Tag Archives: mortar and pestle

Opioid addiction and nanotechnology in Pennsylvania, US

Combating a drug addiction ‘crisis’ with a nanotechnology-enabled solution is the main topic although the technology is being implemented for another problem first according to this May 4, 2016 article by John Luciew for pennlive.com (Note: Links have been removed),

Treating pain is a constant in medicine. It’s part of the human condition, known as the “fifth vital sign” among physicians. Effectively treating pain will continue to play a central role in medicine, despite the societal shock waves brought on by the rapid rise in opioid addiction across America.

The fallout from our nation’s opioid addiction crisis is roiling the medical and pharmaceutical industries, where regulatory action is rapidly reining in opioid painkiller prescriptions with new guidelines and stricter controls.

By harnessing nanotechnology and small-particles physics, Iroko Pharmaceuticals is developing a new class of low-dose prescription painkillers. Company executives say their line of nonsteroidal anti-inflammatory drugs could be the opioid alternative that the medical community has been looking for amid America’s addiction crisis.

The pharmaceutical company is Pennsylvania-based (US) and it isn’t tackling the ‘opioid addiction crisis’ yet. First, there’s this,

Its new line of prescription painkillers are predicated upon a highly patented process of pulverizing drug molecules so they are up to 100 times smaller, which markedly increases their pain-killing effectiveness at dramatically lower doses.

Right now, Iroko is focusing this nanotechnology on creating a full line of low-dose prescription painkillers based upon the class of drugs known as nonsteroidal anti-inflammatories, or NSAIDs. There are six NSAID molecules, the most common being Ibuprofen. Iroko is planning nanotechnology technology versions for all six NSAID molecules, three of which have already received approval from the Food and Drug Administration.

Luciew has done some homework on the technology,

“We solved a chemistry problem by using physics,” explained Iroko Chairman Osagie Imasogie, who founded the company [Iroko Pharmaceuticals] in 2007.

Yet, the company that actually solved the physics problem was iCeutica, founded in Australia and now based in King of Prussia, Pa.

iCeutica owns the patented SoluMatrix fine particle process that pulverizes drug molecules into nano-sized particles, enabling low doses of a drug to be better absorbed by the body, thus providing faster and far more effective pain relief.

Of course, the practice of crushing and grinding drug powders is as old as the pharmacist’s mortar and pestle. But there’s never been a way of pulverizing a drug molecule into nano particles that was scalable for industrial production — not until iCeutica created its SoluMatrix process, that is.

iCeutica provides a description of the technology on its SoluMatrix webpage,

iCeutica’s proprietary SoluMatrix™ Fine Particle Technology fuels new product development and solves problems of bioavailability, variability, side effects and delivery of marketed or development-stage pharmaceuticals.

The SoluMatrix technology is a scaleable and cost-effective manufacturing process that can produce submicron-sized drug particles that are 10 to 200 times smaller than conventional drug particles. The particles generated using this technology, which both grinds the drug particles into a superfine powder and protects those submicron particles from subsequent agglomeration (or clumping together into big particles), comprise a single unit operation and can be manufactured into tablets, capsules and other dosage forms without further processing.

The SoluMatrix technology improves the performance of pharmaceuticals by dramatically changing how the drug dissolves and is absorbed. By making submicron-sized particles of a drug, it is possible to:

Unfortunately there aren’t more details. I’m somewhat puzzled  by the submicron measurement why not state the size using the term nanometre?

Getting back  to Iroko, Imasogie, impressed with the SoluMatrix technology, has made a major investment in iCeutica and is chair of iCeutica’s board. His homebase company, Iroko holds exclusive global rights to SoluMatrix.

Luciew’s article describes the current situation in the NSAID market,

Iroko officials acknowledge that NSAID painkillers carry their own health risks, including the potential for stomach ulcers, kidney problems and cardio-vascular ailments, up to and including stroke and heart attack. The fears associated with NSAIDs peaked a decade ago with the Vioxx case, a popular prescription NSAID that was eventually taken off the market due to associated cardiac and other risks.

The latest FDA guidelines for NSAID use calls for the lowest effective dose, which precisely describes the nanotechnology-driven low-dose NSAID drugs Iroko is rolling out. What is more, due to the ongoing opioid crisis, both the FDA and the Centers for Disease Control are heavily emphasizing non-opioid alternatives for pain relief, further opening to door for Iroko’s pain products.

That said about the issues with NSAIDs, Luciew outlines Iroko’s current offerings and explains what makes this technology so attractive,

According to Imasogie, Iroko’s line of low-dose, nanotechnology NSAIDs fits both sets of regulatory safety criteria. The new drugs are the lowest effective dose for NSAIDs, and are a viable pain-killing alternative to opioids, especially when it comes to treating osteoarthritis and other moderate pain.

“No one is going to give an NSAID if you have cancer,” Imasogie says. “But for chronic low back pain, yes.”

Three of Iroko’s six low-dose NSAID offerings have already received FDA approval and are on the market:

  • Zorvolex (diclofenac), approved in October 2013 for the management of mild to moderate acute pain in adults and in August 2014 for the management of osteoarthritis pain.
  • Tivorbex, approved in February 2014 for treatment of mild to moderate acute pain in adults.
  • Vivlodex, approved in October 2015 as another option for treatment of osteoarthritis pain. Three more of Iroko’s low-dose NSAIDs are awaiting approval.

