Tag Archives: MIT Institute for Soldier Nanotechnologies

New iron oxide nanoparticle as an MRI (magnetic resonance imaging) contrast agent

This high-resolution transmission electron micrograph of particles made by the research team shows the particles’ highly uniform size and shape. These are iron oxide particles just 3 nanometers across, coated with a zwitterion layer. Their small size means they can easily be cleared through the kidneys after injection. Courtesy of the researchers

A Feb. 14, 2017 news item on ScienceDaily announces a new MRI (magnetic resonance imaging) contrast agent,

A new, specially coated iron oxide nanoparticle developed by a team at MIT [Massachusetts Institute of Technology] and elsewhere could provide an alternative to conventional gadolinium-based contrast agents used for magnetic resonance imaging (MRI) procedures. In rare cases, the currently used gadolinium agents have been found to produce adverse effects in patients with impaired kidney function.

A Feb. 14, 2017 MIT news release (also on EurekAlert), which originated the news item, provides more technical detail,

 

The advent of MRI technology, which is used to observe details of specific organs or blood vessels, has been an enormous boon to medical diagnostics over the last few decades. About a third of the 60 million MRI procedures done annually worldwide use contrast-enhancing agents, mostly containing the element gadolinium. While these contrast agents have mostly proven safe over many years of use, some rare but significant side effects have shown up in a very small subset of patients. There may soon be a safer substitute thanks to this new research.

In place of gadolinium-based contrast agents, the researchers have found that they can produce similar MRI contrast with tiny nanoparticles of iron oxide that have been treated with a zwitterion coating. (Zwitterions are molecules that have areas of both positive and negative electrical charges, which cancel out to make them neutral overall.) The findings are being published this week in the Proceedings of the National Academy of Sciences, in a paper by Moungi Bawendi, the Lester Wolfe Professor of Chemistry at MIT; He Wei, an MIT postdoc; Oliver Bruns, an MIT research scientist; Michael Kaul at the University Medical Center Hamburg-Eppendorf in Germany; and 15 others.

Contrast agents, injected into the patient during an MRI procedure and designed to be quickly cleared from the body by the kidneys afterwards, are needed to make fine details of organ structures, blood vessels, and other specific tissues clearly visible in the images. Some agents produce dark areas in the resulting image, while others produce light areas. The primary agents for producing light areas contain gadolinium.

Iron oxide particles have been largely used as negative (dark) contrast agents, but radiologists vastly prefer positive (light) contrast agents such as gadolinium-based agents, as negative contrast can sometimes be difficult to distinguish from certain imaging artifacts and internal bleeding. But while the gadolinium-based agents have become the standard, evidence shows that in some very rare cases they can lead to an untreatable condition called nephrogenic systemic fibrosis, which can be fatal. In addition, evidence now shows that the gadolinium can build up in the brain, and although no effects of this buildup have yet been demonstrated, the FDA is investigating it for potential harm.

“Over the last decade, more and more side effects have come to light” from the gadolinium agents, Bruns says, so that led the research team to search for alternatives. “None of these issues exist for iron oxide,” at least none that have yet been detected, he says.

The key new finding by this team was to combine two existing techniques: making very tiny particles of iron oxide, and attaching certain molecules (called surface ligands) to the outsides of these particles to optimize their characteristics. The iron oxide inorganic core is small enough to produce a pronounced positive contrast in MRI, and the zwitterionic surface ligand, which was recently developed by Wei and coworkers in the Bawendi research group, makes the iron oxide particles water-soluble, compact, and biocompatible.

The combination of a very tiny iron oxide core and an ultrathin ligand shell leads to a total hydrodynamic diameter of 4.7 nanometers, below the 5.5-nanometer renal clearance threshold. This means that the coated iron oxide should quickly clear through the kidneys and not accumulate. This renal clearance property is an important feature where the particles perform comparably to gadolinium-based contrast agents.

