Tag Archives: MWCNTs

The birth of carbon nanotubes (CNTs): a history

There is a comprehensive history of the carbon nanotube stretching back to prehistory and forward to recent times in a June 3, 2016 Nanowerk Spotlight article by C.K. Nisha and Yashwant Mahajan of the Center of Knowledge Management of Nanoscience & Technology (CKMNT) in India. The authors provide an introduction explaining the importance of CNTs,

Carbon nanotubes (CNTs) have been acknowledged as the material of the 21st century. They possess unique combination of extraordinary mechanical, electronic, transport, electrical and optical, properties and nanoscale sizes making them suitable for a variety of applications ranging from engineering, electronics, optoelectronics, photonics, space, defence industry, medicine, molecular and biological systems and so on and so forth. Worldwide demand for CNTs is increasing at a rapid pace as applications for the material are being matured.

According to MarketsandMarkets (M&M), the global market for carbon nanotubes in 2015 was worth about $2.26 billion1; an increase of 45% from 2009 (i.e. ~ $ 1.24 billion). This was due to the growing potential of CNTs in electronics, plastics and energy storage applications and the projected market of CNTs is expected to be around $ 5.64 billion in 2020.

In view of the scientific and technological potential of CNTs, it is of immense importance to know who should be credited for their discovery. In the present article, we have made an attempt to give a glimpse into the discovery and early history of this fascinating material for our readers. Thousands of papers are being published every year on CNTs or related areas and most of these papers give credit for the discovery of CNTs to Sumio Iijima of NEC Corporation, Japan, who, in 1991, published a ground-breaking paper in Nature reporting the discovery of multi-walled carbon nanotubes (MWCNTs)2. This paper has been cited over 27,105 times in the literature (as on January 12, 2016, based on Scopus database). This discovery by Iijima has triggered an avalanche of scientific publications and catapulted CNTs onto the global scientific stage.

Nisha and Mahajan then prepare to take us back in time,

In a guest editorial for the journal Carbon, Marc Monthioux and Vladimir L. Kuznetsov3 have tried to clear the air by describing the chronological events that led to the discovery of carbon nanotubes. As one delves deeper into the history of carbon nanotubes, it becomes more apparent that the origin of CNTs could be even pre-historic in nature.

Recently, Ponomarchuk et al from Russia have reported the presence micro and nano carbon tubes in igneous rocks formed about 250 million years ago4-7. They suggested the possibility of formation of carbon nanotubes during the magmatic processes. It is presumed that the migration of hydrocarbon fluids through the residual melt of the rock groundmass created gas-saturated areas (mostly CH4, CO2, CO) in which condensation and decomposition of hydrocarbon in presence of metal elements resulted in the formation of micro and sub-micron carbon tubes.

Another most compelling evidence of pre-historic naturally occurring carbon nanotubes (MWCNTs) is based on the TEM studies carried out by Esquivel and Murr8 that analyzed 10,000-year-old Greenland ice core samples and it was suggested that probably they could have been formed during combustion of natural gas/methane during natural processes.

However, the validity of this evidence is questionable owing to the lack of clear high-resolution TEM images, high-quality diffraction patterns or Raman spectroscopy data. In addition, [an]other interesting possibility is that the carbon nanotubes could have been directly formed by the transformation of naturally occurring C60 fullerenes in nature without the assistance of man, given the right conditions prevail. Suchanek et al.,9 have actually demonstrated this thesis, under the laboratory environment, by transforming C60 fullerenes into CNTs under hydrothermal conditions.

There is a large body of evidence in literature about the existence of naturally occurring fullerenes in nature, e.g., coal, carboneous rocks, interstellar media, etc. Since the above experiments were conducted under the simulated geological environment, their results imply that CNTs may form in natural hydrothermal environment.

This hypothesis was further corroborated by Velasco-Santos and co-workers10, when they reported the presence of CNTs in a coal–petroleum mix obtained from an actual oil well, identified by the PEMEX (the Mexican Petroleum Company) as P1, which is located in Mexico’s southeast shore. TEM studies revealed that the coal-petroleum mix contained predominantly end-capped CNTs that are nearly 2 µm long with outer diameter varying between few to several tenths of nanometers.

There’s another study supporting the notion that carbon nanotubes may be formed naturally,

In yet another study, researchers from Germany11 have synthesized carbon nanotubes using igneous rock from Mount Etna lava as both support and catalyst. The naturally occurring iron oxide particles present in Etna lava rock make it an ideal material for growing and immobilizing nanocarbons.

When a mixture of ethylene and hydrogen were passed over the pulverized rocks reduced in a hydrogen atmosphere at 700°C, the iron particles catalyzed the decomposition of ethylene to elemental carbon, which gets deposited on the lava rock in the form of tiny tubes and fibers.
This study showed that if a carbon source is available, CNTs/CNFs can grow on a mineral at moderate temperatures, which directs towards the possibilities of carbon nanotube formation in active suboceanic volcanos or even in interstellar space where methane, atomic hydrogen, carbon oxides, and metallic iron are present.

This fascinating and informative piece was originally published in the January 2016 edition of Nanotech Insights (CKMNT newsletter; scroll down) and can be found there although it may be more easily accessible as the June 3, 2016 Nanowerk Spotlight article where it extends over five (Nanowerk) pages and has a number of embedded images along with an extensive list of references at the end.


More from PETA (People for the Ethical Treatment of Animals) about nanomaterials and lungs

Science progress by increments. First, there was this April 27, 2016 post featuring some recent work by the organization, People for the Ethical Treatment of Animals (PETA) focused on nanomaterials and lungs. Now approximately one month later, PETA announces a new paper on the topic according to a May 26, 2016 news item on phys.org,

A scientist from the PETA International Science Consortium Ltd. is the lead author of a review on pulmonary fibrosis that results from inhaling nanomaterials, which has been published in Archives of Toxicology. The coauthors are scientists from Health Canada, West Virginia University, and the University of Fribourg in Switzerland.

