Tag Archives: nanobots

Building nanocastles in the sand

Scientists have taken inspiration from sandcastles to build robots made of nanoparticles. From an Aug. 5, 2015 news item on ScienceDaily,

If you want to form very flexible chains of nanoparticles in liquid in order to build tiny robots with flexible joints or make magnetically self-healing gels, you need to revert to childhood and think about sandcastles.

In a paper published this week in Nature Materials, researchers from North Carolina State University and the University of North Carolina-Chapel Hill show that magnetic nanoparticles encased in oily liquid shells can bind together in water, much like sand particles mixed with the right amount of water can form sandcastles.

An Aug. 5, 2015 North Carolina State University (NCSU) news release (also on EurekAlert) by Mick Kulikowski, which originated the news item, expands on the theme,

“Because oil and water don’t mix, the oil wets the particles and creates capillary bridges between them so that the particles stick together on contact,” said Orlin Velev, INVISTA Professor of Chemical and Biomolecular Engineering at NC State and the corresponding author of the paper.

“We then add a magnetic field to arrange the nanoparticle chains and provide directionality,” said Bhuvnesh Bharti, research assistant professor of chemical and biomolecular engineering at NC State and first author of the paper.

Chilling the oil is like drying the sandcastle. Reducing the temperature from 45 degrees Celsius to 15 degrees Celsius freezes the oil and makes the bridges fragile, leading to breaking and fragmentation of the nanoparticle chains. Yet the broken nanoparticles chains will re-form if the temperature is raised, the oil liquefies and an external magnetic field is applied to the particles.

“In other words, this material is temperature responsive, and these soft and flexible structures can be pulled apart and rearranged,” Velev said. “And there are no other chemicals necessary.”

The paper is also co-authored by Anne-Laure Fameau, a visiting researcher from INRA [French National Institute for Agricultural Research or Institut National de la Recherche Agronomique], France. …

Here’s a link to and a citation for the paper,

Nanocapillarity-mediated magnetic assembly of nanoparticles into ultraflexible filaments and reconfigurable networks by Bhuvnesh Bharti, Anne-Laure Fameau, Michael Rubinstein, & Orlin D. Velev. Nature Materials (2015) doi:10.1038/nmat4364 Published online 03 August 2015

This paper is behind a paywall.

I sing the body cyber: two projects funded by the US National Science Foundation

Points to anyone who recognized the reference to Walt Whitman’s poem, “I sing the body electric,” from his classic collection, Leaves of Grass (1867 edition; h/t Wikipedia entry). I wonder if the cyber physical systems (CPS) work being funded by the US National Science Foundation (NSF) in the US will occasion poetry too.

More practically, a May 15, 2015 news item on Nanowerk, describes two cyber physical systems (CPS) research projects newly funded by the NSF,

Today [May 12, 2015] the National Science Foundation (NSF) announced two, five-year, center-scale awards totaling $8.75 million to advance the state-of-the-art in medical and cyber-physical systems (CPS).

One project will develop “Cyberheart”–a platform for virtual, patient-specific human heart models and associated device therapies that can be used to improve and accelerate medical-device development and testing. The other project will combine teams of microrobots with synthetic cells to perform functions that may one day lead to tissue and organ re-generation.

CPS are engineered systems that are built from, and depend upon, the seamless integration of computation and physical components. Often called the “Internet of Things,” CPS enable capabilities that go beyond the embedded systems of today.

“NSF has been a leader in supporting research in cyber-physical systems, which has provided a foundation for putting the ‘smart’ in health, transportation, energy and infrastructure systems,” said Jim Kurose, head of Computer & Information Science & Engineering at NSF. “We look forward to the results of these two new awards, which paint a new and compelling vision for what’s possible for smart health.”

Cyber-physical systems have the potential to benefit many sectors of our society, including healthcare. While advances in sensors and wearable devices have the capacity to improve aspects of medical care, from disease prevention to emergency response, and synthetic biology and robotics hold the promise of regenerating and maintaining the body in radical new ways, little is known about how advances in CPS can integrate these technologies to improve health outcomes.

These new NSF-funded projects will investigate two very different ways that CPS can be used in the biological and medical realms.

A May 12, 2015 NSF news release (also on EurekAlert), which originated the news item, describes the two CPS projects,

Bio-CPS for engineering living cells

A team of leading computer scientists, roboticists and biologists from Boston University, the University of Pennsylvania and MIT have come together to develop a system that combines the capabilities of nano-scale robots with specially designed synthetic organisms. Together, they believe this hybrid “bio-CPS” will be capable of performing heretofore impossible functions, from microscopic assembly to cell sensing within the body.