These nano drugs are effective at doses of 35 to 40 milligrams to as low as 10 milligrams, the company says. That’s compared to other NSAID doses that start at 200 milligrams. As a result, Iroko’s low-dose NSAID drugs are being marketed as providing a prescription alternative to opioids at the precise moment everyone from the White House to the white-coat-clad family physician is searching for one.

If you the have time and interest, I encourage you to read Luciew’s article in its entirety. He covers more market issues and includes an enbedded video in his piece.

One last note about Iroko Pharmaceuticals, the company is named after a tree found on the African continent and executives of the company have hinted they are experimenting with SoluMatrix to make low-dose opioids available in the future.

While I have my doubts about the opioid addiction ‘crisis’, I do believe that lower, more effective doses of painkillers, regardless of their drug class, can only benefit patients.

Back to the mortar and pestle for perovskite-based photovoltaics

This mechanochemistry (think mortar and pestle) story about perovskite comes from Poland. From a Jan. 14, 2016 Institute of Physical Chemistry of the Polish Academy of Sciences press release (also on EurekAlert but dated Jan. 16, 2016),

Perovskites, substances that perfectly absorb light, are the future of solar energy. The opportunity for their rapid dissemination has just increased thanks to a cheap and environmentally safe method of production of these materials, developed by chemists from Warsaw, Poland. Rather than in solutions at a high temperature, perovskites can now be synthesized by solid-state mechanochemical processes: by grinding powders.

We associate the milling of chemicals less often with progress than with old-fashioned pharmacies and their inherent attributes: the pestle and mortar. [emphasis mine] It’s time to change this! Recent research findings show that by the use of mechanical force, effective chemical transformations take place in solid state. Mechanochemical reactions have been under investigation for many years by the teams of Prof. Janusz Lewinski from the Institute of Physical Chemistry of the Polish Academy of Sciences (IPC PAS) and the Faculty of Chemistry of Warsaw University of Technology. In their latest publication, the Warsaw researchers describe a surprisingly simple and effective method of obtaining perovskites – futuristic photovoltaic materials with a spatially complex crystal structure.

“With the aid of mechanochemistry we are able to synthesize a variety of hybrid inorganic-organic functional materials with a potentially great significance for the energy sector. Our youngest ‘offspring’ are high quality perovskites. These compounds can be used to produce thin light-sensitive layers for high efficiency solar cells,” says Prof. Lewinski.

Perovskites are a large group of materials, characterized by a defined spatial crystalline structure. In nature, the perovskite naturally occurring as a mineral is calcium titanium(IV) oxide CaTiO3. Here the calcium atoms are arranged in the corners of the cube, in the middle of each wall there is an oxygen atom and at the centre of the cube lies a titanium atom. In other types of perovskite the same crystalline structure can be constructed of various organic and inorganic compounds, which means titanium can be replaced by, for example, lead, tin or germanium. As a result, the properties of the perovskite can be adjusted so as to best fit the specific application, for example, in photovoltaics or catalysis, but also in the construction of superconducting electromagnets, high voltage transformers, magnetic refrigerators, magnetic field sensors, or RAM memories.

At first glance, the method of production of perovskites using mechanical force, developed at the IPC PAS, looks a little like magic.

“Two powders are poured into the ball mill: a white one, methylammonium iodide CH3NH3I, and a yellow one, lead iodide PbI2. After several minutes of milling no trace is left of the substrates. Inside the mill there is only a homogeneous black powder: the perovskite CH3NH3PbI3,” explains doctoral student Anna Maria Cieslak (IPC PAS).

“Hour after hour of waiting for the reaction product? Solvents? High temperatures? In our method, all this turns out to be unnecessary! We produce chemical compounds by reactions occurring only in solids at room temperature,” stresses Dr. Daniel Prochowicz (IPC PAS).

The mechanochemically manufactured perovskites were sent to the team of Prof. Michael Graetzel from the Ecole Polytechnique de Lausanne in Switzerland, where they were used to build a new laboratory solar cell. The performance of the cell containing the perovskite with a mechanochemical pedigree proved to be more than 10% greater than a cell’s performance with the same construction, but containing an analogous perovskite obtained by the traditional method, involving solvents.

“The mechanochemical method of synthesis of perovskites is the most environmentally friendly method of producing this class of materials. Simple, efficient and fast, it is ideal for industrial applications. With full responsibility we can state: perovskites are the materials of the future, and mechanochemistry is the future of perovskites,” concludes Prof. Lewinski.

The described research will be developed within GOTSolar collaborative project funded by the European Commission under the Horizon 2020 Future and Emerging Technologies action.

Perovskites are not the only group of three-dimensional materials that has been produced mechanochemically by Prof. Lewinski’s team. In a recent publication the Warsaw researchers showed that by using the milling technique they can also synthesize inorganic-organic microporous MOF (Metal-Organic Framework) materials. The free space inside these materials is the perfect place to store different chemicals, including hydrogen.

This research was published back in August 2015,

Mechanosynthesis of the hybrid perovskite CH3NH3PbI3: characterization and the corresponding solar cell efficiency by D. Prochowicz, M. Franckevičius, A. M. Cieślak, S. M. Zakeeruddin, M. Grätzel and J. Lewiński. J. Mater. Chem. A, 2015,3, 20772-20777 DOI: 10.1039/C5TA04904K First published online 27 Aug 2015

This paper is behind a paywall.