A May 26, 2016 PETA news release on EurekAlert, which originated the news item, provides more detail (Note: Links have been removed),

The increasing use of nanomaterials in consumer goods such as paint, building materials, and food products has increased the likelihood of human exposure. Inhalation is one of the most prominent routes by which exposure can occur, and because inhalation of nanomaterials may be linked to lung problems such as pulmonary fibrosis, testing is conducted to assess the safety of these materials.

The review is one part of the proceedings of a 2015 workshop [mentioned in my Sept. 3, 2015 posting] organized by the PETA International Science Consortium, at which scientists discussed recommendations for designing an in vitro approach to assessing the toxicity of nanomaterials in the human lung. The workshop also produced another report that was recently published in Archives of Toxicology (Clippinger et al. 2016) and a review published in Particle and Fibre Toxicology (Polk et al. 2016) [mentioned in my April 27, 2016 posting] on exposing nanomaterials to cells grown in vitro.

The expert recommendations proposed at the workshop are currently being used to develop an in vitro system to predict the development of lung fibrosis in humans, which is being funded by the Science Consortium.

“International experts who took part in last year’s workshop have advanced the understanding and application of non-animal methods of studying nanomaterial effects in the lung,” says Dr. Monita Sharma, nanotoxicology specialist at the Consortium and lead author of the review in Archives of Toxicology. “Good science is leading the way toward more humane testing of nanomaterials, which, in turn, will lead to better protection of human health.”

Here’s a link to and a citation for the paper,

Predicting pulmonary fibrosis in humans after exposure to multi-walled carbon nanotubes (MWCNTs) by Monita Sharma, Jake Nikota, Sabina Halappanavar, Vincent Castranova, Barbara Rothen-Rutishauser, Amy J. Clippinger. Archives of Toxicology pp 1-18 DOI: 10.1007/s00204-016-1742-7 First online: 23 May 2016

This paper is behind a paywall.

Study nanomaterial toxicity without testing animals

The process of moving on from testing on animals is laborious as new techniques are pioneered and, perhaps more arduously, people’s opinions and habits are changed. The People for the Ethical Treatment of Animals (PETA) organization focusing the research end of things has announced a means of predicting carbon nanotube toxicity in lungs according to an April 25, 2016 news item on Nanowerk (Note: A link has been removed),

A workshop organized last year [2015] by the PETA International Science Consortium Ltd has resulted in an article published today in the journal Particle and Fibre Toxicology (“Aerosol generation and characterization of multi-walled carbon nanotubes [MWCNTs] exposed to cells cultured at the air-liquid interface”). It describes aerosol generation and exposure tools that can be used to predict toxicity in human lungs following inhalation of nanomaterials.

An April 25, 2016 PETA press release on EurekAlert, which originated the news item, explains further without much more detail,

Nanomaterials are increasingly being used in consumer products such as paints, construction materials, and food packaging, making human exposure to these materials more likely. One of the common ways humans may be exposed to these substances is by inhalation, therefore, regulatory agencies often require the toxicity of these materials on the lungs to be tested. These tests usually involve confining rats to small tubes the size of their bodies and forcing them to breathe potentially toxic substances before they are killed. However, time, cost, scientific and ethical issues have led scientists to develop methods that do not use animals. The tools described in the new article are used to deposit nanomaterials (or other inhalable substances) onto human lung cells grown in a petri dish.

Co-authors of the Particle and Fibre Toxicology article are scientists from the PETA Science Consortium , The Dow Chemical Company, Baylor University, and the U.S. NTP Interagency Center for the Evaluation of Alternative Toxicological Methods (NICEATM).

“Promoting non-animal methods to assess nanotoxicity has been a focus of the PETA International Science Consortium”, said Dr. Monita Sharma, co-author of the publication and Nanotechnology Specialist at the Consortium, “we organized an international workshop last year on inhalation testing of nanomaterials and this review describes some of the tools that can be used to provide a better understanding of what happens in humans after inhaling these substances.” During the workshop, experts provided recommendations on the design of an in vitro test to assess the toxicity of nanomaterials (especially multi-walled carbon nanotubes) in the lung, including cell types, endpoints, exposure systems, and dosimetry considerations. Additional publications summarizing the outcomes of the workshop are forthcoming.

Here’s a link to and a citation for the paper,

Aerosol generation and characterization of multi-walled carbon nanotubes exposed to cells cultured at the air-liquid interface by William W. Polk, Monita Sharma, Christie M. Sayes, Jon A. Hotchkiss, and Amy J. Clippinger. Particle and Fibre Toxicology201613:20 DOI: 10.1186/s12989-016-0131-y Published: 23 April 2016

This is an open access paper.

A couple of lawyers talk wrote about managing nanotechnology risks

Because they are lawyers, I was intrigued by a Nov. 4, 2015 article on managing nanotechnology risks by Michael Lisak and James Mizgala of Sidley Austin LLP for Industry Week. I was also intrigued by the language (Note: A link has been removed),

The inclusion of nanotechnologies within manufacturing processes and products has increased exponentially over the past decade. Fortune recently noted that nanotechnology touches almost all Fortune 500 companies and that the industry’s $20 billion worldwide size is expected to double over the next decade. [emphasis mine]

Yet, potential safety issues have been raised and regulatory uncertainties persist. As such, proactive manufacturers seeking to protect their employees, consumers, the environment and their businesses – while continuing to develop, manufacture and market their products – may face difficult choices in how to best navigate this challenging and fluid landscape, while avoiding potential “nanotort,”  [emphasis mine] whistleblower, consumer fraud and regulatory enforcement lawsuits. Doing so requires forward-thinking advice based upon detailed analyses of each manufacturer’s products and conduct in the context of rapidly evolving scientific, regulatory and legal developments.

I wonder how many terms lawyers are going to coin in addition to “nanotort”?