“We bring together synthetic biology and micron-scale robotics to engineer the emergence of desired behaviors in populations of bacterial and mammalian cells,” said Calin Belta, a professor of mechanical engineering, systems engineering and bioinformatics at Boston University and principal investigator on the project. “This project will impact several application areas ranging from tissue engineering to drug development.”

The project builds on previous research by each team member in diverse disciplines and early proof-of-concept designs of bio-CPS. According to the team, the research is also driven by recent advances in the emerging field of synthetic biology, in particular the ability to rapidly incorporate new capabilities into simple cells. Researchers so far have not been able to control and coordinate the behavior of synthetic cells in isolation, but the introduction of microrobots that can be externally controlled may be transformative.

In this new project, the team will focus on bio-CPS with the ability to sense, transport and work together. As a demonstration of their idea, they will develop teams of synthetic cell/microrobot hybrids capable of constructing a complex, fabric-like surface.

Vijay Kumar (University of Pennsylvania), Ron Weiss (MIT), and Douglas Densmore (BU) are co-investigators of the project.

Medical-CPS and the ‘Cyberheart’

CPS such as wearable sensors and implantable devices are already being used to assess health, improve quality of life, provide cost-effective care and potentially speed up disease diagnosis and prevention. [emphasis mine]

Extending these efforts, researchers from seven leading universities and centers are working together to develop far more realistic cardiac and device models than currently exist. This so-called “Cyberheart” platform can be used to test and validate medical devices faster and at a far lower cost than existing methods. CyberHeart also can be used to design safe, patient-specific device therapies, thereby lowering the risk to the patient.

“Innovative ‘virtual’ design methodologies for implantable cardiac medical devices will speed device development and yield safer, more effective devices and device-based therapies, than is currently possible,” said Scott Smolka, a professor of computer science at Stony Brook University and one of the principal investigators on the award.

The group’s approach combines patient-specific computational models of heart dynamics with advanced mathematical techniques for analyzing how these models interact with medical devices. The analytical techniques can be used to detect potential flaws in device behavior early on during the device-design phase, before animal and human trials begin. They also can be used in a clinical setting to optimize device settings on a patient-by-patient basis before devices are implanted.

“We believe that our coordinated, multi-disciplinary approach, which balances theoretical, experimental and practical concerns, will yield transformational results in medical-device design and foundations of cyber-physical system verification,” Smolka said.

The team will develop virtual device models which can be coupled together with virtual heart models to realize a full virtual development platform that can be subjected to computational analysis and simulation techniques. Moreover, they are working with experimentalists who will study the behavior of virtual and actual devices on animals’ hearts.

Co-investigators on the project include Edmund Clarke (Carnegie Mellon University), Elizabeth Cherry (Rochester Institute of Technology), W. Rance Cleaveland (University of Maryland), Flavio Fenton (Georgia Tech), Rahul Mangharam (University of Pennsylvania), Arnab Ray (Fraunhofer Center for Experimental Software Engineering [Germany]) and James Glimm and Radu Grosu (Stony Brook University). Richard A. Gray of the U.S. Food and Drug Administration is another key contributor.

It is fascinating to observe how terminology is shifting from pacemakers and deep brain stimulators as implants to “CPS such as wearable sensors and implantable devices … .” A new category has been created, CPS, which conjoins medical devices with other sensing devices such as wearable fitness monitors found in the consumer market. I imagine it’s an attempt to quell fears about injecting strange things into or adding strange things to your body—microrobots and nanorobots partially derived from synthetic biology research which are “… capable of performing heretofore impossible functions, from microscopic assembly to cell sensing within the body.” They’ve also sneaked in a reference to synthetic biology, an area of research where some concerns have been expressed, from my March 19, 2013 post about a poll and synthetic biology concerns,

In our latest survey, conducted in January 2013, three-fourths of respondents say they have heard little or nothing about synthetic biology, a level consistent with that measured in 2010. While initial impressions about the science are largely undefined, these feelings do not necessarily become more positive as respondents learn more. The public has mixed reactions to specific synthetic biology applications, and almost one-third of respondents favor a ban “on synthetic biology research until we better understand its implications and risks,” while 61 percent think the science should move forward.

I imagine that for scientists, 61% in favour of more research is not particularly comforting given how easily and quickly public opinion can shift.

