Tag Archives: Monique E. Johnson

A solution to the problem of measuring nanoparticles

As you might expect from the US National Institute of Standards and Technology (NIST) this research concerns techniques for measurements. From an August 15, 2019 news item on Nanowerk (Note: Links have been removed),

Tiny nanoparticles play a gargantuan role in modern life, even if most consumers are unaware of their presence. They provide essential ingredients in sunscreen lotions, prevent athlete’s foot fungus in socks, and fight microbes on bandages. They enhance the colors of popular candies and keep the powdered sugar on doughnuts powdery. They are even used in advanced drugs that target specific types of cells in cancer treatments.

When chemists analyze a sample, however, it is challenging to measure the sizes and quantities of these particles — which are often 100,000 times smaller than the thickness of a piece of paper. Technology offers many options for assessing nanoparticles, but experts have not reached a consensus on which technique is best.

In a new paper from the National Institute of Standards and Technology (NIST) and collaborating institutions, researchers have concluded that measuring the range of sizes in nanoparticles — instead of just the average particle size — is optimal for most applications.

An August 14, 2019 NIST news release (also received via email and on EurkAlert), which originated the news item, delves further into the research,

“It seems like a simple choice,” said NIST’s Elijah Petersen, the lead author of the paper, which was published today in Environmental Science: Nano. “But it can have a big impact on the outcome of your assessment.”

As with many measurement questions, precision is key. Exposure to a certain amount of some nanoparticles could have adverse effects. Pharmaceutical researchers often need exactitude to maximize a drug’s efficacy. And environmental scientists need to know, for example, how many nanoparticles of gold, silver or titanium could potentially cause a risk to organisms in soil or water.

Using more nanoparticles than needed in a product because of inconsistent measurements could also waste money for manufacturers.

Although they might sound ultramodern, nanoparticles are neither new nor based solely on high-tech manufacturing processes. A nanoparticle is really just a submicroscopic particle that measures less than 100 nanometers on at least one of its dimensions. It would be possible to place hundreds of thousands of them onto the head of a pin. They are exciting to researchers because many materials act differently at the nanometer scale than they do at larger scales, and nanoparticles can be made to do lots of useful things.

Nanoparticles have been in use since the days of ancient Mesopotamia [emphasis mine], when ceramic artists used extremely small bits of metal to decorate vases and other vessels. In fourth-century Rome, glass artisans ground metal into tiny particles to change the color of their wares under different lighting. These techniques were forgotten for a while but rediscovered in the 1600s by resourceful manufacturers for glassmaking [emphasis mine] again. Then, in the 1850s, scientist Michael Faraday extensively researched ways to use various kinds of wash mixes to change the performance of gold particles.

Modern nanoparticle research advanced quickly in the mid-20th century due to technological innovations in optics. Being able to see the individual particles and study their behavior expanded the possibilities for experimentation. The largest advances came, however, after experimental nanotechnology took off in the 1990s. Suddenly, the behavior of single particles of gold and many other substances could be closely examined and manipulated. Discoveries about the ways that small amounts of a substance would reflect light, absorb light, or change in behavior were numerous, leading to the incorporation of nanoparticles into many more products

Debates have since followed about their measurement. When assessing the response of cells or organisms to nanoparticles, some researchers prefer measuring particle number concentrations (sometimes called PNCs by scientists). Many find PNCs challenging since extra formulas must be employed when determining the final measurement. Others prefer measuring mass or surface area concentrations.

PNCs are often used for characterizing metals in chemistry. The situation for nanoparticles is inherently more complex, however, than it is for dissolved organic or inorganic substances because unlike dissolved chemicals, nanoparticles can come in a wide variety of sizes and sometimes stick together when added to testing materials.

“If you have a dissolved chemical, it’s always going to have the same molecular formula, by definition,” Petersen says. “Nanoparticles don’t just have a certain number of atoms, however. Some will be 9 nanometers, some will be 11, some might be 18, and some might be 3.”