The lawyers focus largely on two types of nanoparticles, carbon nanotubes, with a special emphasis on multi-walled carbon nantubes (MWCNT) and nano titanium dioxide,

Despite this scientific uncertainty, international organizations, such as the International Agency for Research on Cancer [a World Health Organization agency], have already concluded that nano titanium dioxide in its powder form and multi-walled carbon nanotube-7 (“MWCNT-7”) [emphasis mine] are “possibly carcinogenic to humans.” As such, California’s Department of Public Health lists titanium dioxide and MWCNT-7 as “ingredients known or suspected to cause cancer, birth defects, or other reproductive toxicity as determined by the authoritative scientific bodies.”  Considering that processed (i.e., non-powdered) titanium dioxide is found in products like toothpaste, shampoo, chewing gum and candies, it is not surprising that some have focused upon such statements.

There’s a lot of poison in the world, for example, apples contain seeds which have arsenic in them and, for another, peanuts can be carcinogenic and they can also kill you, as they are poison to people who are allergic to them.

On the occasion of Dunkin’ Donuts removing nano titanium dioxide as an ingredient in the powdered sugar used to coat donuts, I wrote a March 13, 2015 posting, where I quote extensively from Dr. Andrew Maynard’s (then director of the University of Michigan Risk Science Center now director of the Risk Innovation Lab at Arizona State University) 2020 science blog posting about nano titanium dioxide and Dunkin’ Donuts,

He describes some of the research on nano titanium dioxide (Note: Links have been removed),

… In 2004 the European Food Safety Agency carried out a comprehensive safety review of the material. After considering the available evidence on the same materials that are currently being used in products like Dunkin’ Donuts, the review panel concluded that there no evidence for safety concerns.

Most research on titanium dioxide nanoparticles has been carried out on ones that are inhaled, not ones we eat. Yet nanoparticles in the gut are a very different proposition to those that are breathed in.

Studies into the impacts of ingested nanoparticles are still in their infancy, and more research is definitely needed. Early indications are that the gastrointestinal tract is pretty good at handling small quantities of these fine particles. This stands to reason given the naturally occurring nanoparticles we inadvertently eat every day, from charred foods and soil residue on veggies and salad, to more esoteric products such as clay-baked potatoes. There’s even evidence that nanoparticles occur naturally inside the gastrointestinal tract.

You can find Andrew’s entire discussion in his March 12, 2015 post on the 2020 Science blog. Andrew had written earlier in a July 12, 2014 posting about something he terms ‘nano donut math’ as reported by As You Sow, the activist group that made a Dunkin’ Donuts shareholder proposal which resulted in the company’s decision to stop using nano titanium dioxide in the powdered sugar found on their donuts. In any event, Andrew made this point,

In other words, if a Dunkin’ Donut Powdered Cake Donut contained 8.9 mg of TiO2 particles smaller than 10 nm, it would have to have been doused with over 1 million tons of sugar coating! (Note update at the end of this piece)

Clearly something’s wrong here – either Dunkin’ Donuts are not using food grade TiO2 but a nanopowder with particle so small they would be no use whatsoever in the sugar coating (as well as being incredibly expensive, and not FDA approved).  Or there’s something rather wrong with the analysis!

If it’s the latter – and it’s hard to imagine any other plausible reason for the data – it looks like As You Sow ended up using rather dubious figures to back up their stakeholder resolution.  I’d certainly be interested in more information on the procedures Analytical Sciences used and the checks and balances they had in place, especially as there are a number of things that can mess up a particle analysis like this.

Update July 14: My bad, I made a slight error in the size distribution calculation first time round.  This has been corrected in the article above.  Originally, I cited the estimated Mass Median Diameter (MMD) of the TiO2 particles as 167 nm, and the Geometric Standard Deviation (GSD) as 1.6.  Correcting an error in the Excel spreadsheet used to calculate the distribution (these things happen!) led to a revised estimate of MMD = 168 nm and a GSD of 1.44.  These may look like subtle differences, but when calculating the estimated particle mass below 10 nm, they make a massive difference.  With the revised figures, you’d expect less than one trillionth of  a percent of the mass of the TiO2 powder to be below 10 nm!! (the original estimate was a tenth of a millionth of a percent).  In other words – pretty much nothing!  The full analysis can be found here.

Update November 16 2014.  Based on this post, As You Sow checked the data from Analytical Sciences LLC and revised the report accordingly.  This is noted above.

It would seem that if there are concerns over nano titanium dioxide in food, the biggest would not be the amounts ingested by consumers but inhalation by workers should they breathe in large quantities when they are handling the material.

As for the MWCNTs, they have long raised alarms but most especially the long MWCNTs and for people handling them during the course of their work day. Any MWCNTs found in sports equipment and other consumer products are bound in the material and don’t pose any danger of being inhaled into the lungs, unless they should be released from their bound state (e.g. fire might release them).

After some searching for MWCNT-7, I found something which seems also to be known as Mitsui MWCNT-7 or Mitsui 7-MWCNT (here’s one of my sources). As best I understand it, Mitsui is a company that produces an MWCNT which they have coined an MWCNT-7 and which has been used in nanotoxicity testing. As best I can tell, MWCNT is MWCNT-7.

The lawyers (Lisak and Mizgala) note things have changed for manufacturers since the early days and they make some suggestions,

One thing is certain – gone are the days when “sophisticated” manufacturers incorporating nanotechnologies within their products can reasonably expect to shield themselves by pointing to scientific and regulatory uncertainties, especially given the amount of money they are spending on research and development, as well as sales and marketing efforts.

Accordingly, manufacturers should consider undertaking meaningful risk management analyses specific to their applicable products. …

First, manufacturers should fully understand the life-cycle of nanomaterials within their organization. For some, nanomaterials may be an explicit focus of innovation and production, making it easier to pinpoint where nanotechnology fits into their processes and products. For others, nanomaterials may exist either higher-up or in the back-end of their products’ supply chain. …

Second, manufacturers should understand and stay current with the scientific state-of-the-art as well as regulatory requirements and developments potentially applicable to their employees, consumers and the environment. An important consideration related to efforts to understand the state-of-the-art is whether or not manufacturers should themselves expend resources to advance “the science” in seeking to help find answers to some of the aforementioned uncertainties. …

The lawyers go on to suggest that manufacturers should consider proactively researching nanotoxicity so as to better defend themselves against any future legal suits.