Now that initial tests have demonstrated the particles’ effectiveness as contrast agents, Wei and Bruns say the next step will be to do further toxicology testing to show the particles’ safety, and to continue to improve the characteristics of the material. “It’s not perfect. We have more work to do,” Bruns says. But because iron oxide has been used for so long and in so many ways, even as an iron supplement, any negative effects could likely be treated by well-established protocols, the researchers say. If all goes well, the team is considering setting up a startup company to bring the material to production.

For some patients who are currently excluded from getting MRIs because of potential side effects of gadolinium, the new agents “could allow those patients to be eligible again” for the procedure, Bruns says. And, if it does turn out that the accumulation of gadolinium in the brain has negative effects, an overall phase-out of gadolinium for such uses could be needed. “If that turned out to be the case, this could potentially be a complete replacement,” he says.

Ralph Weissleder, a physician at Massachusetts General Hospital who was not involved in this work, says, “The work is of high interest, given the limitations of gadolinium-based contrast agents, which typically have short vascular half-lives and may be contraindicated in renally compromised patients.”

The research team included researchers in MIT’s chemistry, biological engineering, nuclear science and engineering, brain and cognitive sciences, and materials science and engineering departments and its program in Health Sciences and Technology; and at the University Medical Center Hamburg-Eppendorf; Brown University; and the Massachusetts General Hospital. It was supported by the MIT-Harvard NIH Center for Cancer Nanotechnology, the Army Research Office through MIT’s Institute for Soldier Nanotechnologies, the NIH-funded Laser Biomedical Research Center, the MIT Deshpande Center, and the European Union Seventh Framework Program.

Here’s a link to and a citation for the paper,

Exceedingly small iron oxide nanoparticles as positive MRI contrast agents by He Wei, Oliver T. Bruns, Michael G. Kaul, Eric C. Hansen, Mariya Barch, Agata Wiśniowsk, Ou Chen, Yue Chen, Nan Li, Satoshi Okada, Jose M. Cordero, Markus Heine, Christian T. Farrar, Daniel M. Montana, Gerhard Adam, Harald Ittrich, Alan Jasanoff, Peter Nielsen, and Moungi G. Bawendi. PNAS February 13, 2017 doi: 10.1073/pnas.1620145114 Published online before print February 13, 2017

This paper is behind a paywall.

US Army offers course on nanotechnology

As you might expect, the US Army course on nanotechnology stresses the importance of nanotechnology for the military, according to a June 16, 2016 news item on Nanowerk,

If there is one lesson to glean from Picatinny Arsenal’s new course in nanomaterials, it’s this: never underestimate the power of small.

Nanotechnology is the study of manipulating matter on an atomic, molecular, or supermolecular scale. The end result can be found in our everyday products, such as stained glass [This is a reference to the red glass found in churches from the Middle Ages. More about this later in the posting], sunscreen, cellphones, and pharmaceutical products.

Other examples are in U.S. Army items such as vehicle armor, Soldier uniforms, power sources, and weaponry. All living things also can be considered united forms of nanotechnology produced by the forces of nature.

“People tend to think that nanotechnology is all about these little robots roaming around, fixing the environment or repairing damage to your body, and for many reasons that’s just unrealistic,” said Rajen Patel, a senior engineer within the Energetics and Warheads Manufacturing Technology Division, or EWMTD.

The division is part of the U.S. Army Armament Research, Development and Engineering Center or ARDEC.

A June 15, 2016 ARDEC news release by Cassandra Mainiero, which originated the news item, expands on the theme,

“For me, nanotechnology means getting materials to have these properties that you wouldn’t expect them to have.” [Patel]

The subject can be separated into multiple types (nanomedicine, nanomachines, nanoelectronics, nanocomposites, nanophotonics and more), which can benefit areas, such as communications, medicine, environment remediation, and manufacturing.

