Tag Archives: Nanoclays mediate stem cell differentiation and mineralized ECM formation on biopolymer scaffolds

Red River Valley clay turned into bones at North Dakota State University

A May 30, 2013 news item on Nanowerk highlights the Katti Group’s (at North Dakota State University [NDSU], US) research using clay from the Red River Valley as scaffolding for tissue engineering projects involving bone. From the news item (Note: A link has been removed),

Weak bones, broken bones, damaged bones, arthritic bones. Whether damaged by injury, disease or age, your body can’t create new bone, but maybe science can. Researchers at North Dakota State University, Fargo, are making strides in tissue engineering, designing scaffolds that may lead to ways to regenerate bone. Published in the Journal of Biomedical Materials Research Part A (“Nanoclays mediate stem cell differentiation and mineralized ECM formation on biopolymer scaffolds”), the research of Dr. Kalpana Katti, Dr. Dinesh Katti and graduate student Avinash Ambre includes a novel method that uses nanosized clays to make scaffolds to mineralize bone minerals such as hydroxyapatite.

The North Dakota State University May 30, 2013 news release, which originated the news item, explains (Note: A link has been removed),

The NDSU research team’s 3-D mesh scaffold is comprised of degradable materials that are compatible to human tissue. Over time, the cells generate bone and the scaffold deteriorates. As indicated in the NDSU team’s published scientific research from 2008 to 2013, the nanoclays enhance the mechanical properties of the scaffold by enabling scaffold to bear load while bone generates. An interesting finding by the Katti group shows that the nanoclays also impart useful biological properties to the scaffold.

“The biomineralized nanoclays also impart osteogenic or bone-forming abilities to the scaffold to enable birth of bone,” said Dr. Kalpana Katti, Distinguished Professor of civil engineering at NDSU. “Although it would have been exciting to say that this finding had a ‘Eureka moment,’ this discovery was a methodical exploration of simulations and modeling, indicating that amino acid modified nanoclays are viable new nanomaterials,” said Katti. The work was initially published in the Journal of Biomacromolecules in 2005. The current research findings in 2013 point toward the potential use of nanoclays for broader applications in medicine.

The NDSU’s group most recent study in the Journal of Biomedical Materials Research Part A reports that nanoclays mediate human cell differentiation into bone cells and grow bone. The Katti research group uses amino acids, the building blocks of life, to modify clay structures and the modified nanoclays coax new bone growth. “Our current research studies underway involve the use of bioreactors that mimic fluid/blood flow in the human body during bone tissue regeneration,” said Dr. Kalpana Katti.

Here’s a citation for and a link to the Katti Group’s latest published paper (from the press release),

Nanoclays mediate stem cell differentiation and mineralized ECM formation on biopolymer scaffolds
Journal of Biomedical Materials Research Part A
Avinash H. Ambre, Dinesh R. Katti and Kalpana S. Katti Article first published online : 15 FEB 2013, DOI: 10.1002/jbm.a.34561

This paper is behind a paywall.