Université de Montréal (Canada) and nanobots breech blood-brain barrier to deliver drugs to the brain

In the spirit of full disclosure, the March 25, 2014 news item on ScienceDaily describing the research about breeching the blood-brain barrier uses the term nanorobotic agents rather than nanobots, a term which makes my headline a lot catchier although less accurate. Getting back to the research,

Magnetic nanoparticles can open the blood-brain barrier and deliver molecules directly to the brain, say researchers from the University of Montreal, Polytechnique Montréal, and CHU Sainte-Justine. This barrier runs inside almost all vessels in the brain and protects it from elements circulating in the blood that may be toxic to the brain. The research is important as currently 98% of therapeutic molecules are also unable to cross the blood-brain barrier.

“The barrier is temporary [sic] opened at a desired location for approximately 2 hours by a small elevation of the temperature generated by the nanoparticles when exposed to a radio-frequency field,” explained first author and co-inventor Seyed Nasrollah Tabatabaei. “Our tests revealed that this technique is not associated with any inflammation of the brain. This new result could lead to a breakthrough in the way nanoparticles are used in the treatment and diagnosis of brain diseases,” explained the co-investigator, Hélène Girouard. “At the present time, surgery is the only way to treat patients with brain disorders. Moreover, while surgeons are able to operate to remove certain kinds of tumors, some disorders are located in the brain stem, amongst nerves, making surgery impossible,” added collaborator and senior author Anne-Sophie Carret.

A March 25, 2015 University of Montreal news release (also on EurekAlert), which originated the news item, notes that the technique was tested or rats or mice (murine model) and explains how the technology breeches the blood-brain barrier,

Although the technology was developed using murine models and has not yet been tested in humans, the researchers are confident that future research will enable its use in people. “Building on earlier findings and drawing on the global effort of an interdisciplinary team of researchers, this technology proposes a modern version of the vision described almost 40 years ago in the movie Fantastic Voyage, where a miniature submarine navigated in the vascular network to reach a specific region of the brain,” said principal investigator Sylvain Martel. In earlier research, Martel and his team had managed to manipulate the movement of nanoparticles through the body using the magnetic forces generated by magnetic resonance imaging (MRI) machines.

To open the blood-brain barrier, the magnetic nanoparticles are sent to the surface of the blood-brain barrier at a desired location in the brain. Although it was not the technique used in this study, the placement could be achieved by using the MRI technology described above. Then, the researchers generated a radio-frequency field. The nanoparticles reacted to the radio-frequency field by dissipating heat thereby creating a mechanical stress on the barrier. This allows a temporary and localized opening of the barrier for diffusion of therapeutics into the brain.

The technique is unique in many ways. “The result is quite significant since we showed in previous experiments that the same nanoparticles can also be used to navigate therapeutic agents in the vascular network using a clinical MRI scanner,” Martel remarked. “Linking the navigation capability with these new results would allow therapeutics to be delivered directly to a specific site of the brain, potentially improving significantly the efficacy of the treatment while avoiding systemic circulation of toxic agents that affect healthy tissues and organs,” Carret added. “While other techniques have been developed for delivering drugs to the blood-brain barrier, they either open it too wide, exposing the brain to great risks, or they are not precise enough, leading to scattering of the drugs and possible unwanted side effect,” Martel said.

Although there are many hurdles to overcome before the technology can be used to treat humans, the research team is optimistic. “Although our current results are only proof of concept, we are on the way to achieving our goal of developing a local drug delivery mechanism that will be able to treat oncologic, psychiatric, neurological and neurodegenerative disorders, amongst others,” Carret concluded.

Here’s a link to and a citation for the paper,

Remote control of the permeability of the blood–brain barrier by magnetic heating of nanoparticles: A proof of concept for brain drug delivery by Seyed Nasrollah Tabatabaei, Hélène Girouard, Anne-Sophie Carret, and Sylvain Martel.Journal of Controlled Release, Volume 206, 28 May 2015, Pages 49–57,  DOI: 10.1016/j.jconrel.2015.02.027  Available online 25 February 2015

This paper is behind a paywall.

For anyone unfamiliar with French, University of Montreal is Université de Montréal.

Maybe nano drug delivery not so magical after all?

There’s a lot of talk about the potential for a better way to treat disease with more accurate delivery of nanoparticle-based medicines to specific areas that need the treatment. For example, current treatments which shrink and eliminate cancer tumours also destroy healthy tissue and often have deleterious side effects while a nanoparticle-based treatment could seek out and eliminate the tumour only with few or no side effects. However, new research suggests that tumours may be more complex than previously understood.