Encouraging companies to proactive with toxicity issues is in line with what seems to be an international (Europe & US) regulatory movement putting more onus on producers and manufacturers to take responsibility for safety testing. (This was communicated to me in a conversation I had with an official at the European Union Joint Research Centre where he mentioned REACH regulations and the new emphasis in response to my mention of similar FDA (US Food and Drug Administration) regulations. (We were at the 2014 9th World Congress on Alternatives to Animal Testing in Prague, Czech republic.)

For anyone interested in the International Agency for Research on Cancer you can find it here.

People for the Ethical Treatment of Animals (PETA) and a grant for in vitro nanotoxicity testing

This grant seems to have gotten its start at a workshop held at the US Environmental Protection Agency (EPA) in Washington, D.C., Feb. 24-25, 2015 as per this webpage on the People for Ethical Treatment of Animals (PETA) International Science Consortium Limited website,

The invitation-only workshop included experts from different sectors (government, industry, academia and NGO) and disciplines (in vitro and in vivo inhalation studies of NMs, fibrosis, dosimetry, fluidic models, aerosol engineering, and regulatory assessment). It focused on the technical details for the development and preliminary assessment of the relevance and reliability of an in vitro test to predict the development of pulmonary fibrosis in cells co-cultured at the air-liquid interface following exposure to aerosolized multi-walled carbon nanotubes (MWCNTs). During the workshop, experts made recommendations on cell types, exposure systems, endpoints and dosimetry considerations required to develop the in vitro model for hazard identification of MWCNTs.

The method is intended to be included in a non-animal test battery to reduce and eventually replace the use of animals in studies to assess the inhalation toxicity of engineered NMs. The long-term vision is to develop a battery of in silico and in vitro assays that can be used in an integrated testing strategy, providing comprehensive information on biological endpoints relevant to inhalation exposure to NMs which could be used in the hazard ranking of substances in the risk assessment process.

A September 1, 2015 news item on Azonano provides an update,

The PETA International Science Consortium Ltd. announced today the winners of a $200,000 award for the design of an in vitro test to predict the development of lung fibrosis in humans following exposure to nanomaterials, such as multi-walled carbon nanotubes.

Professor Dr. Barbara Rothen-Rutishauser of the Adolphe Merkle Institute at the University of Fribourg, Switzerland and Professor Dr. Vicki Stone of the School of Life Sciences at Heriot-Watt University, Edinburgh, U.K. will jointly develop the test method. Professor Rothen-Rutishauser co-chairs the BioNanomaterials research group at the Adolphe Merkle Institute, where her research is focused on the study of nanomaterial-cell interactions in the lung using three-dimensional cell models. Professor Vicki Stone is the Director of the Nano Safety Research Group at Heriot-Watt University and the Director of Toxicology for SAFENANO.

The Science Consortium is also funding MatTek Corporation for the development of a three-dimensional reconstructed primary human lung tissue model to be used in Professors Rothen-Rutishauser and Stone’s work. MatTek Corporation has extensive expertise in manufacturing human cell-based, organotypic in vitro models for use in regulatory and basic research applications. The work at MatTek will be led by Dr. Patrick Hayden, Vice President of Scientific Affairs, and Dr. Anna Maione, head of MatTek’s airway models research group.

I was curious about MatTek Corporation and found this on company’s About Us webpage,

MatTek Corporation was founded in 1985 by two chemical engineering professors from MIT. In 1991 the company leveraged its core polymer surface modification technology into the emerging tissue engineering market.

MatTek Corporation is at the forefront of tissue engineering and is a world leader in the production of innovative 3D reconstructed human tissue models. Our skin, ocular, and respiratory tissue models are used in regulatory toxicology (OECD, EU guidelines) and address toxicology and efficacy concerns throughout the cosmetics, chemical, pharmaceutical and household product industries.

EpiDerm™, MatTek’s first 3D human cell based in vitro model, was introduced in 1993 and became an immediate technical and commercial success.

I wish them good luck in their research on developing better ways to test toxicity.

Multi-walled carbon nanotubes and blood clotting

There’s been a lot of interest in using carbon nanotubes (CNTs) for biomedical applications such as drug delivery. New research from Trinity College Dublin (TCD) suggests that multi-walled carbon nanotubes (MWCNTs) may have some limitations when applied to biomedical uses. From a Jan. 20, 2014 news item on Nanowerk (Note: A link has been removed),

Scientists in the School of Pharmacy and Pharmaceutical Sciences in Trinity College Dublin, have made an important discovery about the safety issues of using carbon nanotubes as biomaterials which come into contact with blood. The significance of their findings is reflected in their paper being published as the feature story and front page cover of the international, peer-reviewed journal Nanomedicine (“Blood biocompatibility of surface-bound multi-walled carbon nanotubes”).

A Jan. 19, 2015 TCD press release, which originated the news item, offers a good description of the issues around blood clotting and the research problem (nonfunctionalized CNTs and blood compartibility) the scientists were addressing (Note: Links have been removed),

When blood comes into contact with foreign surfaces the blood’s platelets are activated which in turn leads to blood clots being formed. This can be catastrophic in clinical settings where extracorporeal circulation technologies are used such as during heart-lung bypass, in which the blood is circulated in PVC tubing outside the body. More than one million cardiothoracic surgeries are performed each year and while new circulation surfaces that prevent platelet activation are urgently needed, effective technologies have remained elusive.