The problem is that each of those particles may be fulfilling an important role. While a simple estimate of particle number is perfectly fine for some industrial applications, therapeutic applications require much more robust measurement. In the case of cancer therapies, for example, each particle, no matter how big or small, may be delivering a needed antidote. And just as with any other kind of dosage, nanoparticle dosage must be exact in order to be safe and effective.

Using the range of particle sizes to calculate the PNC will often be the most helpful in most cases, said Petersen. The size distribution doesn’t use a mean or an average but notes the complete distribution of sizes of particles so that formulas can be used to effectively discover how many particles are in a sample.

But no matter which approach is used, researchers need to make note of it in their papers, for the sake of comparability with other studies. “Don’t assume that different approaches will give you the same result,” he said.

Petersen adds that he and his colleagues were surprised by how much the coatings on nanoparticles could impact measurement. Some coatings, he noted, can have a positive electrical charge, causing clumping.

Petersen worked in collaboration with researchers from federal laboratories in Switzerland, and with scientists from 3M who have previously made many nanoparticle measurements for use in industrial settings. Researchers from Switzerland, like those in much of the rest of Europe, are keen to learn more about measuring nanoparticles because PNCs are required in many regulatory situations. There hasn’t been much information on which techniques are best or more likely to yield the most precise results across many applications.

“Until now we didn’t even know if we could find agreement among labs about particle number concentrations,” Petersen says. “They are complex. But now we are beginning to see it can be done.”

I love the reference to glassmaking and ancient Mesopotamia. Getting back to current times, here’s a link to and a citation for the paper,

Determining what really counts: modeling and measuring nanoparticle number concentrations by Elijah J. Petersen, Antonio R. Montoro Bustos, Blaza Toman, Monique E. Johnson, Mark Ellefson, George C. Caceres, Anna Lena Neuer, Qilin Chan, Jonathan W. Kemling, Brian Mader, Karen Murphy and Matthias Roesslein. Environmental Science: Nano. Published August 14, 2019. DOI: 10.1039/c9en00462a

This paper is behind a paywall.

Using sugar for a better way to clean nanoparticles from organisms

Researchers at the US National Institute of Standards and Technology (NIST) have found that a laboratory technique used for over 60 years is the best way to date to clean nanoparticles from organisms. From a Jan. 26, 2017 news item on ScienceDaily,

Sometimes old-school methods provide the best ways of studying cutting-edge tech and its effects on the modern world.

Giving a 65-year-old laboratory technique a new role, researchers at the National Institute of Standards and Technology (NIST) have performed the cleanest separation to date of synthetic nanoparticles from a living organism. The new NIST method is expected to significantly improve experiments looking at the potential environmental and health impacts of these manufactured entities. It will allow scientists to more accurately count how many nanoparticles have actually been ingested by organisms exposed to them.

A Jan. 26, 2017 NIST news release (also on EurekAlert), which originated the news item, offers more detail,

The common roundworm Caenorhabditis elegans has been used in recent years as a living model for laboratory studies of how biological and chemical compounds may affect multicellular organisms. These compounds include engineered nanoparticles (ENPs), bits of material between 1 and 100 nanometers (billionths of a meter, or about 1/10,000 the diameter of a red blood cell). Previous research has often focused on quantifying the amount and size of engineered nanoparticles ingested by C. elegans. Measuring the nanoparticles that actually make it into an organism is considered a more relevant indicator of potential toxicity than just the amount of ENPs to which the worms are exposed.

Traditional methods for counting ingested ENPs have produced questionable results. Currently, researchers expose C. elegans to metal ENPs such as silver or gold in solution, then rinse the excess particles away with water followed by centrifugation and freeze-drying. A portion of the “cleaned” sample produced is then typically examined by a technique that determines the amount of metal present, known as inductively coupled plasma mass spectrometry (ICP-MS). It often yields ENP counts in the tens of thousands per worm; however, those numbers always seem too high to NIST researchers working with C. elegans.

