Tag Archives: NanoDefine

Nanosafety Cluster newsletter—excerpts from the Spring 2016 issue

The European Commission’s NanoSafety Cluster Newsletter (no.7) Spring 2016 edition is some 50 pp. long and it provides a roundup of activities and forthcoming events. Here are a few excerpts,

“Closer to the Market” Roadmap (CTTM) now finalised

Hot off the press! the Cluster’s “Closer to the Market” Roadmap (CTTM)  is  a  multi-dimensional,  stepwise  plan  targeting  a framework to deliver safe nano-enabled products to the market. After some years of discussions, several consultations of a huge number of experts in the nanosafety-field, conferences at which the issue of market implementation of nanotechnologies was talked  about,  writing  hours/days,  and  finally  two public consultation rounds, the CTTM is now finalized.

As stated in the Executive Summary: “Nano-products and nano-enabled applications need a clear and easy-to-follow human and environmental safety framework for the development along the innovation chain from initial idea to market and beyond that facilitates  navigation  through  the  complex  regulatory and approval processes under which different product categories fall.

Download it here, and get involved in its implementation through the Cluster!
Authors: Andreas Falk* 1, Christa Schimpel1, Andrea Haase3, Benoît Hazebrouck4, Carlos Fito López5, Adriele Prina-Mello6, Kai Savolainen7, Adriënne Sips8, Jesús M. Lopez de Ipiña10, Iseult Lynch11, Costas Charitidis12, Visser Germ13

NanoDefine hosts Synergy Workshop with NSC projects

NanoDefine  organised  the  2nd Nanosafety  Cluster  (NSC)  Synergy Workshop  at  the  Netherlands  House  for Education  and  Research  in Brussels  on  2nd  February  2016. The  aim  was  to  identify  overlaps and synergies existing between different projects that could develop into
outstanding cooperation opportunities.

One central issue was the building of a common ontology and a European framework for data management and analysis, as planned within eNanoMapper, to facilitate a closer interdisciplinary collaboration between  NSC projects and to better address the need for proper data storage, analysis and sharing (Open Access).

Unexpectedly, there’s a Canadian connection,

Discovering protocols for nanoparticles: the soils case
NanoFASE WP7 & NanoSafety Cluster WG3 Exposure

In NanoFASE, of course, we focus on the exposure to nanomaterials. Having consistent and meaningful protocols to characterize the fate of nanomaterials in different environments is therefore of great interest to us. Soils and sediments are in this respect very cumbersome. Also in the case of conventional chemicals has the development of  protocols for fate description in terrestrial systems been a long route.

The special considerations of nanomaterials make this job even harder. For instance, how does one handle the fact that the interaction between soils and nanoparticles is always out of equilibrium? How does one distinguish between the nanoparticles that are still mobile and those that are attached to soil?

In the case of conventional chemicals, a single measurement of a filtered soil suspension often suffices to find the mobile fraction, as long one is sure that equilibrium has been attained. Equilibrium never occurs in the case of  nanoparticles, and the distinction between attached/suspended particles is analytically less clear to do.

Current activity in NanoFASE is focusing at finding protocols to characterize this interaction. Not only does the protocol have to provide meaningful parameters that can be used, e.g. in modelling, but also the method itself should be fast and cheap enough so that a lot of data can be collected in a reasonable amount of time. NanoFASE is  in a good position to do this, because of its focus on fate and because of the many international collaborators.

For  instance,  the Swedish  Agricultural  University (Uppsala)  is  collaborating  with  McGill  University (Montreal, Canada [emphasis mine]), an advisory partner to NanoFASE, in developing the OECD [Organization for Economic Cooperation and Development] protocol for column tests (OECD test nr 312:  “Leaching in soil columns”). The effort is led by Yasir Sultan from Environment Canada and by Karlheinz Weinfurtner from the Frauenhofer institute in Germany. Initial results show the transport of nanomaterials in soil columns to be very limited.

The OECD protocol therefore does not often lead to measurable breakthrough curves that can be modelled to provide information about  nanomaterial  mobility  in  soils  and  most  likely  requires adaptations  to  account  for  the  relatively  low mobility  of  typical pristine nanomaterials.

OECD 312 prescribes to use 40 cm columns, which is most likely too long to show a breakthrough in the case of nanoparticles. Testing in NanoFASE will therefore focus on working with shorter columns and also investigating the effect of the flow speed.

The progress and the results of this action will be reported on our website (www.nanofase.eu).

ENM [engineered nanomaterial] Transformation in and Release from Managed Waste Streams (WP5): The NanoFASE pilot Wastewater Treatment Plant is up and running and producing sludge – soon we’ll be dosing with nanoparticles to test “real world” aging.

Now, wastewater,

ENM [engineered nanomaterial] Transformation in and Release from Managed Waste Streams (WP5): The NanoFASE pilot Wastewater Treatment Plant is up and running and producing sludge – soon we’ll be dosing with nanoparticles to test “real world” aging.

