Tag Archives: nanopiezotronics

Cardiac pacemakers: Korea’s in vivo demonstration of a self-powered and UK’s breath-based approach

As i best I can determine ,the last mention of a self-powered pacemaker and the like on this blog was in a Nov. 5, 2012 posting (Developing self-powered batteries for pacemakers). This latest news from The Korea Advanced Institute of Science and Technology (KAIST) is, I believe, the first time that such a device has been successfully tested in vivo. From a June 23, 2014 news item on ScienceDaily,

As the number of pacemakers implanted each year reaches into the millions worldwide, improving the lifespan of pacemaker batteries has been of great concern for developers and manufacturers. Currently, pacemaker batteries last seven years on average, requiring frequent replacements, which may pose patients to a potential risk involved in medical procedures.

A research team from the Korea Advanced Institute of Science and Technology (KAIST), headed by Professor Keon Jae Lee of the Department of Materials Science and Engineering at KAIST and Professor Boyoung Joung, M.D. of the Division of Cardiology at Severance Hospital of Yonsei University, has developed a self-powered artificial cardiac pacemaker that is operated semi-permanently by a flexible piezoelectric nanogenerator.

A June 23, 2014 KAIST news release on EurekAlert, which originated the news item, provides more details,

The artificial cardiac pacemaker is widely acknowledged as medical equipment that is integrated into the human body to regulate the heartbeats through electrical stimulation to contract the cardiac muscles of people who suffer from arrhythmia. However, repeated surgeries to replace pacemaker batteries have exposed elderly patients to health risks such as infections or severe bleeding during operations.

The team’s newly designed flexible piezoelectric nanogenerator directly stimulated a living rat’s heart using electrical energy converted from the small body movements of the rat. This technology could facilitate the use of self-powered flexible energy harvesters, not only prolonging the lifetime of cardiac pacemakers but also realizing real-time heart monitoring.

The research team fabricated high-performance flexible nanogenerators utilizing a bulk single-crystal PMN-PT thin film (iBULe Photonics). The harvested energy reached up to 8.2 V and 0.22 mA by bending and pushing motions, which were high enough values to directly stimulate the rat’s heart.

Professor Keon Jae Lee said:

“For clinical purposes, the current achievement will benefit the development of self-powered cardiac pacemakers as well as prevent heart attacks via the real-time diagnosis of heart arrhythmia. In addition, the flexible piezoelectric nanogenerator could also be utilized as an electrical source for various implantable medical devices.”

This image illustrating a self-powered nanogenerator for a cardiac pacemaker has been provided by KAIST,

This picture shows that a self-powered cardiac pacemaker is enabled by a flexible piezoelectric energy harvester. Credit: KAIST

This picture shows that a self-powered cardiac pacemaker is enabled by a flexible piezoelectric energy harvester.
Credit: KAIST

Here’s a link to and a citation for the paper,

Self-Powered Cardiac Pacemaker Enabled by Flexible Single Crystalline PMN-PT Piezoelectric Energy Harvester by Geon-Tae Hwang, Hyewon Park, Jeong-Ho Lee, SeKwon Oh, Kwi-Il Park, Myunghwan Byun, Hyelim Park, Gun Ahn, Chang Kyu Jeong, Kwangsoo No, HyukSang Kwon, Sang-Goo Lee, Boyoung Joung, and Keon Jae Lee. Advanced Materials DOI: 10.1002/adma.201400562
Article first published online: 17 APR 2014

© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

This paper is behind a paywall.

There was a May 15, 2014 KAIST news release on EurekAlert announcing this same piece of research but from a technical perspective,

The energy efficiency of KAIST’s piezoelectric nanogenerator has increased by almost 40 times, one step closer toward the commercialization of flexible energy harvesters that can supply power infinitely to wearable, implantable electronic devices

NANOGENERATORS are innovative self-powered energy harvesters that convert kinetic energy created from vibrational and mechanical sources into electrical power, removing the need of external circuits or batteries for electronic devices. This innovation is vital in realizing sustainable energy generation in isolated, inaccessible, or indoor environments and even in the human body.

Nanogenerators, a flexible and lightweight energy harvester on a plastic substrate, can scavenge energy from the extremely tiny movements of natural resources and human body such as wind, water flow, heartbeats, and diaphragm and respiration activities to generate electrical signals. The generators are not only self-powered, flexible devices but also can provide permanent power sources to implantable biomedical devices, including cardiac pacemakers and deep brain stimulators.

However, poor energy efficiency and a complex fabrication process have posed challenges to the commercialization of nanogenerators. Keon Jae Lee, Associate Professor of Materials Science and Engineering at KAIST, and his colleagues have recently proposed a solution by developing a robust technique to transfer a high-quality piezoelectric thin film from bulk sapphire substrates to plastic substrates using laser lift-off (LLO).