One hope has been that carbon nanotubes, which are enormously important as potentially useful biomedical materials, might provide a solution to this challenge and this led the scientists from the School of Pharmacy and Pharmaceutical Sciences in collaboration with Trinity’s School of Chemistry and with colleagues from UCD and the University of Michigan in Ann Arbour to test the blood biocompatibility of carbon nanotubes. They found that the carbon nanotubes did actually stimulate blood platelet activation, subsequently leading to serious and devastating blood clotting. The findings have implications for the design of medical devices which contain nanoparticles and which are used in conjunction with flowing blood.

Speaking about their findings, Professor Marek Radomski, Chair of Pharmacology, Trinity and the paper’s senior author said: “Our results bear significance for the design of blood-facing medical devices, surface-functionalised with nanoparticles or containing surface-shedding nanoparticles. We feel that the risk/benefit ratio with particular attention to blood compatibility should be carefully evaluated during the development of such devices. Furthermore, it is clear that non-functionalised carbon nanotubes both soluble and surface-bound are not blood-compatible”.

The press release also quotes a TCD graduate,

Speaking about the significance of these findings for Nanomedicine research, the paper’s first author Dr Alan Gaffney, a Trinity PhD graduate who is now Assistant Professor of Anaesthesiology in Columbia University Medical Centre, New York said: “When new and exciting technologies with enormous potential benefits for medicine are being studied, there is often a bias towards the publication of positive findings. [emphasis mine] The ultimate successful and safe application of nanotechnology in medicine requires a complete understanding of the negative as well as positive effects so that un-intended side effects can be prevented. Our study is an important contribution to the field of nanomedicine and nanotoxicology research and will help to ensure that nanomaterials that come in contact with blood are thoroughly tested for their interaction with blood platelets before they are used in patients.”

Point well taken Dr. Gaffney. Too often there’s an almost euphoric quality to the nanomedicine discussion where nanoscale treatments are described as if they are perfectly benign in advance of any real testing. For example, I wrote about surgical nanobots being used in a human clinical trial in a Jan. 7, 2015 post which features a video of the researcher ‘selling’ his idea. The enthusiasm is laudable and necessary (researchers work for years trying to develop new treatments) but as Gaffney notes there needs to be some counter-ballast and recognition of the ‘positive bias’ issue.

Getting back to the TCD research, here’s a link to and a citation for the paper (or counter-ballast),

Blood biocompatibility of surface-bound multi-walled carbon nanotubes by Alan M. Gaffney, MD, PhD, Maria J. Santos-Martinez, MD, Amro Satti, Terry C. Major, Kieran J. Wynne, Yurii K. Gun’ko, PhD, Gail M. Annich, Giuliano Elia, Marek W. Radomski, MD. January 2015 Volume 11, Issue 1, Pages 39–46 DOI: http://dx.doi.org/10.1016/j.nano.2014.07.005 Published Online: July 26, 2014

This paper is open access.

Government of Canada’s risk assessment for multi-walled carbon nanotubes

Lynn Bergeson’s Jan. 15, 2015 post on the Nanotechnology Now website mentions a newly issued Canadian risk assessment for multi-walled carbon nanotubes (MWCNTs),

Canada announced on January 9, 2015, that the New Substances Program has published six new risk assessment summaries for chemicals and polymers, including a summary for multi-wall carbon nanotubes.

… Environment Canada and Health Canada conduct risk assessments on new substances. These assessments include consideration of information on physical and chemical properties, hazards, uses, and exposure to determine whether a substance is or may become harmful to human health or environment as set out in Section 64 of the Canadian Environmental Protection Act, 1999 (CEPA 1999), and, if harm is suspected, to introduce any appropriate or required control measures. …

Here’s more information from the Summary of Risk Assessment Conducted Pursuant to subsection 83(1) of the Canadian Environmental Protection Act, 1999
Significant New Activity No. 17192: Multi-wall carbon nanotubes webpage,

Substance Identity

The substance is a short tangled multi-walled carbon nanotube that can be classified as a nanomaterial. [emphasis mine]

Notified Activities

The substance is proposed to be manufactured in or imported into Canada in quantities greater than 1000 kg/yr for use as an additive in plastics.

Environmental Fate and Behaviour

Based on its physical and chemical properties, if released to the environment, the substance will tend to partition to water, sediment, soil, and ambient air. The substance is expected to be persistent in these compartments because it is a stable inorganic chemical that will not degrade. Based on the limited understanding of uptake by organisms, more data is required to assess the bioaccumulation potential of this substance at the current schedule notification.

Ecological Assessment

Based on the available hazard information on the substance and surrogate data on structurally related nanomaterials, the substance has low to moderate (1-100 mg/L) acute toxicity in aquatic life (fish/daphnia/algae). The predicted no effect concentration was calculated to be less than 1 mg/L using the ErC50 from the most sensitive organism (P. subcapitata), which was used to estimate the environmental risk.

The notified and other potential activities in Canada were assessed to estimate the environmental exposure potential of the substance throughout its life cycle. Environmental exposure from the notified activities was determined through a conservative generic single point-source release blending scenario. The predicted environmental concentration for notified activities is estimated to be 2.1 µg/L.

Based on the current use profile in conjunction with low to moderate ecotoxicity endpoints, the substance is unlikely to cause ecological harm in Canada.

However, based on the current understanding of carbon nanotubes and nanomaterials in general, a change in the use profile of the substance (SNAc No. 17192) may significantly alter the exposure resulting in the substance becoming harmful to the environment.  Consequently, more information is necessary to better characterize potential environmental risks.

Human Health Assessment

Based on the available hazard information on the substance, the substance has a low potential for acute toxicity by the oral, dermal and inhalation routes of exposure (oral and dermal LD50 greater than 2000 mg/kg bw; inhalation LC50 greater than 1.3 mg/m3). It is a severe eye irritant (MAS score = 68), a mild skin irritant (PII = 1.08) and at most a weak sensitizer (because the positive control was tested at a concentration 10X higher than the test substance). It is not an in vitro mutagen (negative in a mammalian cell gene mutation test and in a mammalian chromosome aberration test).  Therefore the substance is unlikely to cause genetic damage.