Nanomaterials are defined as materials that have at least one dimension in the 1-100 nm range (there are 25,400,000 nanometers in one inch.) To provide some size perspective: comparing a nanometer to a meter is like comparing a soccer ball to the earth.

Picatinny’s nanomaterials class focuses on nanomaterials’ distinguishing qualities, such as their optical, electronic, thermal and mechanical properties–and teaches how manipulating them in a weapon can benefit the warfighter [soldier].

While you could learn similar information at a college course, Patel argues that Picatinny’s nanomaterial class is nothing like a university class.

This is because Picatinny’s nanomaterials class focuses on applied, rather than theoretical nanotechnology, using the arsenal as its main source of examples.

“We talk about things like what kind of properties you get, how to make materials, places you might expect to see nanotechnology within the Army,” explained Patel.

The class is taught at the Armament University. Each class lasts three days. The last one was held in February.

Each class includes approximately 25 students and provides an overview of nanotechnology, covering topics, such as its history, early pioneers in the field, and everyday items that rely on nanotechnology.

Additionally, the course covers how those same concepts apply at Picatinny (for electronics, sensors, energetics, robotics, insensitive munitions, and more) and the major difficulties with experimenting and manufacturing nanotechnology.

Moreover, the class involves guest talks from Picatinny engineers and scientists, such as Dan Kaplan, Christopher Haines, and Venkataraman Swaminathan as well as tours of Picatinny facilities like the Nanotechnology Center and the Explosives Research Laboratory.

It also includes lectures from guest speakers, such as Gordon Thomas from the New Jersey Institute of Technology (NJIT), who spoke about nanomaterials and diabetes research.

A CLASSROOM COINCIDENCE

Relatively new, the nanomaterials class launched in January 2015. It was pioneered by Patel after he attended an instructional course on teaching at the Armament University, where he met Erin Williams, a technical training analyst at the university.

“At the Armament University, we’re always trying to think of, ‘What new areas of interest should we offer to help our workforce? What forward reaching technologies are needed?’ One topic that came up was nanotechnology,” said Williams about how the nanomaterials class originated.

“I started to do research on the subject, how it might be geared toward Picatinny, and trying to think of ways to organize the class. Then, I enrolled in the instructional course on teaching, where I just so happen to be sitting across from Dr. Rajen Patel, who not only knew about nanotechnology, but taught a few seminars at NJIT, where he did his doctorate,” explained Williams. “I couldn’t believe the coincidence! So, I asked him if he would be interested in teaching a class and he said ‘Yes!'”

“After the first [nanomaterials] class, one of the students came up to me and said ‘This was the best course I’ve ever been to on this arsenal,'” added Williams. “…This is really how Picatinny shines as a team: when you meet people and utilize your knowledge to benefit the organization.”

The success of the first nanomaterials course encouraged Patel to expand his class into specialty fields, designing a two-day nanoenergetics class taught by himself and Victor Stepanov, a senior scientist at EWMTD.

Stepanov works with nano-organic energetics (RDX, HMX, CL-20) and inorganic materials (metals.) He is responsible for creating the first nanoorganic energetic known as nano-RDX. He is involved in research aimed at understanding the various properties of nanoenergetics including sensitivity, performance, and mechanical characteristics. He and Patel teach the nanoenergetics class that was first offered last fall and due to high demand is expected to be offered annually. The next one will be held in September.

“We always ask for everyone’s feedback. And, after our first class, everyone said ‘[Picatinny] is the home of the Army’s lethality–why did we not talk about nanoenergetics?’ So, in response to the student’s feedback, we implemented that nanoenergetics course,” said Patel. “Besides, in the long run, you’ll probably replace most energetics with nano-energetics, as they have far too many advantages.”

TECHNOLOGY EVOLUTION

Since all living things are a form of nanotechnology manipulated by the forces of nature, the history of nanotechnology dates back to the emergence of life. However, a more concrete example can be traced back to ancient times, when nanomaterials were manipulated to create gold and silver art such as Lycurgus Cup, a 4th century Roman glass [I’ve added more about the Lycurgus Cup later in this post].

