Tag Archives: National Natural Science Foundation of China

Oxygen-deficient nanotitania (titanium dioxide nanoparticles) for whiter teeth without the damage

A September 8, 2021 news item on phys.org announces research that could make the process of whitening teeth safer,

Most people would like to flash a smile of pearly whites, but over time teeth can become stained by foods, beverages and some medications. Unfortunately, the high levels of hydrogen peroxide in dentists’ bleaching treatments can damage enamel and cause tooth sensitivity and gum irritation. Now, researchers reporting in ACS Applied Materials & Interfaces have developed a gel that, when exposed to near infrared (NIR) light, safely whitens teeth without the burn.

Caption: A new bleaching gel whitened tooth samples by six shades, using a low level of hydrogen peroxide (12%). Credit: Adapted from ACS Applied Materials & Interfaces 2021, DOI: 10.1021/acsami.1c06774

A September 8, 2021Amercian Chemical Society (ACS) news release (also on EurekAlert), which originated the news item, provides more detail,

The growing demand for selfie-ready smiles has made tooth whitening one of the most popular dental procedures. Treatments at a dentist’s office are effective, but they use high-concentration hydrogen peroxide (30–40%). Home bleaching products contain less peroxide (6–12%), but they usually require weeks of treatment and don’t work as well. When a bleaching gel is applied to teeth, hydrogen peroxide and peroxide-derived reactive oxygen species (mainly the hydroxyl radical) degrade pigments in stains. The hydroxyl radical is much better at doing this than hydrogen peroxide itself, so researchers have tried to improve the bleaching capacity of low-concentration hydrogen peroxide by boosting the generation of powerful hydroxyl radicals. Because previous approaches have had limitations, Xingyu Hu, Li Xie, Weidong Tian and colleagues wanted to develop a safe, effective whitening gel containing a catalyst that, when exposed to NIR light, would convert low levels of hydrogen peroxide into abundant hydroxyl radicals.

The researchers made oxygen-deficient titania nanoparticles that catalyzed hydroxyl radical production from hydrogen peroxide. Exposing the nanoparticles to NIR light increased their catalytic activity, allowing them to completely bleach tooth samples stained with orange dye, tea or red dye within 2 hours. Then, the researchers made a gel containing the nanoparticles, a carbomer gel and 12% hydrogen peroxide. They applied it to naturally stained tooth samples and treated them with NIR light for an hour. The gel bleached teeth just as well as a popular tooth whitening gel containing 40% hydrogen peroxide, with less damage to enamel. The nanoparticle system is highly promising for tooth bleaching and could also be extended to other biomedical applications, such as developing antibacterial materials, the researchers say.

The authors acknowledge funding from the National Natural Science Foundation of China, the National Key R&D Program of China and the Key Technologies R&D Program of Sichuan Province.

Here’s a link to and a citation for the paper,

Photothermal-Enhanced Fenton-like Catalytic Activity of Oxygen-Deficient Nanotitania for Efficient and Safe Tooth Whitening by Xingyu Hu, Li Xie, Zhaoyu Xu, Suru Liu, Xinzhi Tan, Ruojing Qian, Ruitao Zhang, Mingyan Jiang, Wenjia Xie, and Weidong Tian. ACS Appl. Mater. Interfaces 2021, 13, 30, 35315–35327 Publication Date: July 22, 2021 DOI: https://doi.org/10.1021/acsami.1c06774 Copyright © 2021 American Chemical Society

This paper is behind a paywall.

Cerium-containing nanoparticles in microneedle patches for hair regrowth (a treatment for baldness?)

It’s still being tested but according to an August 11, 2021 news item on ScienceDaily, this is a promising treatment for baldness,

Although some people say that baldness is the “new sexy,” for those losing their hair, it can be distressing. An array of over-the-counter remedies are available, but most of them don’t focus on the primary causes: oxidative stress and insufficient circulation. Now, researchers reporting in ACS Nano have designed a preliminary microneedle patch containing cerium nanoparticles to combat both problems, regrowing hair in a mouse model faster than a leading treatment.