Hazards related to substances used in the workplace should be classified accordingly under the Workplace Hazardous Materials Information System (WHMIS).

However, based on the available information on structurally related nanomaterials, the substance may cause respiratory toxicity, immunotoxicity, cardiovascular toxicity and carcinogenicity following oral and inhalation exposure.

When used as an additive in plastics, the substance is expected to be manufactured in or imported into Canada encapsulated in a solid polymer matrix. The potential site of exposure to the substance is expected to be within industrial facilities. Therefore, direct exposure of the general population is expected to be low. No significant environmental release is anticipated due to the specialized use under this notification and therefore indirect exposure of the general population from environmental media is also expected to be low. However, if the substance is produced in different forms (e.g. liquid polymer form), applied in different formulations or used in any other potential applications, an increased direct or indirect exposure potential may exist.

Based on the low potential for direct and indirect exposure of the general population under the industrial uses identified in this submission, the substance is not likely to pose a significant health risk to the general population, and is therefore unlikely to be harmful to human health.

However, based on the current understanding of carbon nanotubes and of nanomaterials in general, the risk arising from the use of the substance in consumer products is not known at this time.  The use of the substance in consumer products or in products intended for use by or for children may significantly alter the exposure of the general population resulting in the substance becoming harmful to human health.  Similarly, the import or manufacture of the substance in quantities greater than 10 000 kg/yr may significantly increase the exposure levels of the general population resulting in the substance becoming harmful to human health.  Consequently, more information is necessary to better characterize potential health risks.

I would like to see a definition for the word short as applied, in this risk assessment, to multi-walled carbon nanotubes. That said, this assessment is pretty much in line with current thinking about short, multi-walled carbon nanotubes. In short (wordplay noted), these carbon nanotubes are relatively safe (although some toxicological issues have been noted) as far as can be determined. However, the ‘relatively safe’ assessment may change as more of these carbon nanotubes enter the environment and as people are introduced to more products containing them.

One last comment, I find it surprising I can’t find any mention in the risk assessment of emergency situations such as fire, earthquake, explosions, etc. which could conceivably release short multi-walled carbon nanotubes into the air exposing emergency workers and people caught in a disaster. As well, those airborne materials might subsequently be found in greater quantity in the soil and water.

Lung injury, carbon nanotubes, and aluminum oxide

It’s pretty much undisputed that long, multi-walled carbon nanotubes (MWCNTs) are likely to present a serious health hazard given their resemblance to asbestos fibres. It’s a matter of some concern that has resulted in a US National Institute of Occupational Safety and Health (NIOSH) recommendation for workplace exposure to all carbon nanotubes that is stringent. (My April 26, 2013 posting features the recommendation.)

Some recent research from North Carolina State University (NCSU) suggests that there may be a way to make long, multi-walled carbon nanotubes safer. From an Oct. 3, 2014 news item on Nanowerk,

A new study from North Carolina State University and the National Institute of Environmental Health Sciences (NIEHS) finds that coating multiwalled carbon nanotubes (CNTs) with aluminum oxide reduces the risk of lung scarring, or pulmonary fibrosis, in mice.

“This could be an important finding in the larger field of work that aims to predict and prevent future diseases associated with engineered nanomaterials,” says James Bonner, a professor of environmental and molecular toxicology at NC State …

An Oct. 3, 2014 NCSU news release, which originated the news item, describes the research in a little more detail,

Multiwalled CNTs have a wide array of applications, ranging from sporting goods to electronic devices. And while these materials have not been associated with adverse health effects in humans, research has found that multi-walled CNTs can cause pulmonary fibrosis and lung inflammation in animal models.

“Because multiwalled CNTs are increasingly used in a wide variety of products, it seems likely that humans will be exposed to them at some point,” Bonner says. “That means it’s important for us to understand these materials and the potential risk they pose to human health. The more we know, the better we’ll be able to engineer safer materials.”

For this study, the researchers used atomic layer deposition to coat multiwalled CNTs with a thin film of aluminum oxide and exposed mice to a single dose of the CNTs, via inhalation.

The researchers found that CNTs coated with aluminum oxide were significantly less likely to cause pulmonary fibrosis in mice. However, the coating of aluminum oxide did not prevent lung inflammation.

“The aluminum oxide coating doesn’t eliminate health risks related to multi-walled CNTs,” Bonner says, “but it does lower them.”

Here’s a link to and a citation for the paper,

Atomic Layer Deposition Coating of Carbon Nanotubes with Aluminum Oxide Alters Pro-Fibrogenic Cytokine Expression by Human Mononuclear Phagocytes In Vitro and Reduces Lung Fibrosis in Mice In Vivo by Alexia J. Taylor, Christina D. McClure, Kelly A. Shipkowski, Elizabeth A. Thompson, Salik Hussain, Stavros Garantziotis, Gregory N. Parsons, and James C. Bonner. Published: September 12, 2014 DOI: 10.1371/journal.pone.0106870

This is an open access article.

The researchers offered this conclusion (part of the paper’s abstract),

These findings indicate that ALD [atomic layer deposition] thin film coating of MWCNTs with Al2O3 reduces fibrosis in mice and that in vitro phagocyte expression of IL-6, TNF-α, and OPN, but not IL-1β, predict MWCNT-induced fibrosis in the lungs of mice in vivo.