According to Stepanov, ARDEC’s interest in nanotechnology gained significant momentum approximately 20 years ago. The initiative at ARDEC was directly tied to the emergence of advanced technologies needed for production and characterization of nanomaterials, and was concurrent with adoption of nanotechnologies in other fields such as pharmaceuticals.

In 2010, an article in The Picatinny Voice titled “Tiny particles, big impact: Nanotechnology to help warfighters” discussed Picatinny’s ongoing research on nanopowders.

It noted that Picatinny’s Nanotechnology Lab is the largest facility in North America to produce nanopowders and nanomaterials, which are used to create nanoexplosives.

It also mentioned how using nanomaterials helped to develop lightweight composites as an alternative to traditional steel.

The more recent heightened study is due to the evolution of technology, which has allowed engineers and scientists to be more productive and made nanotechnology more ubiquitous throughout the military.

“Not too long ago making milligram quantities of nanoexplosives was challenging. Now, we have technologies that allow us make pounds of nanoexplosives per hour at low cost,” said Stepanov.

Pilot scale production of nanoexplosives is currently being performed at ARDEC, lead by Ashok Surapaneni of the Explosives Development Branch.

The broad interest in developing nanoenergetics such as nano-RDX and nano-HMX is their remarkably low initiation sensitivity.

These materials can thus be crucial in the development of safer next generation munitions that are much less vulnerable to accidental initiation.

SMALL CHANGES, BIG RESULTS

As a result, working with nanotechnology can have various payoffs, such as enhancing the performance of military products, said Patel. For instance, by manipulating nanomaterials, an engineer could make a weapon stronger, lighter, or increase its reactivity or durability.

“Generally, if you make something more safe, you make it less powerful,” said Stepanov. “But, with nanomaterials, you can make a product more safe and, in many cases, more powerful.”

There are two basic approaches to studying nanomaterials: bottom-up (building a large object atom by atom) and top-down (deconstructing a larger material.) Both approaches have been successfully employed in the development of nanoenergetics at ARDEC.

One of the challenges with manufacturing nonmaterials can be coping with shockwaves.

A shockwave initiates an explosive as it travels through a weapon’s main fill or the booster. When a shockwave travels through an energetic charge, it can hit small regions of defects, or voids, which heat up quickly and build pressure until the explosive reaches detonation. By using nanoenergetics, one could adjust the size and quantity of the defects and voids, so that the pressure isn’t as strong and ultimately prevent accidental detonation.

Nanomaterials also are difficult to process because they tend to agglomerate (stick together) and are also prone to Ostwald Ripening, or spontaneous growth of the crystals, which is especially pronounced at the nano-scale. This effect is commonly observed with ice cream, where ice can re-crystallize, resulting in a gritty texture.

“It’s a major production challenge because if you want to process nanomaterials–if you want to coat it with some polymer for explosives–any kind of medium that can dissolve these types of materials can promote ripening and you can end up with a product which no longer has the nanomaterial that you began with,” explained Stepanov.

However, nanotechnology research continues to grow at Picatinny as the research advances in the U.S. Army.

This ongoing development and future applicability encourages Patel and Stepanov to teach the nanomaterials and nanoenergetics course at Picatinny.

“I’m interested in making things better for the warfighter,” said Patel. “Nano-materials give you so many opportunities to do so. Also, as a scientist, it’s just a fascinating realm because you always get these little interesting surprises.

“You can know all the material science and equations, but then you get in the nano-world, and there’s something like a wrinkle–something you wouldn’t expect,” Patel added.

“It satisfies three deep needs: getting the warfighter technology, producing something of value, and it’s fun. You always see something new.”

