Tag Archives: nano-snowman

Nano snowman

I guess if people can spot religious figures in their morning toast or in the vegetables and fruits they grow, there’s no reason why scientists shouldn’t be able to see a snowman’s face in a nanoparticle,

Courtesy: University of Birmingham

A Dec. 20, 2016 news item on phys.org describes the nanoparticle,

Scientists at the University of Birmingham have captured the formation of a platinum encrusted nanoparticle that bears a striking resemblance to a festive snowman. As well as providing some Christmas cheer, the fully functional ‘nano-snowman’ has applications for providing greener energy and for advancements in medical care.

A Dec. 20, 2016 University of Birmingham press release, which originated the news item, provides more detail (Note: Links have been removed),

At only five nanometres in size, the nano-snowman was imaged with an aberration-corrected scanning transmission electron microscope at the Nanoscale Physics, Chemistry and Engineering Research Laboratory at the University of Birmingham.

It was formed unexpectedly from a self-assembled platinum-titanium nanoparticle which was oxidised in air, and features ‘eyes, nose and a mouth’ formed of precious-metal platinum clusters embedded in a titanium dioxide face.

Despite its festive appearance, the nano-snowman performs a serious function of catalysing the splitting of water to make green hydrogen for fuel cells. In this functionality the nanoparticle demonstrates how the inclusion of titanium atoms to a platinum catalyst particle has its benefits.

Platinum is highly functional in performing chemical transformations making it a sought after metal for scientific use. It is also expensive and in critical supply. Therefore, the nano-snowman demonstrates how, by including titanium atoms, the amount of platinum needed is reduced and the existing platinum used is protected against sintering (aggregation of the nanoparticles).

Professor Richard Palmer, head of the University’s Nanoscale Physics Research Lab – the first centre for nanoscience in the UK – leads the way in research on nanoparticle science and explains how this information holds great interest for the Energy and Pharmaceutical industries:

“By combining titanium and platinum atoms in a nanoparticle, we can reduce the need to use rare and expensive platinum, and also maintain that which we have used. This could affect a number of applications where platinum is used such as creating green hydrogen for cleaner energy use; generating low energy electrons in radiotherapy that can kill cancer cells; and to perform chemical transformations to create pharmaceutical products.”

Saeed Gholhaki, one of the scientists to discover the snowman says:

“In the nano regime atoms are the building blocks of nanoscale structures. These building blocks can form wonderful shapes and structures regulated by the laws of nature. Nanoscience is about understanding the physics behind, and thus controlling these phenomenon, ultimately allowing us to design materials with desired properties. Sometimes the building blocks, in this case platinum cores, can assemble in an interesting way to resemble familiar objects like the face of a snowman!”

That’s all folks.

Nanoscale snowman and Season’s Greetings

It’s being described as a ‘jeweled nano-snowman’ but platinum and titanium aren’t my idea of jewels. Still, it’s a cheerful, seasonal greeting.

Courtesy of the University of Birmingham Nanoscale Physics Research Laboratory

Courtesy of the University of Birmingham Nanoscale Physics Research Laboratory

A December 22, 2015 news item on Nanowerk tells more of the story,

Would a jewel-encrusted snowman make the perfect Christmas present? At only 5 nanometres in size, the price might be lower than you think. And it’s functional too, catalysing the splitting of water to make green hydrogen for fuel cells.

A December 22, 2015 University of Birmingham Nanoscale Physics Research Laboratory (NPRL) press release, which originated the news item, provides more detail,

The nanoparticle, as imaged with an aberration-corrected scanning transmission electron microscope, features eyes, nose and mouth of precious-metal platinum clusters embedded in a titanium dioxide face. Each platinum cluster typically contains 30 platinum atoms; within the whole nanoparticle there are approximately 1,680 titanium atoms and 180 platinum atoms. The nano-snowman formed spontaneously from a self-assembled platinum-titanium nanoparticle which was oxidised in air, drawing the titanium atoms out to the surface. The self-assembly occurred in a gas phase, cluster beam condensation source, before size-selection with a mass spectrometer and deposition onto a carbon surface for oxidation and then imaging. The mass of the snowman is 120,000 atomic mass units. Compared with a more conventional pure platinum catalyst particle, the inclusion of the titanium atoms offers two potential benefits: dilution of how much precious platinum is needed to perform the catalysis, and protection of the platinum cores against sintering (i.e. aggregation of the nanoparticles). The shell is porous enough to allow hydrogen through and the particles are functional in the hydrogen evolution reaction. The research was performed at the Nanoscale Physics Research Lab by Caroline Blackmore and Ross Griffin. …

The scientists did a little bit of work adding colour (most of these images are gray on gray), as well as, the holly and berry frame.

Joyeux Noël et Bonne Année or Season’s Greetings!