Tag Archives: Namib desert beetle

Namib beetles, cacti, and pitcher plants teach scientists at Harvard University (US)

In this latest work from Harvard University’s Wyss Institute for Biologically Inspired Engineering, scientists have looked at three desert dwellers for survival strategies in water-poor areas. From a Feb. 25, 2015 news item on Nanowerk,

Organisms such as cacti and desert beetles can survive in arid environments because they’ve evolved mechanisms to collect water from thin air. The Namib desert beetle, for example, collects water droplets on the bumps of its shell while V-shaped cactus spines guide droplets to the plant’s body.

As the planet grows drier, researchers are looking to nature for more effective ways to pull water from air. Now, a team of researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) and the Wyss Institute for Biologically Inspired Engineering at Harvard University have drawn inspiration from these organisms to develop a better way to promote and transport condensed water droplets.

A Feb. 24, 2016 Harvard University press release by Leah Burrows (also on EurekAlert), which originated the news item, expands on the theme,

“Everybody is excited about bioinspired materials research,” said Joanna Aizenberg, the Amy Smith Berylson Professor of Materials Science at SEAS and core faculty member of the Wyss Institute. “However, so far, we tend to mimic one inspirational natural system at a time. Our research shows that a complex bio-inspired approach, in which we marry multiple biological species to come up with non-trivial designs for highly efficient materials with unprecedented properties, is a new, promising direction in biomimetics.”

The new system, described in Nature, is inspired by the bumpy shell of desert beetles, the asymmetric structure of cactus spines and slippery surfaces of pitcher plants. The material harnesses the power of these natural systems, plus Slippery Liquid-Infused Porous Surfaces technology (SLIPS) developed in Aizenberg’s lab, to collect and direct the flow of condensed water droplets.

This approach is promising not only for harvesting water but also for industrial heat exchangers.

“Thermal power plants, for example, rely on condensers to quickly convert steam to liquid water,” said Philseok Kim, co-author of the paper and co-founder and vice president of technology at SEAS spin-off SLIPS Technologies, Inc. “This design could help speed up that process and even allow for operation at a higher temperature, significantly improving the overall energy efficiency.”

The major challenges in harvesting atmospheric water are controlling the size of the droplets, speed in which they form and the direction in which they flow.

For years, researchers focused on the hybrid chemistry of the beetle’s bumps — a hydrophilic top with hydrophobic surroundings — to explain how the beetle attracted water. However, Aizenberg and her team took inspiration from a different possibility – that convex bumps themselves also might be able to harvest water.

“We experimentally found that the geometry of bumps alone could facilitate condensation,” said Kyoo-Chul Park, a postdoctoral researcher and the first author of the paper. “By optimizing that bump shape through detailed theoretical modeling and combining it with the asymmetry of cactus spines and the nearly friction-free coatings of pitcher plants, we were able to design a material that can collect and transport a greater volume of water in a short time compared to other surfaces.”

“Without one of those parameters, the whole system would not work synergistically to promote both the growth and accelerated directional transport of even small, fast condensing droplets,” said Park.

“This research is an exciting first step towards developing a passive system that can efficiently collect water and guide it to a reservoir,” said Kim.

Here’s a link to and a citation for the paper,

Condensation on slippery asymmetric bumps by Kyoo-Chul Park, Philseok Kim, Alison Grinthal, Neil He, David Fox, James C. Weaver, & Joanna Aizenberg. Nature (2016) doi:10.1038/nature16956 Published online 24 February 2016

This paper is behind a paywall.

I have featured the Namib beetle and its water harvesting capabilities most recently in a July 29, 2014 posting and the most recent story I have about SLIPS is in an Oct. 14, 2014 posting.

Do Tenebrionind beetles collect dew or condensation—a water issue at the nanoscale

Up until now, the research I’ve stumbled across about Tenebrionind beetles and their water-collecting ways has been from the US but this latest work comes from a France/Spain,/UK collaboration which focused on a specific question, exactly where do these beetles harvest their water from? A Dec. 8, 2014 news item on Nanotechnology Now describes this latest research,

Understanding how a desert beetle harvests water from dew could improve drinking water collection in dew condensers

Insects are full of marvels – and this is certainly the case with a beetle from the Tenebrionind family, found in the extreme conditions of the Namib desert. Now, a team of scientists has demonstrated that such insects can collect dew on their backs – and not just fog as previously thought. This is made possible by the wax nanostructure on the surface of the beetle’s elytra. … They bring us a step closer to harvesting dew to make drinking water from the humidity in the air. This, the team hopes, can be done by improving the water yield of man-made dew condensers that mimick the nanostructure on the beetle’s back.