Medieval church windows and the Lycurgus Cup

The shade of red in medieval church window glass is said to have been achieved by the use of gold nanoparticles. There is a source which claims the colour is due to copper rather than gold. I have not had to time to pursue the controversy such as it is but do have November 1, 2010 posting about stained glass and medieval churches which may prove of interest.

As for the Lycurgus Cup, it’s from the 4th century (CE or AD) and is an outstanding example of Roman art and craft. The glass in the cup is dichroic (it looks green or red depending on how the light catches it). The effect was achieved with the presence of gold and silver nanoparticles in the glass. I have a more extensive description and pictures in a Sept. 21, 2010 posting.

Final note

There is an  army initiative involving an educational institution, the Massachusetts Institute of Technology (MIT). The initiative is the MIT Institute for Soldier Nanotechnologies.

Carbon nanotubes sense spoiled food

CNT_FoodSpolage

Courtesy: MIT (Massachusetts Institute of Technology)

I love this .gif; it says a lot without a word. However for details, you need words and here’s what an April 15, 2015 news item on Nanowerk has to say about the research illustrated by the .gif,

MIT [Massachusetts Institute of Technology] chemists have devised an inexpensive, portable sensor that can detect gases emitted by rotting meat, allowing consumers to determine whether the meat in their grocery store or refrigerator is safe to eat.

The sensor, which consists of chemically modified carbon nanotubes, could be deployed in “smart packaging” that would offer much more accurate safety information than the expiration date on the package, says Timothy Swager, the John D. MacArthur Professor of Chemistry at MIT.

An April 14, 2015 MIT news release (also on EurekAlert), which originated the news item, offers more from Dr. Swager,

It could also cut down on food waste, he adds. “People are constantly throwing things out that probably aren’t bad,” says Swager, who is the senior author of a paper describing the new sensor this week in the journal Angewandte Chemie.

This latest study is builds on previous work at Swager’s lab (Note: Links have been removed),

The sensor is similar to other carbon nanotube devices that Swager’s lab has developed in recent years, including one that detects the ripeness of fruit. All of these devices work on the same principle: Carbon nanotubes can be chemically modified so that their ability to carry an electric current changes in the presence of a particular gas.

In this case, the researchers modified the carbon nanotubes with metal-containing compounds called metalloporphyrins, which contain a central metal atom bound to several nitrogen-containing rings. Hemoglobin, which carries oxygen in the blood, is a metalloporphyrin with iron as the central atom.

For this sensor, the researchers used a metalloporphyrin with cobalt at its center. Metalloporphyrins are very good at binding to nitrogen-containing compounds called amines. Of particular interest to the researchers were the so-called biogenic amines, such as putrescine and cadaverine, which are produced by decaying meat.

When the cobalt-containing porphyrin binds to any of these amines, it increases the electrical resistance of the carbon nanotube, which can be easily measured.

“We use these porphyrins to fabricate a very simple device where we apply a potential across the device and then monitor the current. When the device encounters amines, which are markers of decaying meat, the current of the device will become lower,” Liu says.

In this study, the researchers tested the sensor on four types of meat: pork, chicken, cod, and salmon. They found that when refrigerated, all four types stayed fresh over four days. Left unrefrigerated, the samples all decayed, but at varying rates.

There are other sensors that can detect the signs of decaying meat, but they are usually large and expensive instruments that require expertise to operate. “The advantage we have is these are the cheapest, smallest, easiest-to-manufacture sensors,” Swager says.

“There are several potential advantages in having an inexpensive sensor for measuring, in real time, the freshness of meat and fish products, including preventing foodborne illness, increasing overall customer satisfaction, and reducing food waste at grocery stores and in consumers’ homes,” says Roberto Forloni, a senior science fellow at Sealed Air, a major supplier of food packaging, who was not part of the research team.

The new device also requires very little power and could be incorporated into a wireless platform Swager’s lab recently developed that allows a regular smartphone to read output from carbon nanotube sensors such as this one.