An August 11, 2021 American Chemical Society (ACS) news release (also on EurekAlert) provides more detail (Note: Links have been removed),

The most common hair loss condition is called androgenic alopecia, also known as male- or female- pattern baldness. Hair loss is permanent for people with the condition because there aren’t enough blood vessels surrounding the follicles to deliver nutrients, cytokines and other essential molecules. In addition, an accumulation of reactive oxygen species in the scalp can trigger the untimely death of the cells that form and grow new hair. Previously, Fangyuan Li, Jianqing Gao and colleagues determined that cerium-containing nanoparticles can mimic enzymes that remove excess reactive oxygen species, which reduced oxidative stress in liver injuries, wounds and Alzheimer’s disease. However, these nanoparticles cannot cross the outermost layer of skin. So, the researchers wanted to design a minimally invasive way to deliver cerium-containing nanoparticles near hair roots deep under the skin to promote hair regrowth.

As a first step, the researchers coated cerium nanoparticles with a biodegradable polyethylene glycol-lipid compound. Then they made the dissolvable microneedle patch by pouring a mixture of hyaluronic acid — a substance that is naturally abundant in human skin — and cerium-containing nanoparticles into a mold. The team tested control patches and the cerium-containing ones on male mice with bald spots formed by a hair removal cream. Both applications stimulated the formation of new blood vessels around the mice’s hair follicles. However, those treated with the nanoparticle patch showed faster signs of hair undergoing a transition in the root, such as earlier skin pigmentation and higher levels of a compound found only at the onset of new hair development. These mice also had fewer oxidative stress compounds in their skin. Finally, the researchers found that the cerium-containing microneedle patches resulted in faster mouse hair regrowth with similar coverage, density and diameter compared with a leading topical treatment and could be applied less frequently. Microneedle patches that introduce cerium nanoparticles into the skin are a promising strategy to reverse balding for androgenetic alopecia patients, the researchers say.

The authors acknowledge funding from the Ten-thousand Talents Program of Zhejiang Province, National Key R&D Program of China, National Natural Science Foundation of China, One Belt and One Road International Cooperation Project from the Key Research and Development Program of Zhejiang Province, Fundamental Research Funds for the Central Universities and Zhejiang Provincial Natural Science Foundation of China.

Here’s a link to and a citation for the paper,

Ceria Nanozyme-Integrated Microneedles Reshape the Perifollicular Microenvironment for Androgenetic Alopecia Treatment by Anran Yuan, Fan Xia, Qiong Bian, Haibin Wu, Yueting Gu, Tao Wang, Ruxuan Wang, Lingling Huang, Qiaoling Huang, Yuefeng Rao, Daishun Ling, Fangyuan Li, and Jianqing Gao. ACS Nano 2021, XXXX, XXX, XXX-XXX DOI: https://doi.org/10.1021/acsnano.1c05272 Publication Date:July 19, 2021 © 2021 American Chemical Society

This paper is behind a paywall.

Nano-photosynthesis in your brain as a stroke treatment?

A May 19, 2021 news item on phys.org sheds some light on a new approach to stroke treatments,

Blocked blood vessels in the brains of stroke patients prevent oxygen-rich blood from getting to cells, causing severe damage. Plants and some microbes produce oxygen through photosynthesis. What if there was a way to make photosynthesis happen in the brains of patients? Now, researchers reporting in ACS’ Nano Letters have done just that in cells and in mice, using blue-green algae and special nanoparticles, in a proof-of-concept demonstration.

A May 19, 2021 American Chemical Society (ACS) news release, which originated the news item, provides more information on strokes and how this new approach may prove useful,

Strokes result in the deaths of 5 million people worldwide every year, according to the World Health Organization. Millions more survive, but they often experience disabilities, such as difficulties with speech, swallowing or memory. The most common cause is a blood vessel blockage in the brain, and the best way to prevent permanent brain damage from this type of stroke is to dissolve or surgically remove the blockage as soon as possible. However, those options only work within a narrow time window after the stroke happens and can be risky. Blue-green algae, such as Synechococcus elongatus, have been studied previously to treat the lack of oxygen in heart tissue and tumors using photosynthesis. But the visible light needed to trigger the microbes can’t penetrate the skull, and although near-infrared light can pass through, it is insufficient to directly power photosynthesis. “Up-conversion” nanoparticles, often used for imaging, can absorb near-infrared photons and emit visible light. So, Lin Wang, Zheng Wang, Guobin Wang and colleagues at Huazhong University of Science and Technology wanted to see if they could develop a new approach that could someday be used for stroke patients by combining these parts — S. elongatus, nanoparticles and near-infrared light — in a new “nano-photosynthetic” system.