WP5 led by Ralf Kaegi of EAWAG [Swiss Federal Institute of Aquatic Science and Technology] (Switzerland) will establish transformation and release rates of ENM during their passage through different reactors. We are focusing on wastewater treatment plants (WWTPs), solid waste and dedicated sewage sludge incinerators as well as landfills (see figure below). Additionally, lab-scale experiments using pristine and well characterized materials, representing the realistic fate relevant forms at each stage, will allow us to obtain a mechanistic understanding of the transformation processes in waste treatment reactors. Our experimental results will feed directly into the development of a mathematical model describing the transformation and transfer of ENMs through the investigated reactors.

I’m including this since I’ve been following the ‘silver nanoparticle story’ for some time,

NanoMILE publication update: NanoMILE on the air and on the cover

Dramatic  differences  in  behavior  of  nano-silver during  the  initial  wash  cycle  and  for  its  further dissolution/transformation potential over time depending on detergent composition and form.

In an effort to better relate nanomaterial aging procedures to those which they are most likely to undergo during the life cycle of nano-enhanced products, in this paper we describe the various transformations which are possible when exposing Ag engineered nanoparticles (ENPs) to a suite of commercially available washing detergents (Figure 1). While Ag ENP transformation and washing of textiles has received considerable attention in recent years, our study is novel in that we (1) used several commercially available detergents allowing us to estimate the various changes possible in individual homes and commercial washing settings; (2) we have continued  method  development  of  state  of  the  art nanometrology techniques, including single particle ICP-MS, for the detection and characterization of ENPs in complex media; and (3) we were able to provide novel additions to the knowledge base of the environmental nanotechnology research community both in terms of the analytical methods (e.g. the first time ENP aggregates have been definitively analyzed via single particle ICP-MS) and broadening the scope of “real world” conditions that should be considered when understanding AgENP through their life cycle.

Our findings, which were recently published in Environmental Science and Toxicology (2015, 49: 9665), indicate that the washing detergent chemistry causes dramatic differences in ENP behavior during the initial wash cycle and has ramifications for the dissolution/transformation potential of the Ag ENPs over time (see Figure 2). The use of silver as an  antimicrobial  treatment  in  textiles  continues  to garner  considerable  attention.  Last  year  we  published  a manuscript in ACS Nano that considered how various silver treatments to textiles (conventional and nano) both release  nano-sized  material  after  the  wash  cycle  with  similar chemical  characteristics.  That  study  essentially conveyed that multiple silver treatments would become more similar through the product life cycle. Our newest  work expands this by investigating one silver ENP under various washing conditions thereby creating more varied silver products as an end result.

Fascinating stuff if you’ve been following the issues around nanotechnology and safety.

Towards the end of the newsletter on pp. 46-48, they list opportunities for partnerships, collaboration, and research posts and they list websites where you can check out job opportunities. Good Luck!

European NanoSafety Cluster issues 2014 compendium of projects

A June 16, 2014 news item on Nanowerk profiles a recently published compendium of projects from the European NanoSafety Cluster (Note:  A link has been removed),

The EU NanoSafety Cluster is an initiative to maximise the synergies between the existing FP6 and FP7 projects addressing all aspects of nanosafety including toxicology, ecotoxicology, exposure assessment, mechanisms of interaction, risk assessment and standardisation.

About fifty projects are either completed or running and represent a total RTD investment of €137M, from the NMP and other programmes, under FP6 (13 projects, €31M) and FP7 (34 projects, €106M). [FP 6 and FP 7 are the Sixth Framework Programme and /seventh Framework, respectively; European Union-wide science funding programmes,the Horizon 2020 funding project supersedes FP 7]

These projects together with a significant number of projects supported by government resources in the EU member states and the FP7 associated states, and other projects addressing safety as side objective, represent the valuable efforts of the scientific and industrial research community for progress.

Here’s a description of the compendium from p. 5 of the PDF version of the Compendium of Projects in the European NanoSafety Cluster 2014 Edition,

This is the fourth edition of the Nanosafety Cluster compendium. It documents the status of important EU-funded projects on nanomaterial toxicity and exposure monitoring, integrated risk management, research infrastructure and coordination and support activities as well as regulatory-focussed research on nanosafety.

The compendium is not intended to be a guidance document for human health and environmental safety management of nanotechnologies, as such guidance documents already exist and are widely available.

Neither is the compendium intended to be a medium for the publication of scientific data and research results, as this task is covered by scientific conferences and the peer reviewed press.

The compendium aims to showcase the exciting and important European-wide collaborative research being undertaken to ensure the safe implementation of nanotechnologies, and to act as a one-stop-shop for all stakeholders interested in acquiring an overview of current research activities.This years’ compendium contains information on 30 running (or very recently finished) projects, including new entries describing the projects resulting from the last call of FP7, including eNanoMapper, NanoDefine and FutureNanoNeeds. …

What a good idea! I wonder if there’s an equivalent for the international scene?