The funding sources are interesting, as I am appreciating with increasing frequency these days (from the news release),

The researchers have filed for a patent on the technology and hope to license it for commercial development. The research was funded by the National Science Foundation and the Army Research Office through MIT’s Institute for Soldier Nanotechnologies.

Here’s a link to and a citation for the paper,

Single-Walled Carbon Nanotube/Metalloporphyrin Composites for the Chemiresistive Detection of Amines and Meat Spoilage by Sophie F. Liu, Alexander R. Petty, Dr. Graham T. Sazama, and Timothy M. Swager. Angewandte Chemie International Edition DOI: 10.1002/anie.201501434 Article first published online: 13 APR 2015

© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

This article is behind a paywall.

There are other posts here about the quest to create food sensors including this Sept. 26, 2013 piece which features a critique (by another blogger) about trying to create food sensors that may be more expensive than the item they are protecting, a problem Swager claims to have overcome in an April 17, 2015 article by Ben Schiller for Fast Company (Note: Links have been removed),

Swager has set up a company to commercialize the technology and he expects to do the first demonstrations to interested clients this summer. The first applications are likely to be for food workers working with meat and fish, but there’s no reason why consumers shouldn’t get their own devices in due time.

There are efforts to create visual clues for food status. But Swager says his method is better because it doesn’t rely on perception: it produces hard data that can be logged and tracked. And it also has potential to be very cheap.

“The resistance method is a game-changer because it’s two to three orders of magnitude cheaper than other technology. It’s hard to imagine doing this cheaper,” he says.

Bioceramic armour: tough and clear

This story about a mollusk and its armour eventually led me back to one of my favourite science writers, David L. Chandler at the Massachusetts Institute of Technology (MIT). First, here’s an excerpt from a March 30, 2014 news item on ScienceDaily,

The shells of a sea creature, the mollusk Placuna placenta, are not only exceptionally tough, but also clear enough to read through. Now, researchers at MIT have analyzed these shells to determine exactly why they are so resistant to penetration and damage — even though they are 99 percent calcite, a weak, brittle mineral.

The shells’ unique properties emerge from a specialized nanostructure that allows optical clarity, as well as efficient energy dissipation and the ability to localize deformation, the researchers found. The results are published this week in the journal Nature Materials, in a paper co-authored by MIT graduate student Ling Li and professor Christine Ortiz.

A March 30, 2014 MIT press release (I’m not positive Chandler wrote this but he is the press contact) describes both the engineered bioceramic armour and the mollusk’s naturally occurring armour,

Engineered ceramic-based armor, while designed to resist penetration, often lacks the ability to withstand multiple blows, due to large-scale deformation and fracture that can compromise its structural integrity, Ortiz says. In transparent armor systems, such deformation can also obscure visibility.

Creatures that have evolved natural exoskeletons — many of them ceramic-based — have developed ingenious designs that can withstand multiple penetrating attacks from predators. The shells of a few species, such as Placuna placenta, are also optically clear.

To test exactly how the shells — which combine calcite with about 1 percent organic material — respond to penetration, the researchers subjected samples to indentation tests, using a sharp diamond tip in an experimental setup that could measure loads precisely. They then used high-resolution analysis methods, such as electron microscopy and diffraction, to examine the resulting damage.

The material initially isolates damage through an atomic-level process called “twinning” within the individual ceramic building blocks: A crystal breaks up into a pair of mirror-image regions that share a common boundary, rather like a butterfly’s wings. This twinning process occurs all around the stressed region, helping to form a kind of boundary that keeps the damage from spreading outward.

The MIT researchers found that twinning then activates “a series of additional energy-dissipation mechanisms … which preserve the mechanical and optical integrity of the surrounding material,” Li says. This produces a material that is 10 times more efficient in dissipating energy than the pure mineral, Li adds.

