Tag Archives: Nanotechnology and cybersecurity risks

Humans, computers, and a note of optimism

As an* antidote to my Jan. 4*, 2016 post titled: Nanotechnology and cybersecurity risks andĀ if you’re looking to usher in 2016 on a hopeful note, this Dec. 31, 2015 Human Computation Institute news release on EurekAlert is very timely,

The combination of human and computer intelligence might be just what we need to solve the “wicked” problems of the world, such as climate change and geopolitical conflict, say researchers from the Human Computation Institute (HCI) and Cornell University.

In an article published in the journal Science, the authors present a new vision of human computation (the science of crowd-powered systems), which pushes beyond traditional limits, and takes on hard problems that until recently have remained out of reach.

Humans surpass machines at many things, ranging from simple pattern recognition to creative abstraction. With the help of computers, these cognitive abilities can be effectively combined into multidimensional collaborative networks that achieve what traditional problem-solving cannot.

Most of today’s human computation systems rely on sending bite-sized ‘micro-tasks’ to many individuals and then stitching together the results. For example, 165,000 volunteers in EyeWire have analyzed thousands of images online to help build the world’s most complete map of human retinal neurons.

This microtasking approach alone cannot address the tough challenges we face today, say the authors. A radically new approach is needed to solve “wicked problems” – those that involve many interacting systems that are constantly changing, and whose solutions have unforeseen consequences (e.g., corruption resulting from financial aid given in response to a natural disaster).

New human computation technologies can help. Recent techniques provide real-time access to crowd-based inputs, where individual contributions can be processed by a computer and sent to the next person for improvement or analysis of a different kind. This enables the construction of more flexible collaborative environments that can better address the most challenging issues.

This idea is already taking shape in several human computation projects, including YardMap.org, which was launched by the Cornell in 2012 to map global conservation efforts one parcel at a time.

“By sharing and observing practices in a map-based social network, people can begin to relate their individual efforts to the global conservation potential of living and working landscapes,” says Janis Dickinson, Professor and Director of Citizen Science at the Cornell Lab of Ornithology.

YardMap allows participants to interact and build on each other’s work – something that crowdsourcing alone cannot achieve. The project serves as an important model for how such bottom-up, socially networked systems can bring about scalable changes how we manage residential landscapes.

HCI has recently set out to use crowd-power to accelerate Cornell-based Alzheimer’s disease research. WeCureAlz.com combines two successful microtasking systems into an interactive analytic pipeline that builds blood flow models of mouse brains. The stardust@home system, which was used to search for comet dust in one million images of aerogel, is being adapted to identify stalled blood vessels, which will then be pinpointed in the brain by a modified version of the EyeWire system.

“By enabling members of the general public to play some simple online game, we expect to reduce the time to treatment discovery from decades to just a few years”, says HCI director and lead author, Dr. Pietro Michelucci. “This gives an opportunity for anyone, including the tech-savvy generation of caregivers and early stage AD patients, to take the matter into their own hands.”

Here’s a link to and a citation for the paper,

Human Computation; The power of crowds by Pietro Michelucci, and Janis L. Dickinson. Science 1 January 2016: Vol. 351 no. 6268 pp. 32-33 DOI: 10.1126/science.aad6499

This paper is behind a paywall but the abstract is freely available,

Human computation, a term introduced by Luis von Ahn (1), refers to distributed systems that combine the strengths of humans and computers to accomplish tasks that neither can do alone (2). The seminal example is reCAPTCHA, a Web widget used by 100 million people a day when they transcribe distorted text into a box to prove they are human. This free cognitive labor provides users with access to Web content and keeps websites safe from spam attacks, while feeding into a massive, crowd-powered transcription engine that has digitized 13 million articles from The New York Times archives (3). But perhaps the best known example of human computation is Wikipedia. Despite initial concerns about accuracy (4), it has become the key resource for all kinds of basic information. Information science has begun to build on these early successes, demonstrating the potential to evolve human computation systems that can model and address wicked problems (those that defy traditional problem-solving methods) at the intersection of economic, environmental, and sociopolitical systems.

*’and’ changed to ‘an’ and ‘Jan. 3, 2016’ changed to ‘Jan. 4, 2016’ on Jan. 4, 2016 at 1543 PDT.