Tag Archives: Nanoscale Informal Science Education Network

NISE Net, the acronym remains the same but the name changes

NISE Net, the US Nanoscale Informal Science Education Network is winding down the nano and refocussing on STEM (science, technology, engineering, and mathematics). In short, NISE Net will now stand for National Informal STEM Education Network. Here’s more from the Jan. 7, 2016 NISE Net announcement in the January 2016 issue of the Nano Bite,

COMMUNITY NEWS

NISE Network is Transitioning to the National Informal STEM Education Network

Thank you for all the great work you have done over the past decade. It has opened up totally new possibilities for the decade ahead.

We are excited to let you know that with the completion of NSF funding for the Nanoscale Informal Science Education Network, and the soon-to-be-announced NASA [US National Aeronautics and Space Administration]-funded Space and Earth Informal STEM Education project, the NISE Network is transitioning to a new, ongoing identity as the National Informal STEM Education Network! While we’ll still be known as the NISE Net, network partners will now engage audiences across the United States in a range of STEM topics. Several new projects are already underway and others are in discussion for the future.

Current NISE Net projects include:

  • The original Nanoscale Informal Science Education Network (NISE Net), focusing on nanoscale science, engineering, and technology (funded by NSF and led by the Museum of Science, Boston)
  • Building with Biology, focusing on synthetic biology (funded by NSF and led by the Museum of Science with AAAS [American Association for the Advancement of Science], BioBuilder, and SynBerc [emphases mine])
  • Sustainability in Science Museums (funded by Walton Sustainability Solutions Initiatives and led by Arizona State University)
  • Transmedia Museum, focusing on science and society issues raised by Mary Shelley’s Frankenstein (funded by NSF and led by Arizona State University)
  • Space and Earth Informal STEM Education (funded by NASA and led by the Science Museum of Minnesota)

The “new” NISE Net will be led by the Science Museum of Minnesota in collaboration with the Museum of Science and Arizona State University. Network leadership, infrastructure, and participating organizations will include existing Network partners, and others attracted to the new topics. We will be in touch through the newsletter, blog, and website in the coming months to share more about our plans for the Network and its projects.

In the mean time, work is continuing with partners within the Nanoscale Informal Science Education Network throughout 2016, with an award end date of February 28, 2017. Although there will not be a new NanoDays 2016 kit, we encourage our partners to continue to engage audiences in nano by hosting NanoDays events in 2016 (March 26 – April 3) and in the years ahead using their existing kit materials. The Network will continue to host and update nisenet.org and the online catalog that includes 627 products of which 366 are NISE Net products (public and professional), 261 are Linked products, and 55 are Evaluation and Research reports. The Evaluation and Research team is continuing to work on final Network reports, and the Museum and Community Partnerships project has awarded 100 Explore Science physical kits to partners to create new or expanded collaborations with local community organizations to reach new underserved audiences not currently engaged in nano. These collaborative projects are taking place spring-summer 2016.

Thank you again for making this possible through your great work.

Best regards,

Larry Bell, Museum of Science
Paul Martin, Science Museum of Minnesota and
Rae Ostman, Arizona State University

As noted in previous posts, I’m quite interested in the synthetic biology focus the network has established in the last several months starting in late Spring 2015 and the mention of two (new-to-me) organizations, BioBuilder and Synberc piqued my interest.

I found this on the About the foundation page of the BioBuilder website,

What’s the best way to solve today’s health problems? Or hunger challenges? Address climate change concerns? Or keep the environment cleaner? These are big questions. And everyone can be part of the solutions. Everyone. Middle school students, teens, high school teachers.

At BioBuilder, we teach problem solving.
We bring current science to the classroom.
We engage our students to become real scientists — the problem solvers who will change the world.
At BioBuilder, we empower educators to be agents of educational reform by reconnecting teachers all across the country with their love of teaching and their own love of learning.

Synthetic biology programs living cells to tackle today’s challenges. Biofuels, safer foods, anti-malarial drugs, less toxic cancer treatment, biodegradable adhesives — all fuel young students’ imaginations. At BioBuilder, we empower students to tackle these big questions. BioBuilder’s curricula and teacher training capitalize on students’ need to know, to explore and to be part of solving real world problems. Developed by an award winning team out of MIT [Massachusetts Institute of Technology], BioBuilder is taught in schools across the country and supported by thought leaders in the STEM community.

BioBuilder proves that learning by doing works. And inspires.

As for Synberc, it is the Synthetic Biology Engineering Research Center and they has this to say about themselves on their About us page (Note: Links have been removed),

Synberc is a multi-university research center established in 2006 with a grant from the National Science Foundation (NSF) to help lay the foundation for synthetic biology Our mission is threefold:

develop the foundational understanding and technologies to build biological components and assemble them into integrated systems to accomplish many particular tasks;
train a new cadre of engineers who will specialize in engineering biology; and
engage the public about the opportunities and challenges of engineering biology.