The properties of this natural armor make it a promising template for the development of bio-inspired synthetic materials for both commercial and military applications — such as eye and face protection for soldiers, windows and windshields, and blast shields, Ortiz says.

Huajian Gao, a professor of engineering at Brown University who was not involved in this research, calls it “an excellent and elegant piece of work.” He says it “successfully demonstrates the effectiveness of nanoscale deformation twins in energy dissipation in bioceramics, and should be able to inspire and guide the development of manmade ceramic materials.” He adds, “As a first-of-its-kind [demonstration of] the effectiveness of deformation twins in natural materials, this work should have huge practical impact.”

The work was supported by the National Science Foundation; the U.S. Army Research Office through the MIT Institute for Soldier Nanotechnologies; the National Security Science and Engineering Faculty Fellowships Program; and the Office of the Assistant Secretary of Defense for Research and Engineering.

The researchers have produced an image showing how the mollusk shell reacts to being damaged,

A Scanning Electron Microscope (SEM) image of the region surrounding an indentation the researchers made in a piece of shell from Placuna placenta. The image shows the localization of damage to the area immediately surrounding the stress. Image: Ling Li and James C. Weaver. Courtesy: MIT

A Scanning Electron Microscope (SEM) image of the region surrounding an indentation the researchers made in a piece of shell from Placuna placenta. The image shows the localization of damage to the area immediately surrounding the stress.
Image: Ling Li and James C. Weaver. Courtesy: MIT

Here’s a link to and a citation for the paper,

Pervasive nanoscale deformation twinning as a catalyst for efficient energy dissipation in a bioceramic armour by Ling Li & Christine Ortiz. Nature Materials (2014) doi:10.1038/nmat3920 Published online 30 March 2014

This paper is behind a paywall.

Soldiers sniff overripe fruit

Technically speaking the soldiers are not sniffing the fruit, it’s the sensing technology developed at the Massachusetts Institute of Technology’s Institute for Soldier Nanotechnologies which is doing the ‘sniffing’. From the April 30, 2012 news item on Nanowerk (I have removed some links),

Every year, U.S. supermarkets lose roughly 10 percent of their fruits and vegetables to spoilage, according to the Department of Agriculture. To help combat those losses, MIT chemistry professor Timothy Swager and his students have built a new sensor that could help grocers and food distributors better monitor their produce.

The new sensors, described in the journal Angewandte Chemie (“Selective Detection of Ethylene Gas Using Carbon Nanotube-based Devices: Utility in Determination of Fruit Ripeness”), can detect tiny amounts of ethylene, a gas that promotes ripening in plants. Swager envisions the inexpensive sensors attached to cardboard boxes of produce and scanned with a handheld device that would reveal the contents’ ripeness.

Detecting gases to monitor the food supply is a new area of interest for Swager, whose previous research has focused on sensors to detect explosives or chemical and biological warfare agents.

Here’s how the technology works (from the April 30, 2012 news release by Anne Trafton for MIT News),

Funded by the U.S. Army Office of Research through MIT’s Institute for Soldier Nanotechnologies, the MIT team built a sensor consisting of an array of tens of thousands of carbon nanotubes: sheets of carbon atoms rolled into cylinders that act as “superhighways” for electron flow.

To modify the tubes to detect ethylene gas, the researchers added copper atoms, which serve as “speed bumps” to slow the flowing electrons. “Anytime you put something on these nanotubes, you’re making speed bumps, because you’re taking this perfect, pristine system and you’re putting something on it,” Swager says.

Copper atoms slow the electrons a little bit, but when ethylene is present, it binds to the copper atoms and slows the electrons even more. By measuring how much the electrons slow down — a property also known as resistance — the researchers can determine how much ethylene is present.

To make the device even more sensitive, the researchers added tiny beads of polystyrene, which absorbs ethylene and concentrates it near the carbon nanotubes. With their latest version, the researchers can detect concentrations of ethylene as low as 0.5 parts per million. The concentration required for fruit ripening is usually between 0.1 and one part per million.