From a Jan. 14, 2015 news item on Azonano,

Nanoparticle drugs–tiny containers packed with medicine and with the potential to be shipped straight to tumors–were thought to be a possible silver bullet against cancer. However new cancer drugs based on nanoparticles have not improved overall survival rates for cancer patients very much. Scientists at the University of North Carolina at Chapel Hill now think that failure may have less to do with the drugs and tumors than it does the tumor’s immediate surroundings.

The work, published in Clinical Cancer Research, merges relatively old and new ideas in cancer treatment, on one hand underscoring the importance of personalized medicine and on the other, reinforcing a relatively new idea that the tumor microenvironment might affect the delivery of drugs to tumors – a factor that may alter drug delivery from person to person, from cancer to cancer and even from tumor to tumor.

A Jan. 13, 2015 University of North Carolina news release (also on EurekAlert), which originated the news item, provides more details about the research,

“Tumors create bad neighborhoods,” said William Zamboni, the study’s senior author and an associate professor at the UNC Eshelman School of Pharmacy. “They spawn leaky, jumbled blood vessels that are like broken streets, blind alleys and busted sewers. There are vacant lots densely overgrown with collagen fibers. Immune-system cells patrolling the streets might be good guys turned bad, actually working for the tumor. And we’re trying to get a large truckload of medicine through all of that.”

In their work, Zamboni and colleagues from the UNC Lineberger Comprehensive Cancer Center and the UNC School of Medicine joined forces to see how much of the standard small-molecule cancer drug doxorubicin and its nanoparticle version, Doxil, actually made it into two varieties of triple-negative breast-cancer tumor models created by UNC’s Chuck Perou, the May Goldman Shaw Distinguished Professor of Molecular Oncology at the UNC School of Medicine and a professor at UNC Lineberger. Triple-negative breast cancer accounts for 10 to 17 percent of cases and has a poorer prognosis than other types of breast cancer.

At first, what they saw was no surprise: significantly more of the nanodrug Doxil made it into both triple-negative breast-cancer tumors compared with the standard small-molecule doxorubicin. “That’s nothing new,” Zamboni said. “We’ve seen that for twenty years.” They also saw the same amount of doxorubin in both tumors.

What did surprise them was that significantly more of the nanodrug Doxil – twice as much – was delivered to the C3-TAg triple-negative breast cancer tumor than to the T11 triple-negative breast cancer tumor.

“These tumors are subtypes of a subtype of one kind of cancer and are relatively closely related,” said Zamboni. “If the differences in delivering nanoagents to these two tumors are so significant, we can only imagine what the differences might be between breast cancer and lung cancer.”

Zamboni and his team suggest that better profiling of tumors and their microenvironments would allow doctors not only to better identify patients who would most benefit from nanoparticle-based cancer therapy, but also that clinicians may need to learn more about a patient’s tumor before prescribing treatment with one of the newer nanoparticle drugs.

This work gives the Israeli project I wrote about in my Jan. 7, 2015 post regarding a human clinical trial of nanobot delivery of a drug treatment (the world’s first) a new perspective. As a medical writer friend of mine (Susan Baxter) notes, these things are always more complicated than we think they’ll be and she adds tumours change over time.

Given how often we’ve discovered the human body is a complex, interwoven set of ecosystems, it’s perplexing that so much of the discussion around treatment is still  reductionist, i.e., drug kill tumour.

Getting back to this current research, here’s a link to and a citation for the paper,

Effects of Tumor Microenvironment Heterogeneity on Nanoparticle Disposition and Efficacy in Breast Cancer Tumor Models by Gina Song, David B. Darr, Charlene M. Santos, Mark Ross, Alain Valdivia, Jamie L. Jordan, Bentley R. Midkiff, Stephanie Cohen, Nana Nikolaishvili-Feinberg, C. Ryan Miller, Teresa K. Tarrant, Arlin B. Rogers, Andrew C. Dudley, Charles M. Perou, and William C. Zamboni. CCR-14-0493 Clin Cancer Res December 1, 2014 20 6083 doi: 10.1158/1078-0432 Published Online First September 17, 2014

This paper is behind a paywall of sorts. I haven’t seen this particular designation before but in addition to purchasing a subscription or short term access, there’s an option called: “patientACCESS – Patients/Caregivers desiring access to articles.” I’m not sure if that’s fee-based or not.

Surgical nanobots to be tested in humans in 2015?