The researchers paired S. elongatus with neodymium up-conversion nanoparticles that transform tissue-penetrating near-infrared light to a visible wavelength that the microbes can use to photosynthesize. In a cell study, they found that the nano-photosynthesis approach reduced the number of neurons that died after oxygen and glucose deprivation. They then injected the microbes and nanoparticles into mice with blocked cerebral arteries and exposed the mice to near-infrared light. The therapy reduced the number of dying neurons, improved the animals’ motor function and even helped new blood vessels to start growing. Although this treatment is still in the animal testing stage, it has promise to advance someday toward human clinical trials, the researchers say.

The authors acknowledge funding from the National Key Basic Research Program of China, the National Natural Science Foundation of China, the Chinese Ministry of Education’s Science and Technology Program, the Major Scientific and Technological Innovation Projects in Hubei Province, and the Joint Fund of Ministry of Education for Equipment Pre-research.

Here’s a link to and a citation for the paper,

Oxygen-Generating Cyanobacteria Powered by Upconversion-Nanoparticles-Converted Near-Infrared Light for Ischemic Stroke Treatment by Jian Wang, Qiangfei Su, Qiying Lv, Bo Cai, Xiakeerzhati Xiaohalati, Guobin Wang, Zheng Wang, and Lin Wang. Nano Lett. 2021, 21, 11, 4654–4665 DOI: https://doi.org/10.1021/acs.nanolett.1c00719 Publication Date:May 19, 2021 © 2021 American Chemical Society

This paper is behind a paywall.

Memristors, it’s all about the oxides

I have one research announcement from China and another from the Netherlands, both of which concern memristors and oxides.

China

A May 17, 2021 news item on Nanowerk announces work, which suggests that memristors may not need to rely solely on oxides but could instead utilize light more gainfully,

Scientists are getting better at making neuron-like junctions for computers that mimic the human brain’s random information processing, storage and recall. Fei Zhuge of the Chinese Academy of Sciences and colleagues reviewed the latest developments in the design of these ‘memristors’ for the journal Science and Technology of Advanced Materials …

Computers apply artificial intelligence programs to recall previously learned information and make predictions. These programs are extremely energy- and time-intensive: typically, vast volumes of data must be transferred between separate memory and processing units. To solve this issue, researchers have been developing computer hardware that allows for more random and simultaneous information transfer and storage, much like the human brain.

Electronic circuits in these ‘neuromorphic’ computers include memristors that resemble the junctions between neurons called synapses. Energy flows through a material from one electrode to another, much like a neuron firing a signal across the synapse to the next neuron. Scientists are now finding ways to better tune this intermediate material so the information flow is more stable and reliable.

I had no success locating the original news release, which originated the news item, but have found this May 17, 2021 news item on eedesignit.com, which provides the remaining portion of the news release.

“Oxides are the most widely used materials in memristors,” said Zhuge. “But oxide memristors have unsatisfactory stability and reliability. Oxide-based hybrid structures can effectively improve this.”

Memristors are usually made of an oxide-based material sandwiched between two electrodes. Researchers are getting better results when they combine two or more layers of different oxide-based materials between the electrodes. When an electrical current flows through the network, it induces ions to drift within the layers. The ions’ movements ultimately change the memristor’s resistance, which is necessary to send or stop a signal through the junction.

Memristors can be tuned further by changing the compounds used for electrodes or by adjusting the intermediate oxide-based materials. Zhuge and his team are currently developing optoelectronic neuromorphic computers based on optically-controlled oxide memristors. Compared to electronic memristors, photonic ones are expected to have higher operation speeds and lower energy consumption. They could be used to construct next generation artificial visual systems with high computing efficiency.