The researchers tested their sensors on several types of fruit — banana, avocado, apple, pear and orange — and were able to accurately measure their ripeness by detecting how much ethylene the fruits secreted.

It looks like the technology will be commercialized in the not too distant future (from the Trafton news release) here’s why,

John Saffell, the technical director at Alphasense, a company that develops sensors, describes the MIT team’s approach as rigorous and focused. “This sensor, if designed and implemented correctly, could significantly reduce the level of fruit spoilage during shipping,” he says.

“At any given time, there are thousands of cargo containers on the seas, transporting fruit and hoping that they arrive at their destination with the correct degree of ripeness,” adds Saffell, who was not involved in this research. “Expensive analytical systems can monitor ethylene generation, but in the cost-sensitive shipping business, they are not economically viable for most of shipped fruit.”

Swager has filed for a patent on the technology and hopes to start a company to commercialize the sensors. In future work, he plans to add a radio-frequency identification (RFID) chip to the sensor so it can communicate wirelessly with a handheld device that would display ethylene levels. The system would be extremely cheap — about 25 cents for the carbon nanotube sensor plus another 75 cents for the RFID chip, Swager estimates.

“This could be done with absolutely dirt-cheap electronics, with almost no power,” he says.

I should mention that a couple of students were part of the MIT research team with Birgit Esser being the lead author and Jan Schnorr also contributing to the paper in Angewandte Chemie.

Noisy new world with clothing that sings and records and varnishes that ring alarms

They’re called functional fibres and a team at MIT (Massachusetts Institute of Technology) has taken another step forward in achieving fibres that can produce and detect sound. From the news item on physorg.com,

For centuries, “man-made fibers” meant the raw stuff of clothes and ropes; in the information age, it’s come to mean the filaments of glass that carry data in communications networks. But to Yoel Fink, an Associate professor of Materials Science and principal investigator at MIT’s Research Lab of Electronics, the threads used in textiles and even optical fibers are much too passive. For the past decade, his lab has been working to develop fibers with ever more sophisticated properties, to enable fabrics that can interact with their environment.

… Applications could include clothes that are themselves sensitive microphones, for capturing speech or monitoring bodily functions, and tiny filaments that could measure blood flow in capillaries or pressure in the brain. The paper, whose authors also include Shunji Egusa, a former postdoc in Fink’s lab, and current lab members Noémie Chocat and Zheng Wang, appeared on Nature Materials‘ website on July 11, and the work it describes was supported by MIT’s Institute for Soldier Nanotechnologies, the National Science Foundation and the U.S. Defense Department’s Defense Advanced Research Projects Agency. [emphases mine]

Interesting to note all of the military interest.

The heart of the new acoustic fibers is a plastic commonly used in microphones. By playing with the plastic’s fluorine content, the researchers were able to ensure that its molecules remain lopsided — with fluorine atoms lined up on one side and hydrogen atoms on the other — even during heating and drawing. The asymmetry of the molecules is what makes the plastic “piezoelectric,” meaning that it changes shape when an electric field is applied to it.

I’m not sure how this fits with Professor Zhong Lin Wang’s work in the field of piezotronics  (July 12, 2010 posting) and I’m not looking at the technical aspect so much as the social impact of clothing made of fibres that can harvest biomechanical energy and/or record sound and/or produce sound. In other words, what’s the social impact? In all the talk about developing new products and getting them to market,  I haven’t found that much discussion about whether people are going to adopt products that are constantly monitoring their health or given to making a sound for one reason or another. When you add in the other work on such things as varnishes that emit sounds as they cool or heat (Feb. 3, 2010, 2nd excerpt, last paragraph), you have to come to the conclusion that at the very least it’s going to be a very noisy world in the future. Questions that come to mind include: will these fibres that can monitor our health or record sounds or the varnishes that sound alarms have an off button? What happens if they malfunction?