Just as electrical engineers have made it possible for us to assemble computers from standardized parts (hard drives, memory cards, motherboards, and so on), we envision a day when biological engineers will be able to systematically assemble biological components such as sensors, signals, pathways, and logic gates in order to build bio-based systems that solve real-world problems in health, energy, and the environment.

In our work, we apply engineering principles to biology to develop tools that improve how fast — and how well — we can go through the design-test-build cycle. These include smart fermentation organisms that can sense their environment and adjust accordingly, and multiplex automated genome engineering, or MAGE, designed for large-scale programming and evolution of cells. We also pursue the discovery of applications that can lead to significant public benefit, such as synthetic artemisinin [emphasis mine], an anti-malaria drug that costs less and is more effective than the current plant-derived treatment.

The reference to ‘synthetic artemisinin’ caught my eye as I wrote an April 12, 2013 posting featuring this “… anti-malaria drug …” and the claim that the synthetic “… costs less and is more effective than the current plant-derived treatment” wasn’t quite the conclusion journalist, Brendan Borrell arrived at. Perhaps there’s been new research? If so, please let me know.

December 2014 issue of the Nano Bite (from the Nanoscale Informal Science Education Network) features last day (Dec. 1, 2014) to apply for NanoDays 2015 physical kit and a bit about a medieval cleric who* ‘unwove’ light

Depending on your timezone, there are still a few hours left to submit an online application for a NanoDays 2015 physical kit. From a Sept. 15, 2014 posting by Catherine McCarthy for NISENet (Nanoscale Informal Science Education Network),

Apply now for a NanoDays 2015 physical kit!
NanoDays 2015 will be held from March 28 through April 5, 2015. NanoDays is a week of community-based educational outreach events to raise public awareness of nanoscale science, technology and engineering throughout the United States. NanoDays kits are currently in production and will be ready for distribution in early 2015. We invite you to fill out an online application for a physical kit containing all of the materials and resources you need to start planning your community events; applications are due December 1, 2014.

 

We’re in Year 10 of funding for NISE Net, what’s going to happen to NanoDays?

This is the final NanoDays physical kit that will be funded through the current NISE Net award. Beyond 2015, we encourage you to continue to host NanoDays and strengthen local partnerships by using this kit (and any previous kits you have). We’ve set dates for the next five years to promote national participation in NanoDays in the years to come.

Future NanoDays will be held:

  • 2016: March 26-April 3
  • 2017: March 25-April 2
  • 2018: March 31-April 8
  • 2019: March 30-April 7
  • 2020: March 28-April 5

The NISE Network leadership is seeking opportunities to continue NanoDays after 2015, so stay tuned for further information!

Who can participate in NanoDays?
NanoDays kits are intended for use in public events; most host organizations are informal science education institutions and public outreach programs of nanoscience research centers. We invite you and your organization to participate in NanoDays 2015, whether or not you have previous experience with nano-related public outreach activities.

For anyone unfamiliar with the NanoDays programs, the post goes on to provide more details.

Here’s more about the upcoming International Year of Light (IYL)  mentioned in my Nov. 7, 2014 post,

What’s Nano about Light?
The United Nations has declared that 2015 is the International Year of Light (IYL) and light-based technologies. This global initiative helps to highlight for the public the importance of light and optical technologies in ones’ everyday life and it’s role in the development of society and the future. Endorsed by the International Council of Science, the International Year of Light 2015 has more than 100 partners from more than 85 countries!

Are you looking for ways to get involved?

There’s this tidbit about a special event featuring the University of Vermont physics department, light, and a local watershed (from the newsletter),

A Bi-Polar Affair Captivates Visitors with EnLIGHTening Nanoscale Science

By Luke Donforth, The University of Vermont

The University of Vermont (UVM) Physics Department and ECHO Lake Aquarium and Science Center have a long collaborative relationship, through which the NISE Network has provided an excellent framework to help strengthen and deepen. Although an institution of formal learning, UVM values and contributes to informal education in the surrounding community.

Recently, the UVM Physics Department and ECHO received a NISE Net mini-grant to develop a daylong event outside the purview of NanoDays. ECHO focuses on the Lake Champlain watershed, and the Physics Department wanted to show how basic science is a useful tool for investigating, understanding, and caring for the lake and world around us. Light, and specifically polarization, gave us a unifying theme to bring a number of activities and concepts to ECHO. Visible light, something most museum visitors have experience with, has wavelengths in the hundreds of nanometers. This provides a comfortable entry point to familiarize visitors with “nano,” and from there we can highlight how interacting with light at the length scale of its wavelength allows us to investigate both light and the world around us.

….

Polarization, the orientation of components of light, provides a tool with uses ranging from telling the time of day to monitoring invasive species in Lake Champlain. As an example of the later, Professor J. Ellen Marsden (an ichthyologist with UVM’s Rubenstein School of Environment and Natural Resources and long-time ECHO collaborator) supplied samples of larval zebra mussels from Lake Champlain. Zebra mussels, an invasive species actively monitored in the lake, are more easily distinguished and detected earlier with the thoughtful application polarized light.