Thanks to James Lewis at the Foresight’s Institute blog and his Jan. 6, 2015 posting about an an announcement of human clinical trials for surgical nanobots (Note: Links have been removed),

… as structural DNA nanotechnology rapidly expanded the repertoire of atomically precise nanostructures that can be fabricated, it became possible to fabricate functional DNA nanostructures incorporating logic gates to deliver and release molecular cargo for medical applications, as we reported a couple years ago (DNA nanotechnology-based nanorobot delivers cell suicide message to cancer cells). More recently, DNA nanorobots have been coated with lipid to survive immune attack inside the body.

Lewis then notes this (Note: A link has been removed),

 … “Ido Bachelet announces 2015 human trial of DNA nanobots to fight cancer and soon to repair spinal cords“:

At the British Friends of Bar-Ilan University’s event in Otto Uomo October 2014 Professor Ido Bachelet announced the beginning of the human treatment with nanomedicine. He indicates DNA nanobots can currently identify cells in humans with 12 different types of cancer tumors.

A human patient with late stage leukemia will be given DNA nanobot treatment. Without the DNA nanobot treatment the patient would be expected to die in the summer of 2015. Based upon animal trials they expect to remove the cancer within one month.

The information was excerpted from Brian Wang’s Dec. 27, 2014 post on his Nextbigfuture blog,

One Trillion 50 nanometer nanobots in a syringe will be injected into people to perform cellular surgery.

The DNA nanobots have been tuned to not cause an immune response. They have been adjusted for different kinds of medical procedures. Procedures can be quick or ones that last many days.

Using DNA origami and molecular programming, they are reality. These nanobots can seek and kill cancer cells, mimic social insect behaviors, carry out logical operators like a computer in a living animal, and they can be controlled from an Xbox. Ido Bachelet from the bio-design lab at Bar Ilan University explains this technology and how it will change medicine in the near future.

I advise reading both Wang’s and Lewis’ posts in their entirety. To give you a sense of how their posts differ (Lewis is more technical), I solicited information from the websites hosting their blog postings.

Here’s more about Wang from the About page on the Nextbigfuture blog,

Brian L. Wang, M.B.A. is a long time futurist. A lecturer at the Singularity University and Nextbigfuture.com author. He worked on the most recent ten year plan for the Institute for the Future and at a two day Institute for the Future workshop with Universities and City planners in Hong Kong (advising the city of Hong Kong on their future plans). He had a TEDx lecture on Energy. Brian is available as a speaker for corporations and organizations that value accurate and detailed insight into the development of technology global trends.

Lewis provides a contrast (from the About page listing Lewis on the Foresight Institute website),

Jim received a B.A. in chemistry from the University of Pennsylvania in 1967, an M.A. in chemistry from Harvard University in 1968, and a Ph.D. in chemistry, from Harvard University in 1972. After doing postdoctoral research at the Swiss Institute for Experimental Cancer Research, Lausanne, Switzerland, from 1971-1973, Jim did research in the molecular biology of tumor viruses at Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, from 1973-1980, first as a postdoctoral researcher, and then as a Staff Investigator and Senior Staff Investigator. He continued his research as an Associate Member, Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, from 1980-1988, and then joined the Bristol-Myers Squibb Pharmaceutical Research Institute in Seattle, WA, as a Senior Research Investigator from 1988-1996. Since 1996 he has been working as a consultant on nanotechnology.

Getting back to Bachelet, his team’s work, a precursor for this latest initiative, has been featured here before in an April 11, 2014 post,

This latest cockroach item, which concerns new therapeutic approaches, comes from an April 8, 2014 article by Sarah Spickernell for New Scientist (Note: A link has been removed),

It’s a computer – inside a cockroach. Nano-sized entities made of DNA that are able to perform the same kind of logic operations as a silicon-based computer have been introduced into a living animal.

Ido Bachelet can be seen in this February 2014 video describing the proposed surgical nanobots,

Bar-Ilan University where Bachelet works is located in Israel. You can find more information about this work and more on the Research group for Bio-Design website.

Molecular robots (nanobots/nanorobots): a promising start at Oxford University

‘Baby steps’ is how they are describing the motion and the breakthrough in functional molecular robots at the University of Oxford. From a Dec. 11, 2014 news item on phys.org,

A walking molecule, so small that it cannot be observed directly with a microscope, has been recorded taking its first nanometre-sized steps.

It’s the first time that anyone has shown in real time that such a tiny object – termed a ‘small molecule walker’ – has taken a series of steps. The breakthrough, made by Oxford University chemists, is a significant milestone on the long road towards developing ‘nanorobots’.