A Dec. 8, 2014  Springer press release (also on EurekAlert), which originated the news item, describes how this research adds to the body of knowledge about the ability to harvest water from the air,

It was not clear from previous studies whether water harvested by such beetles came from dew droplets, in addition to fog. Whereas fog is made of ready-made microdroplets floating in the air, dew appears following the cooling of a substrate below air temperature. This then turns the humidity of air into tiny droplets of water because more energy – as can be measured through infrared emissions – is sent to the atmosphere than received by it. The cooling capability is ideal, they demonstrated, because the insect’s back demonstrates near-perfect infrared emissivity.

Guadarrama-Cetina [José Guadarrama-Cetina] and colleagues also performed an image analysis of dew drops forming on the insect’s back on the surface of the elytra, which appears as a series of bumps and valleys. Dew primarily forms in the valleys endowed with a hexagonal microstructure, they found, unlike the smooth surface of the bumps. This explains how drops can slide to the insect’s mouth when they reach a critical size.

Here’s a link to and a citation for the paper,

Dew condensation on desert beetle skin by J.M. Guadarrama-Cetina, A. Mongruel, M.-G. Medici, E. Baquero, A.R. Parker, I. Milimouk-Melnytchuk, W. González-Viñas, and D. Beysens. Eur. Phys. J. E (European Physics Journal E 2014) 37: 109, DOI 10.1140/epje/i2014-14109-y

This paper is currently (Dec. 8, 2014) open access. I do not know if this will be permanent or if access rights will change over time.

My previous postings on the topic of water and beetles have focused on US research of the Stenocara beetle (aka Namib desert beetle) which appears to be a member of the Tenebrionind family of beetles mentioned in this latest research.

The European researchers have provided an image of the beetle they were examining,

A preserved specimen of the Tenebrionind beetle (Physasterna cribripes) was used for this study, displaying the insect’s mechanisms of dew harvesting. © J.M. Guadarrama-Cetina et al.

A preserved specimen of the Tenebrionind beetle (Physasterna cribripes) was used for this study, displaying the insect’s mechanisms of dew harvesting. © J.M. Guadarrama-Cetina et al.

As for my other pieces on this topic, there’s a July 29, 2014 post, a June 18, 2014 post, and a Nov. 26, 2012 post.

Harvest water from desert air with carbon nanotube cups (competition for NBD Nano?)

It’s been a while since I’ve seen Pulickel Ajayan’s name in a Rice University (Texas) news release and I wonder if this is the beginning of a series. I’ve noticed that researchers often publish a series of papers within a few months and then become quiet for two or more years as they work in their labs to gather more information.

This time the research from Pulickel’s lab has focused on the use of carbon nanotubes to harvest water from desert air. From a June 12, 2014 news item on Azonano,

If you don’t want to die of thirst in the desert, be like the beetle. Or have a nanotube cup handy.

New research by scientists at Rice University demonstrated that forests of carbon nanotubes can be made to harvest water molecules from arid desert air and store them for future use.

The invention they call a “hygroscopic scaffold” is detailed in a new paper in the American Chemical Society journal Applied Materials and Interfaces.

Researchers in the lab of Rice materials scientist Pulickel Ajayan found a way to mimic the Stenocara beetle, which survives in the desert by stretching its wings to capture and drink water molecules from the early morning fog.

Here’s more about the research from a June 11, 2014 Rice University news release (by Mike Williams?), which originated the news item,

They modified carbon nanotube forests grown through a process created at Rice, giving the nanotubes a superhydrophobic (water-repelling) bottom and a hydrophilic (water loving) top. The forest attracts water molecules from the air and, because the sides are naturally hydrophobic, traps them inside.

“It doesn’t require any external energy, and it keeps water inside the forest,” said graduate student and first author Sehmus Ozden. “You can squeeze the forest to take the water out and use the material again.”

The forests grown via water-assisted chemical vapor deposition consist of nanotubes that measure only a few nanometers (billionths of a meter) across and about a centimeter long.

