull on each other, slowing down the liquid flow: this new effect was called quantum friction. However, the theoretical proposal lacked experimental verification.

“We have now used lasers to see quantum friction at work,” explains study lead author Dr Nikita Kavokine, a researcher at the Max Planck Institute in Mainz and the Flatiron Institute in New York. The team studied a sample of graphene – a single monolayer of carbon atoms arranged in a honeycomb pattern. They used ultrashort red laser pulses (with a duration of only a millionth of a billionth of a second) to instantaneously heat up the graphene’s electron cloud. They then monitored its cooling with terahertz laser pulses, which are sensitive to the temperature of the graphene electrons. This technique is called optical pump – terahertz probe (OPTP) spectroscopy.

To their surprise, the electron cloud cooled faster when the graphene was immersed in water, while immersing the graphene in ethanol made no difference to the cooling rate. “This was yet another indication that the water-carbon couple is somehow special, but we still had to understand what exactly was going on,” Kavokine says. A possible explanation was that the hot electrons push and pull on the water molecules to release some of their heat: in other words, they cool through quantum friction. The researchers delved into the theory, and indeed: water-graphene quantum friction could explain the experimental data.

“It’s fascinating to see that the carrier dynamics of graphene keep surprising us with unexpected mechanisms, this time involving solid-liquid interactions with molecules none other than the omnipresent water,” comments Prof Klaas-Jan Tielrooij from ICN2 (Spain) and TU Eindhoven (The Netherlands). What makes water special here is that its vibrations, called hydrons, are in sync with the vibrations of the graphene electrons, called plasmons, so that the graphene-water heat transfer is enhanced through an effect known as resonance.

The experiments thus confirm the basic mechanism of solid-liquid quantum friction. This will have implications for filtration and desalination processes, in which quantum friction could be used to tune the permeation properties of the nanoporous membranes. “Our findings are not only interesting for physicists, but they also hold potential implications for electrocatalysis and photocatalysis at the solid-liquid interface,” says Xiaoqing Yu, PhD student at the Max Planck Institute in Mainz and first author of the work.

The discovery was down to bringing together an experimental system, a measurement tool and a theoretical framework that seldom go hand in hand. The key challenge is now to gain control over the water-electron interaction. “Our dream is to switch quantum friction on and off on demand,” Kavokine says. “This way, we could design smarter water filtration processes, or perhaps even fluid-based computers.”   

The almost identical June 26, 2023 University of Manchester press release is here.

Here’s a link to and a citation for the paper,

Electron cooling in graphene enhanced by plasmon–hydron resonance by Xiaoqing Yu, Alessandro Principi, Klaas-Jan Tielrooij, Mischa Bonn & Nikita Kavokine. Nature Nanotechnology (2023) DOI: https://doi.org/10.1038/s41565-023-01421-3 Published: 22 June 2023

This paper is open access.

How does ice melt? Layer by layer!

A Dec. 12, 2016 news item on ScienceDaily announces the answer to a problem scientists have been investigating for over a century but first, here are the questions,

We all know that water melts at 0°C. However, 150 years ago the famous physicist Michael Faraday discovered that at the surface of frozen ice, well below 0°C, a thin film of liquid-like water is present. This thin film makes ice slippery and is crucial for the motion of glaciers.

Since Faraday’s discovery, the properties of this water-like layer have been the research topic of scientists all over the world, which has entailed considerable controversy: at what temperature does the surface become liquid-like? How does the thickness of the layer dependent on temperature? How does the thickness of the layer increases with temperature? Continuously? Stepwise? Experiments to date have generally shown a very thin layer, which continuously grows in thickness up to 45 nm right below the bulk melting point at 0°C. This also illustrates why it has been so challenging to study this layer of liquid-like water on ice: 45 nm is about 1/1000th part of a human hair and is not discernible by eye.

Scientists of the Max Planck Institute for Polymer Research (MPI-P), in a collaboration with researchers from the Netherlands, the USA and Japan, have succeeded to study the properties of this quasi-liquid layer on ice at the molecular level using advanced surface-specific spectroscopy and computer simulations. The results are published in the latest edition of the scientific journal Proceedings of the National Academy of Science (PNAS).

Caption: Ice melts as described in the text layer by layer. Credit: © MPIP

A Dec. 12, 2016 Max Planck Institute for Polymer Research press release (also on EurekAlert), which originated the news item, goes on to answer the questions,

The team of scientists around Ellen Backus, group leader at MPI-P, investigated how the thin liquid layer is formed on ice, how it grows with increasing temperature, and if it is distinguishable from normal liquid water. These studies required well-defined ice crystal surfaces. Therefore much effort was put into creating ~10 cm large single crystals of ice, which could be cut in such a way that the surface structure was precisely known. To investigate whether the surface was solid or liquid, the team made use of the fact that water molecules in the liquid have a weaker interaction with each other compared to water molecules in ice. Using their interfacial spectroscopy, combined with the controlled heating of the ice crystal, the researchers were able to quantify the change in the interaction between water molecules directly at the interface between ice and air.

