Tag Archives: nanomorphs

Swarming robot droplets

The robot droplets are a bit bigger than you might expect, the size of ping pong balls, but the idea is intriguing and for those who’ve read Michael Crichton’s book, Prey, it could seem quite disturbing (from the University of Colorado Boulder multimedia page for ‘tiny robots’),

For anyone unfamiliar with Crichton’s Prey, here’s an excerpt from the Wikipedia entry about the book which features nanobots operating as a swarm,

… As a result, hazardous elements such as the assemblers, the bacteria, and the nanobots were blown into the desert, evolving and eventually forming autonomous swarms. These swarms appear to be solar-powered and self-sufficient, reproducing and evolving rapidly. The swarms exhibit predatory behavior, attacking and killing animals in the wild, using code that Jack himself worked on. Most alarmingly, the swarms seem to possess rudimentary intelligence, the ability to quickly learn and to innovate. The swarms tend to wander around the fab plant during the day but quickly leave when strong winds blow or night falls.

The Dec. 14, 2012 posting by Alan on the Science Business website describes,

A computer science lab at University of Colorado in Boulder is building a miniature, limited-function robot designed to work in a swarm of similar devices. Computer science professor Nikolaus Correll and colleagues are building these small devices that they call droplets as building blocks for increasingly complex systems.

A University of Colorado Boulder Dec. 14, 2012 news release provides more details,

Correll and his computer science research team, including research associate Dustin Reishus and professional research assistant Nick Farrow, have developed a basic robotic building block, which he hopes to reproduce in large quantities to develop increasingly complex systems.

Recently the team created a swarm of 20 robots, each the size of a pingpong ball, which they call “droplets.” When the droplets swarm together, Correll said, they form a “liquid that thinks.”

To accelerate the pace of innovation, he has created a lab where students can explore and develop new applications of robotics with basic, inexpensive tools.

Similar to the fictional “nanomorphs” depicted in the “Terminator” films, large swarms of intelligent robotic devices could be used for a range of tasks. Swarms of robots could be unleashed to contain an oil spill or to self-assemble into a piece of hardware after being launched separately into space, Correll said.

Correll plans to use the droplets to demonstrate self-assembly and swarm-intelligent behaviors such as pattern recognition, sensor-based motion and adaptive shape change. These behaviors could then be transferred to large swarms for water- or air-based tasks.

Correll hopes to create a design methodology for aggregating the droplets into more complex behaviors such as assembling parts of a large space telescope or an aircraft.

There’s also talk about creating gardens in space,

He [Correll] also is continuing work on robotic garden technology he developed at the Massachusetts Institute of Technology in 2009. Correll has been working with Joseph Tanner in CU-Boulder’s aerospace engineering sciences department to further develop the technology, involving autonomous sensors and robots that can tend gardens, in conjunction with a model of a long-term space habitat being built by students.

Correll says there is virtually no limit to what might be created through distributed intelligence systems.

“Every living organism is made from a swarm of collaborating cells,” he said. “Perhaps some day, our swarms will colonize space where they will assemble habitats and lush gardens for future space explorers.”

The scientists don’t seem to harbour any trepidations, I guess they’re leaving that to the writers.