‘In the future we can imagine tiny machines that could fetch and carry cargo the size of individual molecules, which can be used as building blocks of more complicated molecular machines; imagine tiny tweezers operating inside cells,’ said Dr Gokce Su Pulcu of Oxford University’s Department of Chemistry. ‘The ultimate goal is to use molecular walkers to form nanotransport networks,’ she says.

A Dec. 10, 2014 University of Oxford science blog post by Pete Wilton, which originated the news item, describes one of the problem with nanorobots,

However, before nanorobots can run they first have to walk. As Su explains, proving this is no easy task.

For years now researchers have shown that moving machines and walkers can be built out of DNA. But, relatively speaking, DNA is much larger than small molecule walkers and DNA machines only work in water.

The big problem is that microscopes can only detect moving objects down to the level of 10–20 nanometres. This means that small molecule walkers, whose strides are 1 nanometre long, can only be detected after taking around 10 or 15 steps. It would therefore be impossible to tell with a microscope whether a walker had ‘jumped’ or ‘floated’ to a new location rather than taken all the intermediate steps.

The post then describes how the researchers solved the problem,

… Su and her colleagues at Oxford’s Bayley Group took a new approach to detecting a walker’s every step in real time. Their solution? To build a walker from an arsenic-containing molecule and detect its motion on a track built inside a nanopore.

Nanopores are already the foundation of pioneering DNA sequencing technology developed by the Bayley Group and spinout company Oxford Nanopore Technologies. Here, tiny protein pores detect molecules passing through them. Each base disrupts an electric current passed through the nanopore by a different amount so that the DNA base ‘letters’ (A, C, G or T) can be read.

In this new research, they used a nanopore containing a track formed of five ‘footholds’ to detect how a walker was moving across it.

‘We can’t ‘see’ the walker moving, but by mapping changes in the ionic current flowing through the pore as the molecule moves from foothold to foothold we are able to chart how it is stepping from one to the other and back again,’ Su explains.

To ensure that the walker doesn’t float away, they designed it to have ‘feet’ that stick to the track by making and breaking chemical bonds. Su says: ‘It’s a bit like stepping on a carpet with glue under your shoes: with each step the walker’s foot sticks and then unsticks so that it can move to the next foothold.’ This approach could make it possible to design a machine that can walk on a variety of surfaces.

There is a video illustrating the molecular walker’s motion, (courtesy University of Oxford),

There is as noted in Wilton’s post, more work to do,

It’s quite an achievement for such a tiny machine but, as Su is the first to admit, there are many more challenges to be overcome before programmable nanorobots are a reality.

‘At the moment we don’t have much control over which direction the walker moves in; it moves pretty randomly,’ Su tells me. ‘The protein track is a bit like a mountain slope; there’s a direction that’s easier to walk in so walkers will tend to go this way. We hope to be able to harness this preference to build tracks that direct a walker where we want it to go.’

The next challenge after that will be for a walker to make itself useful by, for instance, carrying a cargo: there’s already space for it to carry a molecule on its ‘head’ that it could then take to a desired location to accomplish a task.

Su comments: ‘We should be able to engineer a surface where we can control the movement of these walkers and observe them under a microscope through the way they interact with a very thin fluorescent layer. This would make it possible to design chips with different stations with walkers ferrying cargo between these stations; so the beginnings of a nanotransport system.’

These are the first tentative baby steps of a new technology, but they promise that there could be much bigger strides to come.

Here’s a link to and a citation for the research paper,

Continuous observation of the stochastic motion of an individual small-molecule walker by Gökçe Su Pulcu, Ellina Mikhailova, Lai-Sheung Choi, & Hagan Bayley. Nature Nanotechnology (2014) doi:10.1038/nnano.2014.264 Published online 08 December 2014

This paper is behind a paywall.

Medical nanobots (nanorobots) and biocomputing; an important step in Russia

Russian researchers have reported a technique which can make logical calculations from within cells according to an Aug. 19, 2014 news item on ScienceDaily,

Researchers from the Institute of General Physics of the Russian Academy of Sciences, the Institute of Bioorganic Chemistry of the Russian Academy of Sciences and MIPT [Moscow Institute of Physics and Technology] have made an important step towards creating medical nanorobots. They discovered a way of enabling nano- and microparticles to produce logical calculations using a variety of biochemical reactions.