Now for a picture that accompanied the news release, which follows,

Fig. The all-optically controlled memristor developed for optoelectronic neuromorphic computing (Image by NIMTE)

Here’s the February 7, 2021 Ningbo Institute of Materials Technology and Engineering (NIMTE) press release featuring this work and a more technical description,

A research group led by Prof. ZHUGE Fei at the Ningbo Institute of Materials Technology and Engineering (NIMTE) of the Chinese Academy of Sciences (CAS) developed an all-optically controlled (AOC) analog memristor, whose memconductance can be reversibly tuned by varying only the wavelength of the controlling light.

As the next generation of artificial intelligence (AI), neuromorphic computing (NC) emulates the neural structure and operation of the human brain at the physical level, and thus can efficiently perform multiple advanced computing tasks such as learning, recognition and cognition.

Memristors are promising candidates for NC thanks to the feasibility of high-density 3D integration and low energy consumption. Among them, the emerging optoelectronic memristors are competitive by virtue of combining the advantages of both photonics and electronics. However, the reversible tuning of memconductance depends highly on the electric excitation, which have severely limited the development and application of optoelectronic NC.

To address this issue, researchers at NIMTE proposed a bilayered oxide AOC memristor, based on the relatively mature semiconductor material InGaZnO and a memconductance tuning mechanism of light-induced electron trapping and detrapping.

The traditional electrical memristors require strong electrical stimuli to tune their memconductance, leading to high power consumption, a large amount of Joule heat, microstructural change triggered by the Joule heat, and even high crosstalk in memristor crossbars.

On the contrary, the developed AOC memristor does not involve microstructure changes, and can operate upon weak light irradiation with light power density of only 20 μW cm-2, which has provided a new approach to overcome the instability of the memristor.

Specifically, the AOC memristor can serve as an excellent synaptic emulator and thus mimic spike-timing-dependent plasticity (STDP) which is an important learning rule in the brain, indicating its potential applications in AOC spiking neural networks for high-efficiency optoelectronic NC.

Moreover, compared to purely optical computing, the optoelectronic computing using our AOC memristor showed higher practical feasibility, on account of the simple structure and fabrication process of the device.

The study may shed light on the in-depth research and practical application of optoelectronic NC, and thus promote the development of the new generation of AI.

This work was supported by the National Natural Science Foundation of China (No. 61674156 and 61874125), the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB32050204), and the Zhejiang Provincial Natural Science Foundation of China (No. LD19E020001).

Here’s a link to and a citation for the paper,

Hybrid oxide brain-inspired neuromorphic devices for hardware implementation of artificial intelligence by Jingrui Wang, Xia Zhuge & Fei Zhuge. Science and Technology of Advanced Materials Volume 22, 2021 – Issue 1 Pages 326-344 DOI: https://doi.org/10.1080/14686996.2021.1911277 Published online:14 May 2021

This paper appears to be open access.

Netherlands

In this case, a May 18, 2021 news item on Nanowerk marries oxides to spintronics,

Classic computers use binary values (0/1) to perform. By contrast, our brain cells can use more values to operate, making them more energy-efficient than computers. This is why scientists are interested in neuromorphic (brain-like) computing.

Physicists from the University of Groningen (the Netherlands) have used a complex oxide to create elements comparable to the neurons and synapses in the brain using spins, a magnetic property of electrons.

The press release, which follows, was accompanied by this image illustrating the work,

Caption: Schematic of the proposed device structure for neuromorphic spintronic memristors. The write path is between the terminals through the top layer (black dotted line), the read path goes through the device stack (red dotted line). The right side of the figure indicates how the choice of substrate dictates whether the device will show deterministic or probabilistic behaviour. Credit: Banerjee group, University of Groningen

A May 18, 2021 University of Groningen press release (also on EurekAlert), which originated the news item, adds more ‘spin’ to the story,

Although computers can do straightforward calculations much faster than humans, our brains outperform silicon machines in tasks like object recognition. Furthermore, our brain uses less energy than computers. Part of this can be explained by the way our brain operates: whereas a computer uses a binary system (with values 0 or 1), brain cells can provide more analogue signals with a range of values.

Thin films

The operation of our brains can be simulated in computers, but the basic architecture still relies on a binary system. That is why scientist look for ways to expand this, creating hardware that is more brain-like, but will also interface with normal computers. ‘One idea is to create magnetic bits that can have intermediate states’, says Tamalika Banerjee, Professor of Spintronics of Functional Materials at the Zernike Institute for Advanced Materials, University of Groningen. She works on spintronics, which uses a magnetic property of electrons called ‘spin’ to transport, manipulate and store information.