The Rice team led by Ozden deposited a superhydrophobic layer to the top of the forest and then removed the forest from its silicon base, flipped it and added a layer of hydrophilic polymer to the other side.

In tests, water molecules bonded to the hydrophilic top and penetrated the forest through capillary action and gravity. (Air inside the forest is compressed rather then expelled, the researchers assumed.) Once a little water bonds to the forest canopy, the effect multiplies as the molecules are drawn inside, spreading out over the nanotubes through van der Waals forces, hydrogen bonding and dipole interactions. The molecules then draw more water in.

The researchers tested several variants of their cup. With only the top hydrophilic layer, the forests fell apart when exposed to humid air because the untreated bottom lacked the polymer links that held the top together. With a hydrophilic top and bottom, the forest held together but water ran right through.

But with a hydrophobic bottom and hydrophilic top, the forest remained intact even after collecting 80 percent of its weight in water.

The amount of water vapor captured depends on the air’s humidity. An 8 milligram sample (with a 0.25-square-centimeter surface) pulled in 27.4 percent of its weight over 11 hours in dry air, and 80 percent over 13 hours in humid air. Further tests showed the forests significantly slowed evaporation of the trapped water.

If it becomes possible to grow nanotube forests on a large scale, the invention could become an efficient, effective water-collection device because it does not require an external energy source, the researchers said.

Ozden said the production of carbon nanotube arrays at a scale necessary to put the invention to practical use remains a bottleneck. “If it becomes possible to make large-scale nanotube forests, it will be a very easy material to make,” he said.

This is not the first time researchers have used the Stenocara beetle (also known as the Namib desert beetle) as inspiration for a water-harvesting material. In a Nov. 26, 2012 posting I traced the inspiration  back to 2001 while featuring the announcement of a new startup company,

… US startup company, NBD Nano, which aims to bring a self-filling water bottle based on Namib desert beetle to market,

NBD Nano, which consists of four recent university graduates and was formed in May [2012], looked at the Namib Desert beetle that lives in a region that gets about half an inch of rainfall per year.

Using a similar approach, the firm wants to cover the surface of a bottle with hydrophilic (water-attracting) and hydrophobic (water-repellent) materials.

The work is still in its early stages, but it is the latest example of researchers looking at nature to find inspiration for sustainable technology.

“It was important to apply [biomimicry] to our design and we have developed a proof of concept and [are] currently creating our first fully-functional prototype,” Miguel Galvez, a co-founder, told the BBC.

“We think our initial prototype will collect anywhere from half a litre of water to three litres per hour, depending on local environments.”

You can find out more about NBD Nano here although they don’t give many details about the material they’ve developed. Given that MIT (Massachusetts Institute of Technology) researchers published a  paper about a polymer-based material laced with silicon nanoparticles inspired by the Namib beetle in 2006 and that NBD Nano is based Massachusetts, I believe NBD Nano is attempting to commercialize the material or some variant developed at MIT.

Getting back to Rice University and carbon nanotubes, this is a different material attempting to achieve the same goal, harvesting water from desert air. Here’s a link to and a citation for the latest paper inspired by the Stenocara beetle (Namib beetle),

Anisotropically Functionalized Carbon Nanotube Array Based Hygroscopic Scaffolds by Sehmus Ozden, Liehui Ge , Tharangattu N. Narayanan , Amelia H. C. Hart , Hyunseung Yang , Srividya Sridhar , Robert Vajtai , and Pulickel M Ajayan. ACS Appl. Mater. Interfaces, DOI: 10.1021/am5022717 Publication Date (Web): June 4, 2014

Copyright © 2014 American Chemical Society

This paper is behind a paywall.

One final note, the research at MIT was funded by DARPA (US Defense Advanced Research Projects Agency). According to the news release the Rice University research held interest for similar agencies,

The U.S. Department of Defense and the U.S. Air Force Office of Scientific Research Multidisciplinary University Research Initiative supported the research.