Applying the inorganic-based laser lift-off (LLO) process, the research team produced a large-area PZT thin film nanogenerators on flexible substrates (2 cm x 2 cm).

“We were able to convert a high-output performance of ~250 V from the slight mechanical deformation of a single thin plastic substrate. Such output power is just enough to turn on 100 LED lights,” Keon Jae Lee explained.

The self-powered nanogenerators can also work with finger and foot motions. For example, under the irregular and slight bending motions of a human finger, the measured current signals had a high electric power of ~8.7 μA. In addition, the piezoelectric nanogenerator has world-record power conversion efficiency, almost 40 times higher than previously reported similar research results, solving the drawbacks related to the fabrication complexity and low energy efficiency.

Lee further commented,

“Building on this concept, it is highly expected that tiny mechanical motions, including human body movements of muscle contraction and relaxation, can be readily converted into electrical energy and, furthermore, acted as eternal power sources.”

The research team is currently studying a method to build three-dimensional stacking of flexible piezoelectric thin films to enhance output power, as well as conducting a clinical experiment with a flexible nanogenerator.

In addition to the 2012 posting I mentioned earlier, there was also this July 12, 2010 posting which described research on harvesting biomechanical movement ( heart beat, blood flow, muscle stretching, or even irregular vibration) at the Georgia (US) Institute of Technology where the lead researcher observed,

…  Wang [Professor Zhong Lin Wang at Georgia Tech] tells Nanowerk. “However, the applications of the nanogenerators under in vivo and in vitro environments are distinct. Some crucial problems need to be addressed before using these devices in the human body, such as biocompatibility and toxicity.”

Bravo to the KAIST researchers for getting this research to the in vivo testing stage.

Meanwhile at the University of Bristol and at the University of Bath, researchers have received funding for a new approach to cardiac pacemakers, designed them with the breath in mind. From a June 24, 2014 news item on Azonano,

Pacemaker research from the Universities of Bath and Bristol could revolutionise the lives of over 750,000 people who live with heart failure in the UK.

The British Heart Foundation (BHF) is awarding funding to researchers developing a new type of heart pacemaker that modulates its pulses to match breathing rates.

A June 23, 2014 University of Bristol press release, which originated the news item, provides some context,

During 2012-13 in England, more than 40,000 patients had a pacemaker fitted.

Currently, the pulses from pacemakers are set at a constant rate when fitted which doesn’t replicate the natural beating of the human heart.

The normal healthy variation in heart rate during breathing is lost in cardiovascular disease and is an indicator for sleep apnoea, cardiac arrhythmia, hypertension, heart failure and sudden cardiac death.

The device is then briefly described (from the press release),

The novel device being developed by scientists at the Universities of Bath and Bristol uses synthetic neural technology to restore this natural variation of heart rate with lung inflation, and is targeted towards patients with heart failure.

The device works by saving the heart energy, improving its pumping efficiency and enhancing blood flow to the heart muscle itself.  Pre-clinical trials suggest the device gives a 25 per cent increase in the pumping ability, which is expected to extend the life of patients with heart failure.

One aim of the project is to miniaturise the pacemaker device to the size of a postage stamp and to develop an implant that could be used in humans within five years.

Dr Alain Nogaret, Senior Lecturer in Physics at the University of Bath, explained“This is a multidisciplinary project with strong translational value.  By combining fundamental science and nanotechnology we will be able to deliver a unique treatment for heart failure which is not currently addressed by mainstream cardiac rhythm management devices.”

The research team has already patented the technology and is working with NHS consultants at the Bristol Heart Institute, the University of California at San Diego and the University of Auckland. [emphasis mine]

Professor Julian Paton, from the University of Bristol, added: “We’ve known for almost 80 years that the heart beat is modulated by breathing but we have never fully understood the benefits this brings. The generous new funding from the BHF will allow us to reinstate this natural occurring synchrony between heart rate and breathing and understand how it brings therapy to hearts that are failing.”

Professor Jeremy Pearson, Associate Medical Director at the BHF, said: “This study is a novel and exciting first step towards a new generation of smarter pacemakers. More and more people are living with heart failure so our funding in this area is crucial. The work from this innovative research team could have a real impact on heart failure patients’ lives in the future.”

Given some current events (‘Tesla opens up its patents’, Mike Masnick’s June 12, 2014 posting on Techdirt), I wonder what the situation will be vis à vis patents by the time this device gets to market.