In this study, her PhD student Anouk Goossens, first author of the paper, created thin films of a ferromagnetic metal (strontium-ruthenate oxide, SRO) grown on a substrate of strontium titanate oxide. The resulting thin film contained magnetic domains that were perpendicular to the plane of the film. ‘These can be switched more efficiently than in-plane magnetic domains’, explains Goossens. By adapting the growth conditions, it is possible to control the crystal orientation in the SRO. Previously, out-of-plane magnetic domains have been made using other techniques, but these typically require complex layer structures.

Magnetic anisotropy

The magnetic domains can be switched using a current through a platinum electrode on top of the SRO. Goossens: ‘When the magnetic domains are oriented perfectly perpendicular to the film, this switching is deterministic: the entire domain will switch.’ However, when the magnetic domains are slightly tilted, the response is probabilistic: not all the domains are the same, and intermediate values occur when only part of the crystals in the domain have switched.

By choosing variants of the substrate on which the SRO is grown, the scientists can control its magnetic anisotropy. This allows them to produce two different spintronic devices. ‘This magnetic anisotropy is exactly what we wanted’, says Goossens. ‘Probabilistic switching compares to how neurons function, while the deterministic switching is more like a synapse.’

The scientists expect that in the future, brain-like computer hardware can be created by combining these different domains in a spintronic device that can be connected to standard silicon-based circuits. Furthermore, probabilistic switching would also allow for stochastic computing, a promising technology which represents continuous values by streams of random bits. Banerjee: ‘We have found a way to control intermediate states, not just for memory but also for computing.’

Here’s a link to and a citation for the paper,

Anisotropy and Current Control of Magnetization in SrRuO3/SrTiO3 Heterostructures for Spin-Memristors by A.S. Goossens, M.A.T. Leiviskä and T. Banerjee. Frontiers in Nanotechnology DOI: https://doi.org/10.3389/fnano.2021.680468 Published: 18 May 2021

This appears to be open access.

Manipulating light at the nanoscale with kiragami-inspired technique

At left, different patterns of slices through a thin metal foil, are made by a focused ion beam. These patterns cause the metal to fold up into predetermined shapes, which can be used for such purposes as modifying a beam of light. Courtesy of the researchers

Nanokiragami (or nano-kiragami) is a fully fledged field of research? That was news to me as was much else in a July 6, 2018 news item on ScienceDaily,

Nanokirigami has taken off as a field of research in the last few years; the approach is based on the ancient arts of origami (making 3-D shapes by folding paper) and kirigami (which allows cutting as well as folding) but applied to flat materials at the nanoscale, measured in billionths of a meter.

Now, researchers at MIT [Massachusetts Institute of Technology] and in China have for the first time applied this approach to the creation of nanodevices to manipulate light, potentially opening up new possibilities for research and, ultimately, the creation of new light-based communications, detection, or computational devices.

A July 6, 2018 MIT news release (also on EurekAlert), which originated the news item, adds detail,

The findings are described today [July 6, 2018] in the journal Science Advances, in a paper by MIT professor of mechanical engineering Nicholas X Fang and five others. Using methods based on standard microchip manufacturing technology, Fang and his team used a focused ion beam to make a precise pattern of slits in a metal foil just a few tens of nanometers thick. The process causes the foil to bend and twist itself into a complex three-dimensional shape capable of selectively filtering out light with a particular polarization.

Previous attempts to create functional kirigami devices have used more complicated fabrication methods that require a series of folding steps and have been primarily aimed at mechanical rather than optical functions, Fang says. The new nanodevices, by contrast, can be formed in a single folding step and could be used to perform a number of different optical functions.

For these initial proof-of-concept devices, the team produced a nanomechanical equivalent of specialized dichroic filters that can filter out circularly polarized light that is either “right-handed” or “left-handed.” To do so, they created a pattern just a few hundred nanometers across in the thin metal foil; the result resembles pinwheel blades, with a twist in one direction that selects the corresponding twist of light.