NBD Nano startup company and the Namib desert beetle

In 2001, Andrew Parker and Chris Lawrence published an article in Nature magazine about work which has inspired a US startup company in 2012 to develop a water bottle that fills itself up with water by drawing moisture from the air. Parker’s and Lawrence’s article was titled Water capture by a desert beetle. Here’s the abstract (over 10 years later the article is still behind a paywall),

Some beetles in the Namib Desert collect drinking water from fog-laden wind on their backs1. We show here that these large droplets form by virtue of the insect’s bumpy surface, which consists of alternating hydrophobic, wax-coated and hydrophilic, non-waxy regions. The design of this fog-collecting structure can be reproduced cheaply on a commercial scale and may find application in water-trapping tent and building coverings, for example, or in water condensers and engines.

Some five years later, there was a June 15, 2006 news item on phys.org about the development of a new material based on the Namib desert beetle,

When that fog rolls in, the Namib Desert beetle is ready with a moisture-collection system exquisitely adapted to its desert habitat. Inspired by this dime-sized beetle, MIT [Massachusetts Institute of Technology] researchers have produced a new material that can capture and control tiny amounts of water.

The material combines a superhydrophobic (water-repelling) surface with superhydrophilic (water-attracting) bumps that trap water droplets and control water flow. The work was published in the online version of Nano Letters on Tuesday, May 2 [2006] {behind a paywall}.

Potential applications for the new material include harvesting water, making a lab on a chip (for diagnostics and DNA screening) and creating microfluidic devices and cooling devices, according to lead researchers Robert Cohen, the St. Laurent Professor of Chemical Engineering, and Michael Rubner, the TDK Professor of Polymer Materials Science and Engineering.

The MIT June 14, 2006 news release by Anne Trafton, which originated the news item about the new material, indicates there was some military interest,

The U.S. military has also expressed interest in using the material as a self-decontaminating surface that could channel and collect harmful substances.

The researchers got their inspiration after reading a 2001 article in Nature describing the Namib Desert beetle’s moisture-collection strategy. Scientists had already learned to copy the water-repellent lotus leaf, and the desert beetle shell seemed like another good candidate for “bio-mimicry.”

When fog blows horizontally across the surface of the beetle’s back, tiny water droplets, 15 to 20 microns, or millionths of a meter, in diameter, start to accumulate on top of bumps on its back.

The bumps, which attract water, are surrounded by waxy water-repelling channels. “That allows small amounts of moisture in the air to start to collect on the tops of the hydrophilic bumps, and it grows into bigger and bigger droplets,” Rubner said. “When it gets large, it overcomes the pinning force that holds it and rolls down into the beetle’s mouth for a fresh drink of water.”

To create a material with the same abilities, the researchers manipulated two characteristics — roughness and nanoporosity (spongelike capability on a nanometer, or billionths of a meter, scale).

By repeatedly dipping glass or plastic substrates into solutions of charged polymer chains dissolved in water, the researchers can control the surface texture of the material. Each time the substrate is dipped into solution, another layer of charged polymer coats the surface, adding texture and making the material more porous. Silica nanoparticles are then added to create an even rougher texture that helps trap water droplets.

The material is then coated with a Teflon-like substance, making it superhydrophobic. Once that water-repellent layer is laid down, layers of charged polymers and nanoparticles can be added in certain areas, using a properly formulated water/alcohol solvent mixture, thereby creating a superhydrophilic pattern. The researchers can manipulate the technique to create any kind of pattern they want.

The research is funded by the Defense Advanced Research Projects Agency and the National Science Foundation.

I’m not sure what happened with the military interest or the group working out of MIT in 2006 but on Nov. 23, 2012, BBC News online featured an article about a US startup company, NBD Nano, which aims to bring a self-filling water bottle based on Namib desert beetle to market,

NBD Nano, which consists of four recent university graduates and was formed in May, looked at the Namib Desert beetle that lives in a region that gets about half an inch of rainfall per year.

Using a similar approach, the firm wants to cover the surface of a bottle with hydrophilic (water-attracting) and hydrophobic (water-repellent) materials.

The work is still in its early stages, but it is the latest example of researchers looking at nature to find inspiration for sustainable technology.

“It was important to apply [biomimicry] to our design and we have developed a proof of concept and [are] currently creating our first fully-functional prototype,” Miguel Galvez, a co-founder, told the BBC.

“We think our initial prototype will collect anywhere from half a litre of water to three litres per hour, depending on local environments.”

According to the Nov. 25, 2012 article by Nancy Owano for phys.org, the company is at the prototype stage now,

NBD Nano plans to enter the worldwide marketplace between 2014 and 2015.

You can find out more about NBD Nano here.