An Aug. 19 (?), 2014 MIPT press release, which originated the news item, provides a good beginner’s explanation of bioengineering in the context of this research,

For example, modern bioengineering techniques allow for making a cell illuminate with different colors or even programming it to die, linking the initiation  of apoptosis [cell death] to the result of binary operations.

Many scientists believe logical operations inside cells or in artificial biomolecular systems to be a way of controlling biological processes and creating full-fledged micro-and nano-robots, which can, for example, deliver drugs on schedule to those tissues where they are needed.

Calculations using biomolecules inside cells, a.k.a. biocomputing, are a very promising and rapidly developing branch of science, according to the leading author of the study, Maxim Nikitin, a 2010 graduate of MIPT’s Department of Biological and Medical Physics. Biocomputing uses natural cellular mechanisms. It is far more difficult, however, to do calculations outside cells, where there are no natural structures that could help carry out calculations. The new study focuses specifically on extracellular biocomputing.

The study paves the way for a number of biomedical technologies and differs significantly from previous works in biocomputing, which focus on both the outside and inside of cells. Scientists from across the globe have been researching binary operations in DNA, RNA and proteins for over a decade now, but Maxim Nikitin and his colleagues were the first to propose and experimentally confirm a method to transform almost any type of nanoparticle or microparticle into autonomous biocomputing structures that are capable of implementing a functionally complete set of Boolean logic gates (YES, NOT, AND and OR) and binding to a target (such as a cell) as result of a computation. This method allows for selective binding to target cells, as well as it represents a new platform to analyze blood and other biological materials.

The prefix “nano” in this case is not a fad or a mere formality. A decrease in particle size sometimes leads to drastic changes in the physical and chemical properties of a substance. The smaller the size, the greater the reactivity; very small semiconductor particles, for example, may produce fluorescent light. The new research project used nanoparticles (i.e. particles of 100 nm) and microparticles (3000 nm or 3 micrometers).

Nanoparticles were coated with a special layer, which “disintegrated” in different ways when exposed to different combinations of signals. A signal here is the interaction of nanoparticles with a particular substance. For example, to implement the logical operation “AND” a spherical nanoparticle was coated with a layer of molecules, which held a layer of spheres of a smaller diameter around it. The molecules holding the outer shell were of two types, each type reacting only to a particular signal; when in contact with two different substances small spheres separated from the surface of a nanoparticle of a larger diameter. Removing the outer layer exposed the active parts of the inner particle, and it was then able to interact with its target. Thus, the team obtained one signal in response to two signals.

For bonding nanoparticles, the researchers selected antibodies. This also distinguishes their project from a number of previous studies in biocomputing, which used DNA or RNA for logical operations. These natural proteins of the immune system have a small active region, which responds only to certain molecules; the body uses the high selectivity of antibodies to recognize and neutralize bacteria and other pathogens.

Making sure that the combination of different types of nanoparticles and antibodies makes it possible to implement various kinds of logical operations, the researchers showed that cancer cells can be specifically targeted as well. The team obtained not simply nanoparticles that can bind to certain types of cells, but particles that look for target cells when both of two different conditions are met, or when two different molecules are present or absent. This additional control may come in handy for more accurate destruction of cancer cells with minimal impact on healthy tissues and organs.

Maxim Nikitin said that although this is just as mall step towards creating efficient nanobiorobots, this area of science is very interesting and opens up great vistas for further research, if one draws an analogy between the first works in the creation of nanobiocomputers and the creation of the first diodes and transistors, which resulted in the rapid development of electronic computers.

Here’s a link to and a citation for the paper,

Biocomputing based on particle disassembly by Maxim P. Nikitin, Victoria O. Shipunova, Sergey M. Deyev, & Petr I. Nikitin. Nature Nanotechnology (2014) doi:10.1038/nnano.2014.156 Published online 17 August 2014

This paper is behind a paywall.

University of Alberta (Canada) student nanorobotics team demonstrates potential medical technology in competitiion

A University of Alberta (Canada) nanorobotics team has entered its nanobot system into the International Mobile Micro/nanorobotics Competition in Karlsruhe, Germany, as part of the ICRA Robot Challenges at the IEEE (Institute of Electrical and Electronics Engineers) International Conference on Robotics and Automation (ICRA) being held May 6 – 10, 2013 in Karlsruhe, Germany. From the May 6, 2013 news item on Nanowerk,

A team of engineering students is putting a twist on robotics, developing a nano-scale robotics system that could lead to new medical therapies.