NanoDefine: a project for implementing the European Union’s definition for nanomaterials

Here”s an excerpt from the Dec. 13, 2013 news item on Azonano about a new consortium focused on measuring nanomaterials and, if I understand the news item rightly, refining the definition so that it can be implemented,

A 29-partner consortium of top European RTD [?] performers, metrology institutes, and nanomaterials and instrument manufacturers, gathered at a launch meeting in Wageningen, NL, [Netherlands] last month to begin the mobilisation of the critical mass of expertise required to establish the measurement tools and scientific data that help to implement the EU recommendation on the definition of a nanomaterial.

We have come a long way in exploring the full potential of nano as a key enabling technology, yet, there are still uncertainties surrounding environment, health and safety (EHS) issues and the questions that need to be addressed: what is or isn’t a nanomaterial. One challenge consists in the development of methods that reliably identify, characterize and measure nanomaterials (NM) both as substance and in various products and matrices. In responses, the European Commission has recently recommended a definition of NM as a reference to determine this (2011/696/EU).

The NanoDefine project will explicitly address this question over the next four years.

I have written about the European Union’s definition of nanomaterials in an Oct, 18, 2011 posting,

After all the ‘sturm und drang’ in the last few months (my Sept. 8, 2011 posting summarizing some of the lively discussion), a nanomaterials definition for Europe has been adopted. It is the first ‘cross-cutting’ nanomaterials definition to date according to the Oct. 18, 2011 news item on Nanowerk,

“Nanomaterials” are materials whose main constituents have a dimension of between 1 and 100 billionth of a metre, according to a Recommendation on the definition of nanomaterial (pdf) adopted by the European Commission today. The announcement marks an important step towards greater protection for citizens, clearly defining which materials need special treatment in specific legislation.

I also featured some specific critiques of the then newly proclaimed definition in an Oct. 19, 2011 posting and again in an Oct. 20, 2011 posting.

The Institute of Nanotechnology Dec. 12, 2013 news release, which originated the news item, provides more details about the NanoDefine project,

Based on a comprehensive evaluation of existing methodologies and a rigorous intra-lab and inter-lab comparison, validated measurement methods and instruments will be developed that are robust, readily implementable, cost-effective and capable to reliably measure the size of particles in the range of 1 – 100 nm, with different shapes, coatings and for the widest possible range of materials, in various complex media and products. Practical case studies will assess their applicability for various sectors, including food/feed, cosmetics etc.

One major outcome of the project will be the establishment of an integrated tiered approach including validated rapid screening methods (tier 1) and validated in depth methods (tier 2), with a user manual to guide end-users, such as manufacturers, regulatory bodies and contract laboratories, to implement the developed methodology.

NanoDefine will closely collaborate with its sister projects in the NanoSafety Cluster (www.nanosafetycluster.eu) as well as engage with international EHS, RTD and metrology initiatives. NanoDefine will also be strongly linked to main standardization bodies, such as CEN, ISO and OECD, by actively participating in Technical Commissions and Working Groups, and by proposing specific ISO/CEN work items, to integrate the developed and validated methodology into the current standardization work.

For more information:
NanoDefine: ‘Development of an integrated approach based on validated and standardized methods to support the implementation of the EC recommendation for a definition of nanomaterial’ receives funding from the European Community’s Seventh Framework Programme under grant agreement n°604347 and runs from 1/11/2013 – 31/10/2017

Visit the project website: www.nanodefine.eu (currently under construction) [as of Dec. 13, 2013 there is no landing page]
Contact the Project Coordinators:
hans.marvin@wur.nl
wim.beek@wur.nl
stefan.weigel@wur.nl
rudolf.reuther@enas-online.com

Visit the NanoSafety Cluster website: www.nanosafetycluster.eu

I have searched on this blog to see if I’ve stumbled across the Institute of Nanotechnology, located in the UK, previously but cannot find any other mentions (which may be due to the search function and my impatience for paging through apparently irrelevant search results). At any rate, here’s more about the institute from its About Us webpage (Note: Links have been removed),

Background

The Institute of Nanotechnology (IoN) was founded by Ottilia Saxl in January 1997. It is a registered Charity, whose core activities are focused on education and training in nanotechnology. It grew out of the Centre for Nanotechnology, part funded by the DTI through the UK’s National Initiative on Nanotechnology (NION). The Institute was one of the world’s first nanotechnology information providers and is now a global leader.

The Institute works closely with governments, universities, researchers, companies and the general public to educate and inform on all aspects of nanotechnology. It also organises various international scientific events, conferences and educational courses that examine the implications of nanotechnology across a wide variety of themes and sectors.

As most people know (except maybe policymakers), implementation is the tricky part of any rule, policy, and/or law and  the definitions are crucial.