The experimental results, combined with the simulations, showed that the first molecular layer at the ice surface has already molten at temperatures as low as -38° C (235 K), the lowest temperature the researchers could experimentally investigate. Increasing the temperature to -16° C (257 K), the second layer becomes liquid. Contrary to popular belief, the surface melting of ice is not a continuous process, but occurs in a discontinuous, layer-by-layer fashion.

“A further important question for us was, whether one could distinguish between the properties of the quasi-liquid layer and those of normal water” says Mischa Bonn, co-author of the paper and director at the MPI-P. And indeed, the quasi-liquid layer at -4° C (269 K) shows a different spectroscopic response than supercooled water at the same temperature; in the quasi-liquid layer, the water molecules seem to interact more strongly than in liquid water.

The results are not only important for a fundamental understanding of ice, but also for climate science, where much research takes place on catalytic reactions on ice surfaces, for which the understanding of the ice surface structure is crucial.

Here’s a link to and a citation for the paper,

Experimental and theoretical evidence for bilayer-by-bilayer surface melting of crystalline ice by M. Alejandra Sánchez, Tanja Kling, Tatsuya Ishiyama, Marc-Jan van Zadel, Patrick J. Bisson, Markus Mezger, Mara N. Jochum, Jenée D. Cyran, Wilbert J. Smit, Huib J. Bakker, Mary Jane Shultz, Akihiro Morita, Davide Donadio, Yuki Nagata, Mischa Bonn, and Ellen H. G. Backus. Proceedings of the National Academy of Science, 2016 DOI: 10.1073/pnas.1612893114 Published online before print December 12, 2016

This paper appears to be open access.

Structural memory of water and the picosecond timescale

Water is a unique liquid and researchers from Germany and the Netherlands can detail at least part of why that’s so according to a Sept. 18, 2015 news item on Nanowerk,

A team of scientists from the Max Planck Institute for Polymer Research (MPI-P) in Mainz, Germany and FOM Institute AMOLF in the Netherlands have characterized the local structural dynamics of liquid water, i.e. how quickly water molecules change their binding state. Using innovative ultrafast vibrational spectroscopies, the researchers show why liquid water is so unique compared to other molecular liquids. …

With the help of a novel combination of ultrafast laser experiments, the scientists found that local structures persist in water for longer than a picosecond, a picosecond (ps) being one thousandth of one billionth of a second ((1012 s). This observation changes the general perception of water as a solvent.

A Sept. 18, 2015 Max Planck Institute for Polymer Research press release (also on EurekAlert), which originated the news item, details the research,

… “71% of the earth’s surface is covered with water. As most chemical and biological reactions on earth occur in water or at the air water interface in oceans or in clouds, the details of how water behaves at the molecular level are crucial. Our results show that water cannot be treated as a continuum, but that specific local structures exist and are likely very important” says Mischa Bonn, director at the MPI-P.

Water is a very special liquid with extremely fast dynamics. Water molecules wiggle and jiggle on sub-picosecond timescales, which make them undistinguishable on this timescale. While the existence of very short-lived local structures – e.g. two water molecules that are very close to one another, or are very far apart from each other – is known to occur, it was commonly believed that they lose the memory of their local structure within less than 0.1 picoseconds.

The proof for relatively long-lived local structures in liquid water was obtained by measuring the vibrations of the Oxygen-Hydrogen (O-H) bonds in water. For this purpose the team of scientists used ultrafast infrared spectroscopy, particularly focusing on water molecules that are weakly (or strongly) hydrogen-bonded to their neighboring water molecules. The scientists found that the vibrations live much longer (up to about 1 ps) for water molecules with a large separation, than for those that are very close (down to 0.2 ps). In other words, the weakly bound water molecules remain weakly bound for a remarkably long time.

Here’s a link to and a citation for the study,

Strong frequency dependence of vibrational relaxation in bulk and surface water reveals sub-picosecond structural heterogeneity by Sietse T. van der Post, Cho-Shuen Hsieh, Masanari Okuno, Yuki Nagata, Huib J. Bakker, Mischa Bonn & Johannes Hunger. Nature Communications 6, Article number: 8384 doi:10.1038/ncomms9384 Published 18 September 2015

This is an open access paper,