Developing self-powered batteries for pacemakers

Imagine having your chest cracked open every time your pacemaker needs to have its battery changed? It’s not a pleasant thought and researchers are working on a number of approaches to change that situation.  Scientists from the University of Michigan have presented the results from some preliminary testing of a device that harvests energy from heartbeats (from the Nov. 4, 2012 news release on EurekAlert),

In a preliminary study, researchers tested an energy-harvesting device that uses piezoelectricity — electrical charge generated from motion. The approach is a promising technological solution for pacemakers, because they require only small amounts of power to operate, said M. Amin Karami, Ph.D., lead author of the study and research fellow in the Department of Aerospace Engineering at the University of Michigan in Ann Arbor.

Piezoelectricity might also power other implantable cardiac devices like defibrillators, which also have minimal energy needs, he said.

Today’s pacemakers must be replaced every five to seven years when their batteries run out, which is costly and inconvenient, Karami said.

A University of Michigan at Ann Arbor March 2, 2012 news release provides more technical detail about this energy-harvesting battery which the researchers had not then tested,

… A hundredth-of-an-inch thin slice of a special “piezoelectric” ceramic material would essentially catch heartbeat vibrations and briefly expand in response. Piezoelectric materials’ claim to fame is that they can convert mechanical stress (which causes them to expand) into an electric voltage.

Karami and his colleague Daniel Inman, chair of Aerospace Engineering at U-M, have precisely engineered the ceramic layer to a shape that can harvest vibrations across a broad range of frequencies. They also incorporated magnets, whose additional force field can drastically boost the electric signal that results from the vibrations.

The new device could generate 10 microwatts of power, which is about eight times the amount a pacemaker needs to operate, Karami said. It always generates more energy than the pacemaker requires, and it performs at heart rates from 7 to 700 beats per minute. That’s well below and above the normal range.

Karami and Inman originally designed the harvester for light unmanned airplanes, where it could generate power from wing vibrations.

Since March 2012, the researchers have tested the prototype (from the Nov. 4, 2012 news release on EurekAlert),

Researchers measured heartbeat-induced vibrations in the chest. Then, they used a “shaker” to reproduce the vibrations in the laboratory and connected it to a prototype cardiac energy harvester they developed. Measurements of the prototype’s performance, based on sets of 100 simulated heartbeats at various heart rates, showed the energy harvester performed as the scientists had predicted — generating more than 10 times the power than modern pacemakers require. The next step will be implanting the energy harvester, which is about half the size of batteries now used in pacemakers, Karami said. Researchers hope to integrate their technology into commercial pacemakers.

There are other teams working on energy-harvesting batteries, in my July 12, 2010 posting I mentioned a team led by Professor Zhong Lin Wang at Georgia Tech (Georgia Institute of Technology in the US) which is working on batteries that harvest energy from biomechanical motion such as heart beats, finger tapping, breathing, etc.

Finger pinches today, heartbeats tomorrow and electricity forever

Devices powered by energy generated and harvested from one’s own body have been of tremendous interest to me. Last year I mentioned some research in this area by Professor Zhong Lin Wang at Georgia Tech (Georgia Institute of Technology) in a July 12, 2010 posting. Well, Wang and his team recently announced that they have developed the first commercially viable nanogenerator. From the March 29, 2011 news item on Physorg.com,

After six years of intensive effort, scientists are reporting development of the first commercially viable nanogenerator, a flexible chip that can use body movements — a finger pinch now en route to a pulse beat in the future — to generate electricity. Speaking here today at the 241st National Meeting & Exposition of the American Chemical Society, they described boosting the device’s power output by thousands times and its voltage by 150 times to finally move it out of the lab and toward everyday life.

“This development represents a milestone toward producing portable electronics that can be powered by body movements without the use of batteries or electrical outlets,” said lead scientist Zhong Lin Wang, Ph.D. “Our nanogenerators are poised to change lives in the future. Their potential is only limited by one’s imagination.”

Here’s how it works  (from Kit Eaton’s article on Fast Company),

The trick used by Dr. Zhong Lin Wang’s team has been to utilize nanowires made of zinc oxide (ZnO). ZnO is a piezoelectric material–meaning it changes shape slightly when an electrical field is applied across it, or a current is generated when it’s flexed by an external force. By combining nanoscopic wires (each 500 times narrower than a human hair) of ZnO into a flexible bundle, the team found it could generate truly workable amounts of energy. The bundle is actually bonded to a flexible polymer slice, and in the experimental setup five pinky-nail-size nanogenerators were stacked up to create a power supply that can push out 1 micro Amp at about 3 volts. That doesn’t sound like a lot, but it was enough to power an LED and an LCD screen in a demonstration of the technology’s effectiveness.