We’re going to be hearing a lot more about light as we gear up for 2015. Meanwhile, you can read the entire December 2014 issue of the Nano Bite here.

In keeping with my previous comment, there’s this bit about a medieval cleric who helped us to understand light and optics. From a Nov. 27, 2014 posting by Michael Brooks, on the Guardian science blog, concerning his recent participation in a Festival of Humanities event held at the medieval Durham Cathedral,

Robert Grosseteste was a medieval pioneer of science. And, despite having died in 1253, the good bishop is up for an award on Thursday night [Nov. 27, 2014]. The shortlist for the Times Higher Education’s 2014 Research Project of the Year includes the researchers from Durham University who laid on last week’s activities in the cathedral’s Chapter House and Deanery, and they openly describe Grosseteste as one of their collaborators.

They made this clear in a paper they published in the prestigious journal Nature Physics in July. The scientists are re-examining Grosseteste’s work, and finding he made contributions to the field of optics that have yet to be assimilated into the canon of science. So they’ve come on board to help complete the record.

Grosseteste’s insight into the physics of rainbows has, for instance, enabled the researchers in the Ordered Universe collaboration to create a new co-ordinate system for colour. Anyone who has tried to calibrate a computer monitor knows that we now talk in terms of hue (a particular ratio of red, green and blue), saturation and brightness. Examination of Grosseteste’s writings has inspired an equally valid rainbow-based colour system.

It is based on the angle through which sunlight is scattered by the water drops, the “purity” of the medium – related to the size of the water drops – and the distance of the sun above the horizon. Grosseteste’s three-dimensional scheme outlines what Durham physicist Tom McLeish calls “the space of all possible rainbows”.

Here’s an image of a rainbow over Durham Cathedral,

 Rainbow over Durham Cathedral by StephieBee [downloaded from https://www.flickr.com/photos/visitengland/galleries/72157625178514241/]


Rainbow over Durham Cathedral
by StephieBee [downloaded from https://www.flickr.com/photos/visitengland/galleries/72157625178514241/]

Here’s where you can find more of StephieBee‘s work.

Sadly, GrosseTeste did not win top prize but I’m sure if he were still around, he’d say something like, “It was an honour to be nominated and I thank God.” As for the Festival of Humanities (Being Human), there’s more here about its 2014 inaugural year.

*Changed ‘on’ to ‘who’ in headline on Dec. 2, 2014.

Nanoeducation compendium (2012) from the European Commission

Michael Berger has written an Oct. 6, 2014 Nanowerk Spotlight article about the European Commission’s NANOTECHNOLOGIES: Principles, Applications, Implications and Hands-on Activities: A compendium for educators published in 2012. From the article,

The lessons, discussions on applications and hands-on experiments presented in this book have been tested and enriched by hundreds of teachers, professors and educators from about one thousand schools in 20 countries in Europe and beyond, involving about 40.000 students.

The educational materials in this compendium are organized in three self-contained modules to offer increased flexibility throughout the development of the course, addressing the fundamental concepts, the main application areas and selected hands-on experiments.

Moreover, a case study approach provides educators and teachers with practical applications and examples to discuss in class. Background materials, literature reviews, specific case studies and ideas are presented to show educators how to address nanosciences and nanotechnologies concepts. Topics dealing with the ethical, societal and safety aspects of nanotechnologies are also included to help educators encouraging class debates, referenced with other European projects and relevant webpages.

One caveat, two years later some of the material may be dated, e.g., webpages may have been moved.

There is an overview of various nanoeducation materials and organizations in the European Union provided in a Dec. 18, 2013 posting for NanoDiode (an innovative, coordinated programme for outreach and dialogue throughout Europe to support the effective governance of nanotechnologies; Note: links have been removed),

The need for education features prominently in European policy texts such as the European Commission’s Strategy for Nanotechnology of 2004 and its Nanosciences and Nanotechnologies Action Plan of 2005, which aims to ‘Promote networking and disseminate ‘best practice’s for education and training in N&N.’  Along with similar policy mandates for education on European member states and in other parts of the globe, this has resulted in a wide range of nanotechnology education activities over the last decade. The European project NANOYOU for instance organised a range of education activities such as a poster, film, contest, virtual dialogue, cards, role play, lab experiments, puzzle and games, and a website in 13 languages. In a similar fashion, the European project TimeforNano developed a range of educational materials and events (News & events, a video competition, a NanoKIT, a quiz and a website in 9 languages). The recent compendium for educators made on the basis of NANOYOU and, to a lesser extent, TimeforNano presents an extensive overview on the relevant principles, applications, implications and hands-on activities for nanotechnology education. [emphasis mine; this is the 2012 compendium mentioned in this post]

NISENet (Nanoscale Informal Science Education Network) features the compendium and offers more information and a link to it from here.

Most recently (Sept. 30, 2014 post), I featured a nanoeducation effort in Estonia The country is participating in the Quantum Spin-Off Project which offers an entrepreneurial aspect, as well as, education in the field of nanotechnology/nanoscience.