Tag Archives: NanoLands

Teaching nanotechnology in 2nd Life

I’m not sure if this is “applying nanotechnology to health problems” or if it’s nanomedicine but that’s what Ananth Annapragada, Ph.D., holder of the Robert H. Graham Professorship of Entrepreneurial Biomedical Informatics and Bioengineering at the University of Texas (UT) Health School of Biomedical Informatics and fellow at the IC² Institute, an interdisciplinary research unit of The University of Texas at Austi (also on the faculty of the UTHealth Graduate School of Biomedical Sciences and UT Austin Department of Biomedical Engineering [that’s a lot of job titles]), is teaching distance education students via 2nd Life.

From the news item on Nanowerk,

When he is not teaching students how to apply nanotechnology to health problems, Annapragada is building miniaturized drug delivery systems engineered to ferry agents through the bloodstream to specific targets. His nanocarriers are so small they are measured in billionths of a meter.

“It was a leap of faith to see if this would work,” said Annapragada, who is making his teaching debut in Second Life. “I’m getting the equivalent if not better class participation.”

Annapragada likes the fact that he can gather students from different locations in the same virtual classroom at the same time. “Everyone gets the same learning experience,” he said. “It reduces a geographically-distributed student group to the same interactive common denominator.”

Beginning the three-hour class with a short lecture, he then divides students into work groups. During the next hour or so, he “turns the students loose” to work on a nano problem. He normally concludes with a lecture.

Targeted drug delivery is a hot topic in nanomedicine and was the subject of a recent class. When medicine is injected into the bloodstream, often relatively little reaches its intended target.

One nano solution being researched by Annapragada and others in the field involves packaging drugs in tiny carriers designed to bind to diseased cells. It requires extensive knowledge of the interaction between the substances on the surfaces of both the drug carrier and the diseased cell.

The students’ nano problem that day was to develop a nanocarrier for targeting brain tumors. Their homework was to come up with the specifics.

There are students from UTHealth, UT Austin, Rice University and Baylor College of Medicine. Their degree programs include biology, biomedical engineering and physics. Some are enrolled in the Nanobiology Interdisciplinary Graduate Training Program operated by the Gulf Coast Consortia. There are 25 in the class.

“This is the only nanomedicine course in the UT System that I’m aware of,” Annapragada said. “It’s appropriate that I’m using the novel methodology of Second Life. Nanomedicine is an evolving field. There is no textbook. We are writing the textbook as we go.”

I heard a presentation by Dr. DeNel Rehberg Sedo about teaching in a 2nd Life classroom at a 2007 conference for the Association of Internet Researchers. Contrary to expectations, for the most part her students in Nova Scotia (Canada) at Mount St. Vincent University did not take to 2nd Life easily nor were they were particularly enthused about the experience.

There are a number of possibilities as to why that may have been the case. (1) The students were studying communication and/or public relations programmes; subjects which may not lend themselves easily to a virtual classroom.  (2) The year 2007 would represent fairly early adoption of a new technology for the classroom  (Brava DeNel! and students!) and early adoption is always littered with setbacks and problems as students and instructors “write the textbook as they go.” (3) Students in 2007 may not have had sufficiently powerful systems for the 2nd Life environment. (I was in a student programme and found that while I had a system that was the minimum required for 2nd Life participation, the minimum just wasn’t good enough.)

Another early adopter of 2nd Life was the UK’s National Physical Laboratory. They featured a nanotechnology outreach project, Nanolands which was in part designed by Troy McConaghy, a Canadian who amongst other activities produces science exhibits in 2nd Life. (my Sept. 3 2008 interview with Troy)

I find these bits of news and information intriguing as I am fascinated by the increasing inroads that new media and social media are making into how science and technology are communicated and discussed.

Flies carry nanoparticles; EPA invites comments; scientific collaboration in virtual worlds

A new study is suggesting that flies exposed to nanoparticles in manufacturing areas or other places with heavy concentrations could accumulate the particles on their bodies and transport them elsewhere. From the media release on Nanowerk News,

During the experiments, the researchers noted that contaminated flies transferred nanoparticles to other flies, and realized that such transfer could also occur between flies and humans in the future. The transfer involved very low levels of nanoparticles, which did not have adverse effects on the fruit flies.

It makes perfect sense when you think about it. Flies pick up and transport all manner of entities so why wouldn’t they pick up nanoparticles in their vicinity?

In other news, the US Environmental Protection Agency (EPA) has asked for comments on case studies of nanoscale titanium dioxide in water treatment and sunscreens. Presumably you have to be a US citizen to participate. For more information on the call for comments, check out this item on Nanowerk News. From the item,

EPA is announcing a 45-day public comment period for the draft document, Nanomaterial Case Studies: Nanoscale Titanium Dioxide in Water Treatment and Topical Sunscreen (External Review Draft), as announced in the July 31, 2009 Federal Register Notice. The deadline for comments is September 14, 2009.

Yesterday, I came across an announcement about scientific collaboration in a virtual world (specifically Second Life). It’s the first professional scientific organization, Meta Institute for Computational Astrophysics (MICA), based entirely in a virtual world.

This idea contrasts somewhat with the NanoLands concept from the National Physical Laboratory in the UK where an organization with a physical location creates a virtual location. (You can see my interview with Troy McConaghy, part of the original NanoLands design team, here.)  The project blog seems to have been newly revived and you can find out more about NanoLands and their latest machinima movies. (If you want to see the machinima, you need a Second Life account.)

What I found particularly interesting about MICA is this bit from their media release on Physorg.com,

In addition to getting people together in a free and convenient way, virtual worlds can offer new possibilities for scientific visualization or “visual analytics.” As data sets become larger and more complex, visualization can help researchers better understand different phenomena. Virtual worlds not only offer visualization, but also enable researchers to become immersed in data and simulations, which may help scientists think differently about data and patterns. Multi-dimensional data visualization can provide further advantages for certain types of data. The researchers found that they can encode data in spaces with up to 12 dimensions, although they run into the challenge of getting the human mind to easily grasp the encoded content.

Shades of multimodal discourse! More tomorrow.