Tag Archives: mussels

Gluing blood vessels with mussel goo

The University of British Columbia [UBC] Dec. 11, 2012 news release states,

A University of British Columbia researcher has helped create a gel – based on the mussel’s knack for clinging to rocks, piers and boat hulls – that can be painted onto the walls of blood vessels and stay put, forming a protective barrier with potentially life-saving implications.

Co-invented by Assistant Professor Christian Kastrup while a postdoctoral student at the Massachusetts Institute of Technology, the gel is similar to the amino acid that enables mussels to resist the power of churning water. The variant that Kastrup and his collaborators created, described in the current issue of the online journal PNAS [Proceeings of the National Academy of Sciences of the US] Early Edition, can withstand the flow of blood through arteries and veins.

Here’s the citation and a link to the article (which is behind a paywall),

Painting blood vessels and atherosclerotic plaques with an adhesive drug depot by Christian J. Kastrup, Matthias Nahrendorf, Jose Luiz Figueiredo, Haeshin Lee, Swetha Kambhampati, Timothy Lee, Seung-Woo Cho, Rostic Gorbatov, Yoshiko Iwamoto, Tram T. Dang, Partha Dutta, Ju Hun Yeon, Hao Cheng, Christopher D. Pritchard, Arturo J. Vegas, Cory D. Siegel, Samantha MacDougall, Michael Okonkwo, Anh Thai, James R. Stone, Arthur J. Coury, Ralph Weissleder, Robert Langer, and Daniel G. Anderson.  PNAS, December 11, 2012 DOI: 10.1073/pnas.1217972110

For those of a more technical turn of mind, here’s the abstract (from PNAS),

The treatment of diseased vasculature remains challenging, in part because of the difficulty in implanting drug-eluting devices without subjecting vessels to damaging mechanical forces. Implanting materials using adhesive forces could overcome this challenge, but materials have previously not been shown to durably adhere to intact endothelium under blood flow. Marine mussels secrete strong underwater adhesives that have been mimicked in synthetic systems. Here we develop a drug-eluting bioadhesive gel that can be locally and durably glued onto the inside surface of blood vessels. In a mouse model of atherosclerosis, inflamed plaques treated with steroid-eluting adhesive gels had reduced macrophage content and developed protective fibrous caps covering the plaque core. Treatment also lowered plasma cytokine levels and biomarkers of inflammation in the plaque. The drug-eluting devices developed here provide a general strategy for implanting therapeutics in the vasculature using adhesive forces and could potentially be used to stabilize rupture-prone plaques.

The news release describes the work layperson’s terms,

The gel’s “sheer strength” could shore up weakened vessel walls at risk of rupturing – much like the way putty can fill in dents in a wall, says Kastrup, a member of the Department of Biochemistry and Molecular Biology and the Michael Smith Laboratories.

By forming a stable barrier between blood and the vessel walls, the gel could also prevent the inflammation that typically occurs when a stent is inserted to widen a narrowed artery or vein; that inflammation often counteracts the opening of the vessel that the stent was intended to achieve.

The widest potential application would be preventing the rupture of blood vessel plaque. When a plaque ruptures, the resulting clot can block blood flow to the heart (triggering a heart attack) or the brain (triggering a stroke). Mice treated with a combination of the gel and an anti-inflammatory steroid had more stable plaque than a control group of untreated mice.

“By mimicking the mussel’s ability to cling to objects, we created a substance that stays in place in a very dynamic environment with high flow velocities,” says Kastrup, a member of UBC’s Centre for Blood Research.

Robert Langer, one of the paper’s co-authors, was mentioned here in an Aug. 27, 2012 posting about nanoelectronics, tissue engineering, and medicine.

University of Missouri and the US Geological survey study carbon nanotubes in aquatic environments

The University of Missouri’s Aug. 22, 2012 news release (by Timothy Wall) announces the result of a carbon nanotube study in aquatic environments,

A joint study by the University of Missouri and United States Geological Survey found that they [carbon nanotubes or CNTs] can be toxic to aquatic animals. The researchers urge that care be taken to prevent the release of CNTs into the environment as the materials enter mass production.

“The great promise of carbon nanotubes must be balanced with caution and preparation,” said Baolin Deng, professor and chair of chemical engineering at the University of Missouri. “We don’t know enough about their effects on the environment and human health. The EPA and other regulatory groups need more studies like ours to provide information on the safety of CNTs.”

CNTs are microscopically thin cylinders of carbon atoms that can be hundreds of millions of times longer than they are wide, but they are not pure carbon. Nickel, chromium and other metals used in the manufacturing process can remain as impurities. Deng and his colleagues found that these metals and the CNTs themselves can reduce the growth rates or even kill some species of aquatic organisms. The four species used in the experiment were mussels (Villosa iris), small flies’ larvae (Chironomus dilutus), worms (Lumbriculus variegatus) and crustaceans (Hyalella azteca).

“One of the greatest possibilities of contamination of the environment by CNTs comes during the manufacture of composite materials,” said Hao Li, associate professor of mechanical and aerospace engineering at MU. “Good waste management and handling procedures can minimize this risk. Also, to control long-term risks, we need to understand what happens when these composite materials break down.”

I found the abstract for the team’s paper gave a good overview of how the research was conducted,

Carbon nanotubes (CNTs) are hydrophobic in nature and thus tend to accumulate in sediments if released into aquatic environments. As part of our overall effort to examine the toxicity of carbon-based nanomaterials to sediment-dwelling invertebrates, we have evaluated the toxicity of different types of CNTs in 14-d water-only exposures to an amphipod (Hyalella azteca), a midge (Chironomus dilutus), an oligochaete (Lumbriculus variegatus), and a mussel (Villosa iris) in advance of conducting whole-sediment toxicity tests with CNTs. The results of these toxicity tests conducted with CNTs added to water showed that 1.00 g/L (dry wt) of commercial sources of CNTs significantly reduced the survival or growth of the invertebrates. Toxicity was influenced by the type and source of the CNTs, by whether the materials were precleaned by acid, by whether sonication was used to disperse the materials, and by species of the test organisms. Light and electron microscope imaging of the surviving test organisms showed the presence of CNTs in the gut as well as on the outer surface of the test organisms, although no evidence was observed to show penetration of CNTs through cell membranes. The present study demonstrated that both the metals solubilized from CNTs such as nickel and the “metal-free” CNTs contributed to the toxicity.

Here’s the full citation and a link to the paper,

Toxicity of carbon nanotubes to freshwater aquatic invertebrates by Joseph N. Mwangi, Ning Wang, Christopher G. Ingersoll, Doug K. Hardesty, Eric L. Brunson, Hao Li, and Baolin Deng in Environmental Toxicology and Chemistry, Volume 31, Issue 8, pages 1823–1830, August 2012

For anyone who’s curious about what carbon nanotubes look like, here’s an image provided by the University of MIssouri,

Carbon Nanotubes Credit: Shaddack, Wikimedia Commons
Multi-walled carbon nanotubes. 3-15 walls, mean inner diameter 4nm, mean outer diameter 13-16 nm, length 1-10+ micrometers. Black clumpy powder, grains shown, partially smeared on paper. Scale in centimeters.

I could have included a larger version of the image but, given that we’re talking about the nanoscale, the smaller image seems more appropriate.