Tag Archives: MIT-Harvard Broad Institute

New wound dressings with nanofibres for tissue regeneration

The Rotary Jet-Spinning manufacturing system was developed specifically as a therapeutic for the wounds of war. The dressings could be a good option for large wounds, such as burns, as well as smaller wounds on the face and hands, where preventing scarring is important. Illustration courtesy of Michael Rosnach/Harvard University

This image really gets the idea of regeneration across to the viewer while also informing you that this is medicine that comes from the military. A March 19,2018 news item on phys.org announces the work,

Researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) and the Wyss Institute for Biologically Inspired Engineering have developed new wound dressings that dramatically accelerate healing and improve tissue regeneration. The two different types of nanofiber dressings, described in separate papers, use naturally-occurring proteins in plants and animals to promote healing and regrow tissue.

Our fiber manufacturing system was developed specifically for the purpose of developing therapeutics for the wounds of war,” said Kit Parker, the Tarr Family Professor of Bioengineering and Applied Physics at SEAS and senior author of the research. “As a soldier in Afghanistan, I witnessed horrible wounds and, at times, the healing process for those wounds was a horror unto itself. This research is a years-long effort by many people on my team to help with these problems.”

Parker is also a Core Faculty Member of the Wyss Institute.

The most recent paper, published in Biomaterials, describes a wound dressing inspired by fetal tissue.

A March 19, 2018 Harvard University John A. Paulson School of Engineering and Applied Science news release by Leah Burrows (also on EurekAlert), which originated the news item, provides some background information before launching into more detail about this latest work,

In the late 1970s, when scientists first started studying the wound-healing process early in development, they discovered something unexpected: Wounds incurred before the third trimester left no scars. This opened a range of possibilities for regenerative medicine. But for decades, researchers have struggled to replicate those unique properties of fetal skin.

Unlike adult skin, fetal skin has high levels of a protein called fibronectin, which assembles into the extracellular matrix and promotes cell binding and adhesion. Fibronectin has two structures: globular, which is found in blood, and fibrous, which is found in tissue. Even though fibrous fibronectin holds the most promise for wound healing, previous research focused on the globular structure, in part because manufacturing fibrous fibronectin was a major engineering challenge.

But Parker and his team are pioneers in the field of nanofiber engineering.

The researchers made fibrous fibronectin using a fiber-manufacturing platform called Rotary Jet-Spinning (RJS), developed by Parker’s Disease Biophysics Group. RJS works likes a cotton-candy machine — a liquid polymer solution, in this case globular fibronectin dissolved in a solvent, is loaded into a reservoir and pushed out through a tiny opening by centrifugal force as the device spins. As the solution leaves the reservoir, the solvent evaporates and the polymers solidify. The centrifugal force unfolds the globular protein into small, thin fibers. These fibers — less than one micrometer in diameter — can be collected to form a large-scale wound dressing or bandage.

“The dressing integrates into the wound and acts like an instructive scaffold, recruiting different stem cells that are relevant for regeneration and assisting in the healing process before being absorbed into the body,” said Christophe Chantre, a graduate student in the Disease Biophysics Group and first author of the paper.

In in vivo testing, the researchers found that wounds treated with the fibronectin dressing showed 84 percent tissue restoration within 20 days, compared with 55.6 percent restoration in wounds treated with a standard dressing.

The researchers also demonstrated that wounds treated with the fibronectin dressing had almost normal epidermal thickness and dermal architecture, and even regrew hair follicles — often considered one of the biggest challenges in the field of wound healing.

“This is an important step forward,” said Chantre. “Most work done on skin regeneration to date involves complex treatments combining scaffolds, cells, and even growth factors. Here we were able to demonstrate tissue repair and hair follicle regeneration using an entirely material approach. This has clear advantages for clinical translation.”

In another paper published in Advanced Healthcare Materials, the Disease Biophysics Group demonstrated a soy-based nanofiber that also enhances and promotes wound healing.

Soy protein contains both estrogen-like molecules — which have been shown to accelerate wound healing — and bioactive molecules similar to those that build and support human cells.

“Both the soy- and fibronectin-fiber technologies owe their success to keen observations in reproductive medicine,” said Parker. “During a woman’s cycle, when her estrogen levels go high, a cut will heal faster. If you do a surgery on a baby still in the womb, they have scar-less wound healing. Both of these new technologies are rooted in the most fascinating of all the topics in human biology — how we reproduce.”