However, what I found most striking was this from the paper’s Discussion (section),

While the Al2O3 coating on MWCNTs appears to be the major factor that alters cytokine production in THP-1 and PBMCs in vitro, nanotube length is still likely an important determinant of the inflammatory and fibroproliferative effects of MWCNTs in the lung in vivo. In general, long asbestos fibers or rigid MWCNTs (i.e., >20 µm) remain in the lung and are much more persistent than shorter fibers or nanotubes [20]. Therefore, the nanotube fragments resulting from breakage of A-MWCNTs coated with 50 or 100 ALD cycles of Al2O3 would likely be cleared from the lungs more rapidly than uncoated long MWCNTs or those coated with only 10 ALD cycles of Al2O3. We observed that the fracturing of A-MWCNTs occurred only after sonication prior to administration to cells in vitro or mice in vivo. However, unsonicated A-MWCNTs could be more likely to fracture over time in tissues as compared to U-MWCNTs [uncoated]. We did not address the issue of A-MWCNT clearance before or after fracturing in the present study, but future work should focus the relative clearance rates from the lungs of mice exposed to A-MWCNTs in comparison to U-MWCNTs. Another potentially important consideration is whether or not ALD coating with Al2O3 alters the formation of a protein corona around MWCNTs. It is possible that differences in cytokine levels in the supernatants from cells treated with U- or A-MWCNTs could be due to differences in protein corona formation around functionalized MWCNTs that could modify the adsorptive capacity of the nanomaterial. Characterization of the protein corona and the adsorptive capacity for cytokines after ALD modification of MWCNTs should be another important focus for future work. [emphases mine]

In other words, researchers think coating long, MWCNTs with a certain type of aluminum might be safer due to its effect on various proteins and because coated MWCNTs are likely to fracture into smaller pieces and we know that short MWCNTs don’t seem to present a problem when inhaled.

Of course, there’s the research from Duke University (my Oct. 3, 2014 post) which suggests CNTs could present a different set of problems over time as they accumulate in the environment.

Super-black nanotechnology, space exploration, and carbon nanotubes grown by atomic layer deposition (ALD)

Super-black in this context means that very little light is reflected by the carbon nanotubes that a team at the US National Aeronautics and Space Administration (NASA) have produced. From a July 17, 2013 NASA news release (also here on EurekAlert),

A NASA engineer has achieved yet another milestone in his quest to advance an emerging super-black nanotechnology that promises to make spacecraft instruments more sensitive without enlarging their size.

A team led by John Hagopian, an optics engineer at NASA’s Goddard Space Flight Center in Greenbelt, Md., has demonstrated that it can grow a uniform layer of carbon nanotubes through the use of another emerging technology called atomic layer deposition or ALD. The marriage of the two technologies now means that NASA can grow nanotubes on three-dimensional components, such as complex baffles and tubes commonly used in optical instruments.

“The significance of this is that we have new tools that can make NASA instruments more sensitive without making our telescopes bigger and bigger,” Hagopian said. “This demonstrates the power of nanoscale technology, which is particularly applicable to a new class of less-expensive tiny satellites called Cubesats that NASA is developing to reduce the cost of space missions.”

(It’s the first time I’ve seen atomic layer deposition (ALD) described as an emerging technology; I’ve always thought of it as well established.)  Here’s a 2010 NASA video, which  provides a good explanation of this team’s work,

With the basic problem being less data due to light reflection from the instruments used to make the observations in space, the researchers determined that ALD might provide carbon nanotubes suitable for super-black instrumentation for space exploration. From the NASA news release,

To determine the viability of using ALD to create the catalyst layer, while Dwivedi [NASA Goddard co-investigator Vivek Dwivedi, University of Maryland] was building his new ALD reactor, Hagopian engaged through the Science Exchange the services of the Melbourne Centre for Nanofabrication (MCN), Australia’s largest nanofabrication research center. The Science Exchange is an online community marketplace where scientific service providers can offer their services. The NASA team delivered a number of components, including an intricately shaped occulter used in a new NASA-developed instrument for observing planets around other stars.

Through this collaboration, the Australian team fine-tuned the recipe for laying down the catalyst layer — in other words, the precise instructions detailing the type of precursor gas, the reactor temperature and pressure needed to deposit a uniform foundation. “The iron films that we deposited initially were not as uniform as other coatings we have worked with, so we needed a methodical development process to achieve the outcomes that NASA needed for the next step,” said Lachlan Hyde, MCN’s expert in ALD.

The Australian team succeeded, Hagopian said. “We have successfully grown carbon nanotubes on the samples we provided to MCN and they demonstrate properties very similar to those we’ve grown using other techniques for applying the catalyst layer. This has really opened up the possibilities for us. Our goal of ultimately applying a carbon-nanotube coating to complex instrument parts is nearly realized.”

For anyone who’d like a little more information about the Science Exchange, I posted about this scientific markeplace both on Sept. 2, 2011 after it was launched in August of that year and later on Dec. 19, 2011 in a followup about a specific nano project.

Getting back to super-black nanotechnology, here’s what the NASA team produced, from the news release,

During the research, Hagopian tuned the nano-based super-black material, making it ideal for this application, absorbing on average more than 99 percent of the ultraviolet, visible, infrared and far-infrared light that strikes it — a never-before-achieved milestone that now promises to open new frontiers in scientific discovery. The material consists of a thin coating of multi-walled carbon nanotubes about 10,000 times thinner than a strand of human hair.

Once a laboratory novelty grown only on silicon, the NASA team now grows these forests of vertical carbon tubes on commonly used spacecraft materials, such as titanium, copper and stainless steel. Tiny gaps between the tubes collect and trap light, while the carbon absorbs the photons, preventing them from reflecting off surfaces. Because only a small fraction of light reflects off the coating, the human eye and sensitive detectors see the material as black.

Before growing this forest of nanotubes on instrument parts, however, materials scientists must first deposit a highly uniform foundation or catalyst layer of iron oxide that supports the nanotube growth. For ALD, technicians do this by placing a component or some other substrate material inside a reactor chamber and sequentially pulsing different types of gases to create an ultra-thin film whose layers are literally no thicker than a single atom. Once applied, scientists then are ready to actually grow the carbon nanotubes. They place the component in another oven and heat the part to about 1,832  F (750 C). While it heats, the component is bathed in carbon-containing feedstock gas.

Congratulations to the team, I gather they’ve been working on this light absorption project for quite a while.