In less than a year, the U of A team has assembled a working system that manipulates nano-scale ‘robots’. The team uses magnets to manipulate a droplet filled with iron oxide nanoparticles. Barely visible to the naked eye, the droplet measures 400-500 micrometres.

The May 3, 2013 University of Alberta news release by Richard Cairney, which originated the news item, describes the system,

Using a joystick, team members control the robot, making it travel along a specific route, navigate an obstacle course or to push micro-sized objects from one point to another.

The challenge is simple in concept but highly technical and challenging to execute: the team first injects a water droplet with iron oxide nanoparticles into into oil. The droplet holds its shape because it is encased in a surfactant—a soap-like formula that repels water on one side and attracts water on the other.

“It’s like a capsule,” said team member Yang Gao, who is working on her master’s degree in chemical engineering. “It’s a vehicle for the nanoparticles.”

The iron-filled droplet is placed in a playing ‘field’ measuring 2 x 3 millimetres. The team uses four magnets mounted each side of the rectangular field to move the droplet in a figure-8, manoeuvring it through four gates built into the field.

“We use the magnets to pull the droplet,” explains electrical engineering PhD student Remko van den Hurk.

In a second challenge, the team will be required to use the droplet as a bulldozer of sorts, to arrange micro-scale objects that measure 200 x 300 micrometres into a particular order on an even smaller playing field.

The competition has its serious side, these nanobots could one day be used in medical applications.

In the meantime there’s the competition, good luck!

Swarming robot droplets

The robot droplets are a bit bigger than you might expect, the size of ping pong balls, but the idea is intriguing and for those who’ve read Michael Crichton’s book, Prey, it could seem quite disturbing (from the University of Colorado Boulder multimedia page for ‘tiny robots’),

For anyone unfamiliar with Crichton’s Prey, here’s an excerpt from the Wikipedia entry about the book which features nanobots operating as a swarm,

… As a result, hazardous elements such as the assemblers, the bacteria, and the nanobots were blown into the desert, evolving and eventually forming autonomous swarms. These swarms appear to be solar-powered and self-sufficient, reproducing and evolving rapidly. The swarms exhibit predatory behavior, attacking and killing animals in the wild, using code that Jack himself worked on. Most alarmingly, the swarms seem to possess rudimentary intelligence, the ability to quickly learn and to innovate. The swarms tend to wander around the fab plant during the day but quickly leave when strong winds blow or night falls.

The Dec. 14, 2012 posting by Alan on the Science Business website describes,

A computer science lab at University of Colorado in Boulder is building a miniature, limited-function robot designed to work in a swarm of similar devices. Computer science professor Nikolaus Correll and colleagues are building these small devices that they call droplets as building blocks for increasingly complex systems.

A University of Colorado Boulder Dec. 14, 2012 news release provides more details,

Correll and his computer science research team, including research associate Dustin Reishus and professional research assistant Nick Farrow, have developed a basic robotic building block, which he hopes to reproduce in large quantities to develop increasingly complex systems.

Recently the team created a swarm of 20 robots, each the size of a pingpong ball, which they call “droplets.” When the droplets swarm together, Correll said, they form a “liquid that thinks.”

To accelerate the pace of innovation, he has created a lab where students can explore and develop new applications of robotics with basic, inexpensive tools.

Similar to the fictional “nanomorphs” depicted in the “Terminator” films, large swarms of intelligent robotic devices could be used for a range of tasks. Swarms of robots could be unleashed to contain an oil spill or to self-assemble into a piece of hardware after being launched separately into space, Correll said.

Correll plans to use the droplets to demonstrate self-assembly and swarm-intelligent behaviors such as pattern recognition, sensor-based motion and adaptive shape change. These behaviors could then be transferred to large swarms for water- or air-based tasks.

Correll hopes to create a design methodology for aggregating the droplets into more complex behaviors such as assembling parts of a large space telescope or an aircraft.

There’s also talk about creating gardens in space,

He [Correll] also is continuing work on robotic garden technology he developed at the Massachusetts Institute of Technology in 2009. Correll has been working with Joseph Tanner in CU-Boulder’s aerospace engineering sciences department to further develop the technology, involving autonomous sensors and robots that can tend gardens, in conjunction with a model of a long-term space habitat being built by students.

Correll says there is virtually no limit to what might be created through distributed intelligence systems.

“Every living organism is made from a swarm of collaborating cells,” he said. “Perhaps some day, our swarms will colonize space where they will assemble habitats and lush gardens for future space explorers.”

The scientists don’t seem to harbour any trepidations, I guess they’re leaving that to the writers.