Tag Archives: multicriteria mapping

Risk assessments not the only path to nanotechnology regulation

Nanowerk has republished an essay about nanotechnology regulation from Australia’s The Conversation in an Aug. 25, 2015 news item (Note: A link has been removed),

When it comes to nanotechnology, Australians have shown strong support for regulation and safety testing.

One common way of deciding whether and how nanomaterials should be regulated is to conduct a risk assessment. This involves calculating the risk a substance or activity poses based on the associated hazards or dangers and the level of exposure to people or the environment.

However, our recent review (“Risk Analysis of Nanomaterials: Exposing Nanotechnology’s Naked Emperor”) found some serious shortcomings of the risk assessment process for determining the safety of nanomaterials.

We have argued that these shortcomings are so significant that risk assessment is effectively a naked emperor [reference to a children’s story “The Emperor’s New Clothes“].

The original Aug. 24, 2015 article written by Fern Wickson (Scientist/Program Coordinator at GenØk – Centre for Biosafety in Norway) and Georgia Miller (PhD candidate at UNSW [University of New South Wales], Australia) points out an oft ignored issue with regard to nanotechnology regulation,

Risk assessment has been the dominant decision-aiding tool used by regulators of new technologies for decades, despite it excluding key questions that the community cares about. [emphasis mine] For example: do we need this technology; what are the alternatives; how will it affect social relations, and; who should be involved in decision making?

Wickson and Miller also note more frequently discussed issues,

A fundamental problem is a lack of nano-specific regulation. Most sector-based regulation does not include a “trigger” for nanomaterials to face specific risk assessment. Where a substance has been approved for use in its macro form, it requires no new assessment.

Even if such a trigger were present, there is also currently no cross-sectoral or international agreement on the definition of what constitutes a nanomaterial.

Another barrier is the lack of measurement capability and validated methods for safety testing. We still do not have the means to conduct routine identification of nanomaterials in the complex “matrix” of finished products or the environment.

This makes supply chain tracking and safety testing under real-world conditions very difficult. Despite ongoing investment in safety research, the lack of validated test methods and different methods yielding diverse results allows scientific uncertainty to persist.

With regard to the first problem, the assumption that if a material at the macroscale is safe, then the same is true at the nanoscale informs regulation in Canada and, as far as I’m aware, every other constituency that has any type of nanomaterial regulation. I’ve had mixed feelings about this. On the one hand, we haven’t seen any serious problems associated with the use of nanomaterials but on the other hand, these problems can be slow to emerge.

The second issue mentioned, the lack of a consistent definition internationally, seems to be a relatively common problem in a lot of areas. As far as I’m aware, there aren’t that many international agreements for safety measures. Nuclear weapons and endangered animals and plants (CITES) being two of the few that come to mind.

The lack of protocols for safety testing of nanomaterials mentioned in the last paragraph of the excerpt is of rising concern. For example, there’s my July 7, 2015 posting featuring two efforts: Nanotechnology research protocols for Environment, Health and Safety Studies in US and a nanomedicine characterization laboratory in the European Union. Despite this and other efforts, I do think more can and should be done to standardize tests and protocols (without killing new types of research and results which don’t fit the models).

The authors do seem to be presenting a circular argument with this (from their Aug. 24, 2015 article; Note: A link has been removed),

Indeed, scientific uncertainty about nanomaterials’ risk profiles is a key barrier to their reliable assessment. A review funded by the European Commission concluded that:

[…] there is still insufficient data available to conduct the in depth risk assessments required to inform the regulatory decision making process on the safety of NMs [nanomaterials].

Reliable assessment of any chemical or drug is a major problem. We do have some good risk profiles but how many times have pharmaceutical companies developed a drug that passed successfully through human clinical trials only to present a serious risk when released to the general population? Assessing risk is a very complex problem. even with risk profiles and extensive testing.

Unmentioned throughout the article are naturally occurring nanoparticles (nanomaterials) and those created inadvertently through some manufacturing or other process. In fact, we have been ingesting nanomaterials throughout time. That said, I do agree we need to carefully consider the impact that engineered nanomaterials could have on us and the environment as ever more are being added.

To that end, the authors make some suggestions (Note: Links have been removed),

There are well-developed alternate decision-aiding tools available. One is multicriteria mapping, which seeks to evaluate various perspectives on an issue. Another is problem formulation and options assessment, which expands science-based risk assessment to engage a broader range of individuals and perspectives.

There is also pedigree assessment, which explores the framing and choices taking place at each step of an assessment process so as to better understand the ambiguity of scientific inputs into political processes.

Another, though less well developed, approach popular in Europe involves a shift from risk to innovation governance, with emphasis on developing “responsible research and innovation”.

I have some hesitation about recommending this read due to Georgia Miller’s involvement and the fact that I don’t have the time to check all the references. Miller was a spokesperson for Friends of the Earth (FoE) Australia, a group which led a substantive campaign against ‘nanosunscreens’. Here’s a July 20, 2010 posting where I featured some cherrypicking/misrepresentation of data by FoE in the persons of Georgia Miller and Ian Illuminato.

My Feb. 9, 2012 posting highlights the unintended consequences (avoidance of all sunscreens by some participants in a survey) of the FoE’s campaign in Australia (Note [1]: The percentage of people likely to avoid all sunscreens due to their concerns with nanoparticles in their sunscreens was originally reported to be 17%; Note [2]: Australia has the highest incidence of skin cancer in the world),

Feb.21.12 correction: According to the information in the Feb. 20, 2012 posting on 2020 Science, the percentage of Australians likely to avoid using sunscreens is 13%,

This has just landed in my email in box from Craig Cormick at the Department of Industry, Innovation, Science, Research and Tertiary Education in Australia, and I thought I would pass it on given the string of posts on nanoparticles in sunscreens on 2020 Science over the past few years:

“An online poll of 1,000 people, conducted in January this year, shows that one in three Australians had heard or read stories about the risks of using sunscreens with nanoparticles in them,” Dr Cormick said.