The twisting and bending of the foil happens because of stresses introduced by the same ion beam that slices through the metal. When using ion beams with low dosages, many vacancies are created, and some of the ions end up lodged in the crystal lattice of the metal, pushing the lattice out of shape and creating strong stresses that induce the bending.

“We cut the material with an ion beam instead of scissors, by writing the focused ion beam across this metal sheet with a prescribed pattern,” Fang says. “So you end up with this metal ribbon that is wrinkling up” in the precisely planned pattern.

“It’s a very nice connection of the two fields, mechanics and optics,” Fang says. The team used helical patterns to separate out the clockwise and counterclockwise polarized portions of a light beam, which may represent “a brand new direction” for nanokirigami research, he says.

The technique is straightforward enough that, with the equations the team developed, researchers should now be able to calculate backward from a desired set of optical characteristics and produce the needed pattern of slits and folds to produce just that effect, Fang says.

“It allows a prediction based on optical functionalities” to create patterns that achieve the desired result, he adds. “Previously, people were always trying to cut by intuition” to create kirigami patterns for a particular desired outcome.

The research is still at an early stage, Fang points out, so more research will be needed on possible applications. But these devices are orders of magnitude smaller than conventional counterparts that perform the same optical functions, so these advances could lead to more complex optical chips for sensing, computation, or communications systems or biomedical devices, the team says.

For example, Fang says, devices to measure glucose levels often use measurements of light polarity, because glucose molecules exist in both right- and left-handed forms which interact differently with light. “When you pass light through the solution, you can see the concentration of one version of the molecule, as opposed to the mixture of both,” Fang explains, and this method could allow for much smaller, more efficient detectors.

Circular polarization is also a method used to allow multiple laser beams to travel through a fiber-optic cable without interfering with each other. “People have been looking for such a system for laser optical communications systems” to separate the beams in devices called optical isolaters, Fang says. “We have shown that it’s possible to make them in nanometer sizes.”

The team also included MIT graduate student Huifeng Du; Zhiguang Liu, Jiafang Li (project supervisor), and Ling Lu at the Chinese Academy of Sciences in Beijing; and Zhi-Yuan Li at the South China University of Technology. The work was supported by the National Key R&D Program of China, the National Natural Science Foundation of China, and the U.S Air Force Office of Scientific Research.

The researchers have also provided some GIFs,

And,

Here’s a link to and a citation for the paper,

Nano-kirigami with giant optical chirality by Zhiguang Liu, Huifeng Du, Jiafang Li, Ling Lu, Zhi-Yuan Li, and Nicholas X. Fang. Science Advances 06 Jul 2018: Vol. 4, no. 7, eaat4436 DOI: 10.1126/sciadv.aat4436

This paper is open access.

3-D underwater acoustic carpet cloak

Who can resist a ‘Black Panther’ reference (Wikipedia Black Panther film entry)? Certainly not me. Scientists from the Chinese Academy of Sciences made this June 4, 2018 announcement (also on EurekAlert),

Cloaking is one of the most eye-catching technologies in sci-fi movies. In two 2018 Marvel films, Black Panther and Avengers: Infinity War, Black Panther conceals his country Wakanda, a technologically advanced African nation, from the outside world using the metal vibranium.

However, in the real world, if you want to hide something, you need to deceive not only the eyes, but also the ears, especially in the underwater environment.

Recently, a research team led by Prof. YANG Jun from the Institute of Acoustics (IOA) of the Chinese Academy of Sciences designed and fabricated a 3D underwater acoustic carpet cloak (UACC) using transformation acoustics.

The research was published online in Applied Physics Letters on June 1 [2018].

Like a shield, the carpet cloak is a material shell that can reflect waves as if the waves were reflecting off a planar surface. Hence, the cloaked target becomes undetectable to underwater detection instruments like sonar.

Using transformation acoustics, the research team first finished the 2D underwater acoustic carpet cloak with metamaterial last year (Scientific Reports, April 6, 2017). However, this structure works only in two dimensions, and becomes immediately detectable when a third dimension is introduced.

To solve this problem, YANG Jun and his IOA team combined transformation acoustics with a reasonable scaling factor, worked out the parameters, and redesigned the unit cell of the 2D cloak. They designed the 3D underwater acoustic carpet cloak and then proposed a fabrication and assembly method to manufacture it. The 3D cloak can hide an object from top to bottom and deal with complex situations, such as acoustic detection in all directions.