In a similar way to fibronectin fibers, the research team used RJS to spin ultrathin soy fibers into wound dressings. In experiments, the soy- and cellulose-based dressing demonstrated a 72 percent increase in healing over wounds with no dressing and a 21 percent increase in healing over wounds dressed without soy protein.

“These findings show the great promise of soy-based nanofibers for wound healing,” said Seungkuk Ahn, a graduate student in the Disease Biophysics Group and first author of the paper. “These one-step, cost-effective scaffolds could be the next generation of regenerative dressings and push the envelope of nanofiber technology and the wound-care market.”

Both kinds of dressing, according to researchers, have advantages in the wound-healing space. The soy-based nanofibers — consisting of cellulose acetate and soy protein hydrolysate — are inexpensive, making them a good option for large-scale use, such as on burns. The fibronectin dressings, on the other hand, could be used for smaller wounds on the face and hands, where preventing scarring is important.

Here’s are links and citations for both papers mentioned in the news release,

Soy Protein/Cellulose Nanofiber Scaffolds Mimicking Skin Extracellular Matrix for Enhanced Wound Healing by Seungkuk Ahn, Christophe O. Chantre, Alanna R. Gannon, Johan U. Lind, Patrick H. Campbell, Thomas Grevesse, Blakely B. O’Connor, Kevin Kit Parker. Advanced Healthcare Materials https://doi.org/10.1002/adhm.201701175 First published: 23 January 2018

Production-scale fibronectin nanofibers promote wound closure and tissue repair in a dermal mouse model by Christophe O. Chantre, Patrick H. Campbell, Holly M. Golecki, Adrian T. Buganza, Andrew K. Capulli, Leila F. Deravi, Stephanie Dauth, Sean P. Sheehy, Jeffrey A.Paten. KarlGledhill, Yanne S. Doucet, Hasan E.Abaci, Seungkuk Ahn, Benjamin D.Pope, Jeffrey W.Ruberti, Simon P.Hoerstrup, Angela M.Christiano, Kevin Kit Parker. Biomaterials Volume 166, June 2018, Pages 96-108 https://doi.org/10.1016/j.biomaterials.2018.03.006 Available online 5 March 2018

Both papers are behind paywalls although you may want to check with ResearchGate where many researchers make their papers available for free.

One last comment, I noticed this at the end of Burrows’ news release,

The Harvard Office of Technology Development has protected the intellectual property relating to these projects and is exploring commercialization opportunities.

It reminded me of the patent battle between the Broad Institute (a Harvard University and Massachusetts Institute of Technology joint venture) and the University of California at Berkeley over CRISPR (clustered regularly interspaced short palindromic repeats) technology. (My March 15, 2017 posting describes the battle’s outcome.)

Lest we forget, there could be major financial rewards from this work.

CRISPR gene editing technique and patents

I have two items about the CRISPR gene editing technique. The first concerns a new use for the CRISPR technique developed by researchers at Johns Hopkins University School of Medicine described in a Jan. 5, 2015 Johns Hopkins University news release on EurekAlert,

A powerful “genome editing” technology known as CRISPR has been used by researchers since 2012 to trim, disrupt, replace or add to sequences of an organism’s DNA. Now, scientists at Johns Hopkins Medicine have shown that the system also precisely and efficiently alters human stem cells.

“Stem cell technology is quickly advancing, and we think that the days when we can use iPSCs [human-induced pluripotent stem cells] for human therapy aren’t that far away,” says Zhaohui Ye, Ph.D., an instructor of medicine at the Johns Hopkins University School of Medicine. “This is one of the first studies to detail the use of CRISPR in human iPSCs, showcasing its potential in these cells.”

CRISPR originated from a microbial immune system that contains DNA segments known as clustered regularly interspaced short palindromic repeats. The engineered editing system makes use of an enzyme that nicks together DNA with a piece of small RNA that guides the tool to where researchers want to introduce cuts or other changes in the genome.

Previous research has shown that CRISPR can generate genomic changes or mutations through these interventions far more efficiently than other gene editing techniques, such as TALEN, short for transcription activator-like effector nuclease.

Despite CRISPR’s advantages, a recent study suggested that it might also produce a large number of “off-target” effects in human cancer cell lines, specifically modification of genes that researchers didn’t mean to change.

To see if this unwanted effect occurred in other human cell types, Ye; Linzhao Cheng, Ph.D., a professor of medicine and oncology in the Johns Hopkins University School of Medicine; and their colleagues pitted CRISPR against TALEN in human iPSCs, adult cells reprogrammed to act like embryonic stem cells. Human iPSCs have already shown enormous promise for treating and studying disease.