“Thirteen percent of this group were concerned or confused enough that they would be less likely to use any sunscreen, whether or not it contained nanoparticles, putting them selves at increased risk of developing potentially deadly skin cancers.

“The study also found that while one in five respondents stated they would go out of their way to avoid using sunscreens with nanoparticles in them, over three in five would need to know more information before deciding.”

This article with Fern Wickson (with whom I don’t always agree perfectly but hasn’t played any games with research that I’m know of) helps somewhat but it’s going to take more than this before I feel comfortable recommending Ms. Miller’s work for further reading.

Intersection of philosophy, science policy, and nanotechnology regulation

After coming across a mention of John Rawls in a July 11, 2010 posting by Richard Jones (Soft Machines blog) and his (Rawls’) notions about how people and groups with diverse interests can come to agreements on social norms, I wondered why I hadn’t heard of Rawls before and how his thinking might apply to nanotechnology regulatory frameworks.

Assuming I might not be alone in my ignorance of Rawls’ work, here’s a brief description from a Wikipedia essay,

John Bordley Rawls (February 21, 1921 – November 24, 2002) was an American philosopher and a leading figure in moral and political philosophy. … His magnum opus, A Theory of Justice (1971), is now regarded as “one of the primary texts in political philosophy.”[1] His work in political philosophy, dubbed Rawlsianism,[2] takes as its starting point the argument that “most reasonable principles of justice are those everyone would accept and agree to from a fair position.”[1]

(The footnote details can be found by following the essay link.) I think the idea of people being able to come to agreements when they operate from a fair position is both interesting and seems to be borne out by a recent study in the US that Steffen Foss Hansen has recently published in the Journal of Nanoparticle Research. Michael Berger at Nanowerk has written an in depth article about the study and multicriteria mapping, the technique used to measure and evaluate interviewees’ positions on nanotechnology regulatory frameworks. From the Berger article,

Multicriteria Mapping [MCM] is a computer-based decision analysis technique that provides a way of appraising a series of different potential ways forward on a complex and controversial policy problem. Like other multicriteria approaches, it involves developing a set of criteria, evaluating the performance of each option under each criterion, and weighting each criterion according to its relative importance.

Hansen interviewed 26 stakeholders, including academics, public civil servants, corporate lawyers, [public interest groups,] and representatives from worker unions, industrial companies, and trade association.

One aspect of this research that I thought particularly useful is that the interviews are structured dynamically. From the study,

Once the criteria had been defined, the interviewee was asked to evaluate the relative performance of the different policy options on a numerical scale (0–100) under each of the criteria one-by-one. Zero representing the worst relative performance and a 100 the best. In order to allow for uncertainty in the estimation MCM allows the interviewee to give a range (e.g., 20–30) and to make worst- and best-case assumptions. The lowest values assigned to an option would then reflect the option considered under worst case assumptions whereas the highest would reflect the same option considered under best-case assumptions. Throughout this scoring process the interviewee was asked to explain the value or range assigned to options and assumptions made. One interview had to be terminated at this stage of the interview as the participant realized that he/she had yet to develop a formalized opinion on the most preferred options. Others expressed some dislike with having to put a numerical estimate on something which they normally only discuss in qualitative terms. Others again found it challenging to have to look at all the options through all their criteria scoring and explaining the scoring of up to 72 combinations of policy options and criteria. Normally they would not have to explain their position in such depth.  …  MCM is an iterative process, so interviewees were free to return to review earlier steps of the process at any stage of the interview. (Journal of Nanoparticle Research, vol. 12, p. 1963)

Bravo to the interviewees for going through a demanding process and putting their opinions to the test. Also, I understood from reading the study that MCM captures both quantitative (as the preceding excerpt shows) and qualitative data, an approach I’ve always favoured.

Berger’s article goes on to discuss the results from the study,

“Adopting an incremental approach and implementing a new regulatory framework have been evaluated as the best options whereas a complete ban and no additional regulation of nanotechnology were the least favorable” Hansen explains the key findings to Nanowerk.

Participants described their idea of an ‘incremental approach’ as “…launching an incremental process using existing legislative structures—e.g., dangerous substances legislation, classification and labeling, cosmetic legislation, etc.—to the maximum, revisiting them, and, when appropriate only, amending them…” and a ‘new regulatory framework’ as “…launching a comprehensive, in-depth regulatory process specific to nanotechnologies that aims at developing an entirely new legislative framework that tries to take all the widely different nanomaterials and applications into consideration.”

Hansen notes that comparing the ranking of the various options by the stakeholder groups reveals that an incremental approach was ranked highest by a majority of the various stakeholder groups e.g. civil servants, public interest groups, industrial company representatives and corporate lawyers.

Who would have thought that the most extreme ends of opinion as represented by public interest groups that usually favour the precautionary principle and industrial company representatives who argue in favour of little or voluntary regulation could agree on an incremental approach? I suppose it gets back to Rawls and his notion of coming to an agreement from “a fair position.”

More work needs to be done, it’s a single study, only 26 interviews took place, the MCM is a snapshot of a moment in time and may no longer reflect the interviewee’s personal opinions, and the regulatory situation in the US has changed since these interviews took place. Still, with all these caveats, and I’m sure there are others, the study offers encouraging news about diverse groups being able to come to an agreement on the subject of nanotechnology regulatory frameworks.