NanoSustain published four case studies: zinc oxide, titanium dioxide, carbon nanotubes, and nanocellulose

A May 17, 2013 news item on Nanowerk highlight a European Commission-funded project, NanoSustain and its publication of a fact sheet and four case studies,,

NanoSustain, a €2.5 million NMP small collaborative project (2010-2013) funded by the European Union under FP7, has published a fact sheet and four case studies addressing these issues.

How do nanotechnology-based products impact human health and the environment?
Can they be recycled?
Can they be safely disposed of?
How can you find out?

The March 20, 2013 NanoSustain news release, which originated the news item, goes on to explain,

… the EC-funded NanoSustain project has been developing new sustainable solutions through an investigation of the life-cycle of nanotechnology-based products, in particular the physical and chemical characteristics of materials, hazard and exposure aspects, and end-of-life disposal or recycling to determine the fate and impact of nanomaterials.

A summary of the different materials and products tested within NanoSustain:

• Case Study #1: Titanium dioxide for paints
• Case Study #2: Zinc oxide for glazing products
• Case Study #3: Carbon nanotubes epoxy resins for plastics
– for structural or electrical/antistatic applications
• Case Study #4: Nanocellulose for advanced paper applications

Information about the individual experimental approaches

Descriptions of the different techniques developed

How these techniques have been successfully applied in physical-chemical characterisation; life-cycle analysis; final disposal; recycling.

Getting access to the case case studies and the fact sheet requires filling out a form but once you’ve done that you get instant access to the materials.

Here’s some information from EuroSustain’s fact sheet,


Analytical Techniques

Development of sustainable solutions for nanotechnology-based products based on hazard characterization and LCA1 The primary goal of the NanoSustain project is to develop new technical solutions for the sustainable design and use, recycling and final treatment of selected nanotechnology-based products.

To achieve this the project has the following objectives: 1) to assess the hazard of selected nanomaterials based on a comprehensive data survey and generation concerning their physicochemical (PC) and toxicological properties, exposure probabilities, etc., and the adaptation, evaluation, validation and use of existing analytical, testing and life-cycle assessment (LCA) methods; 2) to assess the impact of selected products during their life cycle in relation to material and energy flows (LCA); 3) to assess possible exposure routes and risks associated with the handling of these materials, their transformation and final fate; and 4) to explore the feasibility and sustainability of new technical solutions for end-of=life processes, such as reuse/recycling, final treatment or disposal.

Within NanoSustain an assessment has been made of the PC properties, exposure and toxicity, energy and material inputs and outputs at relevant stages of a material or product’s life-cycle. This means: material production, processing, manufacturing, use, transportation, and end-of-life (recycling/disposal). At each stage potential risks to human health and the environment have also been assessed, through a number of experimental models and test systems using materials that would be expected to be released from products containing nanomaterials.

Four nanomaterials were investigated that either already feature in commercial products or are expected to be commercialized on a large scale: titanium dioxide (TiO2) in paint, zinc oxide (ZnO) as a coating for glass, multi-walled carbon nanotubes (MWCNT) in epoxy resins, and nanocellulose in paper.

Detailed information on the nanomaterials have been summarized in internal project material datasheets (MDS), and will be made available as part of peer-reviewed publications on release studies and toxicological investigations. [emphases mine]

Having looked at the four case studies, each of which is two pages, I would describe them as teasers. There’s not a lot of information in them as to the results of the testing which makes sense when you see that they will be publishing in various publications.

I find the inclusion of titanium dioxide, zinc oxide and carbon nanotubes for life-cycle assessments easily understandable as they  have been integrated into many consumer products. However, it’s my understanding that nanocellulose has not reached that level of product integration. Still, given the number of times I’ve been told this is a ‘safe’ product, it’s interesting to see what NanoSustain has to say about its toxicity (from the NanoSustain’s nanocellulose case study),

Work in NanoSustain has provided new data and information on the physicochemical properties, potential human and environmental hazard and risk associated with relevant stages of the life-cycle of nanocellulose based products as well as on the overall energy and material input/output that may happen during manufacturing, use and disposal. Initial results indicate that the nanocellulose degrades efficiently under standard composting conditions, but does not in aquatic environments. Furthermore nanocellulose does not demonstrate any ecotoxicity. Unfortunately nanocellulose forms a gel when suspended in media for inhalation studies, and so no toxicology experiments could be performed (as for the other engineered nanomaterials studied in NanoSustain). Final results will be made available once published in peer-reviewed journals.

I have written many times about nanocellulose, a topic featuring some interesting and confusing nomenclature and taking this opportunity to highlight a couple of responses from folks who took the time to clarify things for me (from my Aug. 2, 2012 posting),

KarenS says:

Hi Maryse!

From my understanding, nanocrystaline cellulose (NCC), cellulose nanocrystals (CNC), cellulose whiskers (CW) and cellulose nanowhiskers (CNW) are all the same stuff: cylindrical rods of crystalline cellulose (diameter: 5-10 nm; length: 20-1000 nm). Cellulose nanofibers or nanofibrils (CNF), on the contrary, are less crystalline and are in the form of long fibers (diameter: 20-50 nm; length: up to several micrometers).

There is still a lot of confusion on the nomenclature of cellulose nanoparticles, but nice explanations (and pictures!) are given here (and also in other papers from the same conference):


and there’s this from my Sept. 26, 2012 posting,

Gary Chinga Carrasco says:

The definition of cellulose nanofibrils as “diameter: 20-50 nm; length: up to several micrometers)” is somewhat simplified. For terminology on MFC terms you may want to take a look at: http://www.nanoscalereslett.com/content/6/1/417

Bringing this piece back to where I started, I look forward to seeing the NanoSustain case studies published with more details in the future.

Note: Since the folks at NanoSustain are likely using their form to collect data, I’m not linking back to the factsheet or nanocellulose case study as I would usually. So, if you want to look at the material, you do need to register via the form.