The researchers compared the ability of both genome editing systems to either cut out pieces of known genes in iPSCs or cut out a piece of these genes and replace it with another. As model genes, the researchers used JAK2, a gene that when mutated causes a bone marrow disorder known as polycythemia vera; SERPINA1, a gene that when mutated causes alpha1-antitrypsin deficiency, an inherited disorder that may cause lung and liver disease; and AAVS1, a gene that’s been recently discovered to be a “safe harbor” in the human genome for inserting foreign genes.

Their comparison found that when simply cutting out portions of genes, the CRISPR system was significantly more efficient than TALEN in all three gene systems, inducing up to 100 times more cuts. However, when using these genome editing tools for replacing portions of the genes, such as the disease-causing mutations in JAK2 and SERPINA1 genes, CRISPR and TALEN showed about the same efficiency in patient-derived iPSCs, the researchers report.

Contrary to results of the human cancer cell line study, both CRISPR and TALEN had the same targeting specificity in human iPSCs, hitting only the genes they were designed to affect, the team says. The researchers also found that the CRISPR system has an advantage over TALEN: It can be designed to target only the mutation-containing gene without affecting the healthy gene in patients, where only one copy of a gene is affected.

The findings, together with a related study that was published earlier in a leading journal of stem cell research (Cell Stem Cell), offer reassurance that CRISPR will be a useful tool for editing the genes of human iPSCs with little risk of off-target effects, say Ye and Cheng.

“CRISPR-mediated genome editing opens the door to many genetic applications in biologically relevant cells that can lead to better understanding of and potential cures for human diseases,” says Cheng.

Here’s a link to and citation for the paper by the Johns Hopkins researchers,

Efficient and Allele-Specific Genome Editing of Disease Loci in Human iPSCs by Cory Smith, Leire Abalde-Atristain, Chaoxia He, Brett R Brodsky, Evan M Braunstein, Pooja Chaudhari, Yoon-Young Jang, Linzhao Cheng and Zhaohui Ye. Molecular Therapy (24 November 2014) | doi:10.1038/mt.2014.226

This paper is behind a paywall.

Not mentioned in the Johns Hopkins Medicine news release is a brewing patent battle over the CRISPR technique. A Dec. 31, 2014 post by Glyn Moody for Techdirt lays out the situation (Note: Links have been removed),

Although not many outside the world of the biological sciences have heard of it yet, the CRISPR gene editing technique may turn out to be one of the most important discoveries of recent years — if patent battles don’t ruin it. Technology Review describes it as:

    an invention that may be the most important new genetic engineering technique since the beginning of the biotechnology age in the 1970s. The CRISPR system, dubbed a “search and replace function” for DNA, lets scientists easily disable genes or change their function by replacing DNA letters. During the last few months, scientists have shown that it’s possible to use CRISPR to rid mice of muscular dystrophy, cure them of a rare liver disease, make human cells immune to HIV, and genetically modify monkeys.

Unfortunately, rivalry between scientists claiming the credit for key parts of CRISPR threatens to spill over into patent litigation …

Moody describes three scientists vying for control via their patents,

[A researcher at the MIT-Harvard Broad Institute, Feng] Zhang cofounded Editas Medicine, and this week the startup announced that it had licensed his patent from the Broad Institute. But Editas doesn’t have CRISPR sewn up.

That’s because [Jennifer] Doudna, a structural biologist at the University of California, Berkeley, was a cofounder of Editas, too. And since Zhang’s patent came out, she’s broken off with the company, and her intellectual property — in the form of her own pending patent — has been licensed to Intellia, a competing startup unveiled only last month.

Making matters still more complicated, [another CRISPR researcher, Emmanuelle] Charpentier sold her own rights in the same patent application to CRISPR Therapeutics.

Moody notes,

Whether obvious or not, it looks like the patent granted may complicate turning the undoubtedly important CRISPR technique into products. That, in its turn, will mean delays for life-changing and even life-saving therapies: for example, CRISPR could potentially allow the defective gene that causes serious problems for those with cystic fibrosis to be edited to produce normal proteins, thus eliminating those problems.

It’s dispiriting to think that potentially valuable therapies could be lost to litigation battles particularly since the researchers are academics and their work was funded by taxpayers. In any event, I hope sanity reigns and they are able to avoid actions which will grind research down to a standstill.