“Since ICP-MS will detect all of the nanoparticles associated with the worms, both those ingested and those that remain attached externally, we suspect that the latter is what makes the ‘ENPs’ per-worm counts so high,” said NIST analytical chemist Monique Johnson (link sends e-mail), the lead author on the ACS Nano paper. “Since we only wanted to quantify the ingested ENPs, a more robust and reliable separation method was needed.”

Luckily, the solution to the problem was already in the lab.

Cross section of the roundworm C. elegans

Scanning electron micrograph showing a cross section of the roundworm C. elegans with two ingested engineered nanoparticles (red dots just right of center). Images such as this provided NIST researchers with visual confirmation that nanoparticle consumption actually occurred. Credit: K. Scott/NIST

In the course of culturing C. elegans for ENP-exposure experiments, Johnson and her colleagues had used sucrose density gradient centrifugation, a decades-old and established system for cleanly separating cellular components, to isolate the worms from debris and bacteria. “We wondered if the same process would allow us to perform an organism-from-ENP separation as well, so I designed a study to find out,” Johnson said.

In their experiment, the NIST researchers first exposed separate samples of C. elegans to low and high concentrations of two sizes of gold nanospheres, 30 and 60 nanometers in diameter. The researchers put each of the samples into a centrifuge and removed the supernatant (liquid portion), leaving the worms and ENPs in the remaining pellets. These were centrifuged twice in a salt solution (rather than just water as in previous separation methods), and then centrifuged again, but this time, through a uniquely designed sucrose density gradient.

“From top to bottom, our gradient consisted of a salt solution layer to trap excess ENPs and three increasingly dense layers of sucrose [20, 40 and 50 percent] to isolate the C. elegans,” Johnson explained. “We followed up the gradient with three water rinses and with centrifugations to ensure that only worms with ingested ENPs, and not the sucrose separation medium with any excess ENPs, would make it into the final pellet.”

Analyzing the range of masses in the ultrapurified samples indicated gold levels more in line with what the researchers expected would be found as ingested ENPs. Experimental validation of the NIST separation method’s success came when the worms were examined in detail under a scanning electron microscope (SEM).

“For me, the eureka moment was when I first saw gold ENPs in the cross section images taken from the C. elegans samples that had been processed through the sucrose density gradient,” Johnson said. “I had been dreaming about finding ENPs in the worm’s digestive tract and now they were really there!”

The high-resolution SEM images also provided visual evidence that only ingested ENPs were counted. “No ENPs were attached to the cuticle, the exoskeleton of C. elegans, in any of the sucrose density gradient samples,” Johnson said. “When we examined worms from our control experiments [processed using the traditional no-gradient, water-rinse-only separation method], there were a number of nanospheres found attached to the cuticle.

Now that it has been successfully demonstrated, the NIST researchers plan to refine and further validate their system for evaluating the uptake of ENPs by C. elegans. “Hopefully, our method will become a useful and valuable tool for reducing the measurement variability and sampling bias that can plague environmental nanotoxicology studies,” Johnson said.

They’ve tested this technique on gold nanoparticles, which begs the question, What kinds of nanoparticles can this technique be used for? Metal nanoparticles only or all nanoparticles?

I’m sure the researchers have already asked these questions and started researching the answers. While the rest of us wait, here’s a link to and a citation for the paper about this promising new technique,

Separation, Sizing, and Quantitation of Engineered Nanoparticles in an Organism Model Using Inductively Coupled Plasma Mass Spectrometry and Image Analysis by Monique E. Johnson, Shannon K. Hanna, Antonio R. Montoro Bustos, Christopher M. Sims, Lindsay C. C. Elliott, Akshay Lingayat, Adrian C. Johnston, Babak Nikoobakht, John T. Elliott, R. David Holbrook, Keana C. K. Scott, Karen E. Murphy, Elijah J. Petersen, Lee L. Yu, and Bryant C. Nelson. ACS Nano, 2017, 11 (1), pp 526–540 DOI: 10.1021/acsnano.6b06582 Publication Date (Web): December 16, 2016

Copyright This article not subject to U.S. Copyright. Published 2016 by the American Chemical Society

This paper is behind a paywall.