Dexter Johnson at Nanoclast on the IEEE (Institute of Electrical Engineering and Electronics) website notes in his March 30, 2010 posting (http://spectrum.ieee.org/nanoclast/semiconductors/nanotechnology/powering-our-electronic-devices-with-nanogenerators-looks-more-feasible) that the nanogenerator’s commercial viability is dependent on work being done at the University of Illinois,

I would have happily chalked this story [about the nanogenerator] up to one more excellent job of getting nanomaterial research into the mainstream press, but because of recent work by Eric Pop and his colleagues at the University of Illinois’s Beckman Institute in reducing the energy consumed by electronic devices it seems a bit more intriguing now.

So low is the energy consumption of the electronics proposed by the University of Illinois research it is to the point where a mobile device may not need a battery but could possibly operate on the energy generated from piezoelectric-enabled nanogenerators contained within such devices like those proposed by Wang.

I have a suspicion it’s going to be a while before I will be wearing nanogenerators to harvest the electricity my body produces. Meanwhile, I have some questions about the possible uses for nanogenerators (from the Kit Eaton article),

The search for tiny power generator technology has slowly inched forward for years for good reason–there are a trillion medical and surveillance uses–not to mention countless consumer electronics applications– for a system that could grab electrical power from something nearby that’s moving even just a tiny bit. Imagine an implanted insulin pump, or a pacemaker that’s powered by the throbbing of the heart or blood vessels nearby (and then imagine the pacemaker powering the heart, which is powered by the pacemaker, and so on and so on….) and you see how useful such a system could be.

It’s the reference to surveillance that makes me a little uneasy.

McGill researchers achieve control of quantum dots

Canadian researchers at McGill University (Montréal, Québec) have achieved engineering control of the piezoelectric effect in quantum dots. From the news release,

The generation of an electric field by the compression and expansion of solid materials is known as the piezoelectric effect, and it has a wide range of applications ranging from everyday items such as watches, motion sensors and precise positioning systems. Researchers at McGill University’s Department of Chemistry have now discovered how to control this effect in nanoscale semiconductors called “quantum dots,” enabling the development of incredibly tiny new products.

Although the word “quantum” is used in everyday language to connote something very large, it actually means the smallest amount by which certain physical quantities can change. A quantum dot has a diameter of only 10 to 50 atoms, or less than 10 nanometres. By comparison, the diameter of the DNA double-helix is 2 nanometres. The McGill researchers have discovered a way to make individual charges reside on the surface of the dot, which produces a large electric field within the dot. This electric field produces enormous piezoelectric forces causing large and rapid expansion and contraction of the dots within a trillionth of a second. Most importantly, the team is able to control the size of this vibration.

Cadmium Selenide quantum dots can be used in a wide range of technological applications. Solar power is one area that has been explored, but this new discovery has paved way for other nanoscale device applications for these dots. This discovery offers a way of controlling the speed and switching time of nanoelectronic devices, and possibly even developing nanoscale power supplies, whereby a small compression would produce a large voltage.

The research was published in Nano Letters (behind a paywall).

Harvesting biomechanical energy

Even before noting the vampire battery work being done at the University of British Columbia (April 3, 2009) , I’ve been quite interested in self-powered batteries. (As for why it’s a ‘vampire’, researchers are working on a battery fueled by by a patient’s own blood so that theoretically someone with a pacemaker or a deep brain stimulator would require fewer battery changes, i.e., fewer operations.)

Professor Zhong Lin Wang at Georgia Tech (Georgia Institute of Technology in the US) is taking another approach to self-powered batteries by harvesting irregular mechanical motion (such as heart beats, finger tapping, breathing, vocal cord vibrations, etc.) in a field that’s been termed nanopiezotronics. Michael Berger at Nanowerk has written an article spotlighting Professor Wang’s work and its progress. From the article,

“Our experiments clearly show that the in vivo application of our single-wire nanogenerator for harvesting biomechanical energy inside a live animal works,” says Wang. “The nanogenerator has successfully converted the mechanical vibration energy from normal breathing and a heartbeat into electricity.”

He concludes that his team’s research shows a feasible approach to scavenge the biomechanical energy inside the body, such as heart beat, blood flow, muscle stretching, or even irregular vibration. “This work presents a crucial step towards implantable self-powered nanosystems.”

There’s still a lot of work to be done before human clinical trials (let alone thinking about products in the marketplace),

…  Wang tells Nanowerk. “However, the applications of the nanogenerators under in vivo and in vitro environments are distinct. Some crucial problems need to be addressed before using these devices in the human body, such as biocompatibility and toxicity.”

If you’re interested in the details about what the researchers are doing, please do read Berger’s fascinating investigation into the area of research.