The 3D underwater acoustic carpet cloak is a pyramid comprising eight triangular pyramids; each triangular pyramid is composed of 92 steel strips using a rectangle lattice, similar to a wafer biscuit. More vividly, if we remove the core from a big solid pyramid, we can hide something safely in the hollow space left.

“To make a 3D underwater acoustic carpet cloak, researchers needed to construct the structure with 2D period, survey the influence of the unit cell’s resonance, examine the camouflage effect at the ridge of the sample, and other problems. In addition, the fabrication and assembly of the 3D device required more elaborate design. The extension of the UACC from 2D to 3D represents important progress in applied physics,” said YANG.

In experimental tests, a short Gaussian pulse propagated towards the target covered with the carpet cloak, and the waves backscattered toward their origin. The cloaked object successfully mimicked the reflecting surface and was undetectable by sound detection. Meanwhile, the measured acoustic pressure fields from the vertical view demonstrated the effectiveness of the designed 3D structure in every direction.

“As the next step, we will try to make the 3D underwater acoustic carpet cloak smaller and lighter,” said YANG.

Funding for this research came from the National Natural Science Foundation of China (Grant No.11304351, 1177021304), the Youth Innovation Promotion Association of CAS (Grant No. 2017029), and the IACAS Young Elite Researcher Project (Grant No. QNYC201719).

Prof. YANG Jun and Dr. JIA Han led the research team from the Institute of Acoustics (IOA) of the Chinese Academy of Sciences. Prof. YANG Jun engages in research on sound, vibration and signal processing, and especially sound field control and array signal processing. They also work on other devices based on metamaterial in order to manipulate the propagation of sound waves.

A model of the device,

Caption: This is a model and photograph of the 3D underwater acoustic carpet cloak composed of over 700 steel strips. Credit: IOA

Here’s a link to and a citation for the paper,

Experimental demonstration of three-dimensional broadband underwater acoustic carpet cloak by Yafeng Bi, Han Jia, Zhaoyong Sun, Yuzhen Yang, Han Zhao, and Jun Yang.
Appl. Phys. Lett. 112, 223502 (2018); https://doi.org/10.1063/1.5026199 Published Online: June 2018

This paper is open access.

The new knitting: electronics and batteries

Researchers from China have developed a new type of yarn for flexible electronics. A March 28, 2018 news item on Nanowerk announces the work, (Note: A link has been removed),

When someone thinks about knitting, they usually don’t conjure up an image of sweaters and scarves made of yarn that can power watches and lights. But that’s just what one group is reporting in ACS Nano (“Waterproof and Tailorable Elastic Rechargeable Yarn Zinc Ion Batteries by a Cross-Linked Polyacrylamide Electrolyte”). They have developed a rechargeable yarn battery that is waterproof and flexible. It also can be cut into pieces and still work.

A March 28, 2018 2018 American Chemical Society (ACS) news release (also on EurekAlert), which originated the news item, expands on the theme (Note: Links have been removed),

Most people are familiar with smartwatches, but for wearable electronics to progress, scientists will need to overcome the challenge of creating a device that is deformable, durable, versatile and wearable while still holding and maintaining a charge. One dimensional fiber or yarn has shown promise, since it is tiny, flexible and lightweight. Previous studies have had some success combining one-dimensional fibers with flexible Zn-MnO2 batteries, but many of these lose charge capacity and are not rechargeable. So, Chunyi Zhi and colleagues wanted to develop a rechargeable yarn zinc-ion battery that would maintain its charge capacity, while being waterproof and flexible.

The group twisted carbon nanotube fibers into a yarn, then coated one piece of yarn with zinc to form an anode, and another with magnesium oxide to form a cathode. These two pieces were then twisted like a double helix and coated with a polyacrylamide electrolyte and encased in silicone. Upon testing, the yarn zinc-ion battery was stable, had a high charge capacity and was rechargeable and waterproof. In addition, the material could be knitted and stretched. It also could be cut into several pieces, each of which could power a watch. In a proof-of-concept demonstration, eight pieces of the cut yarn battery were woven into a long piece that could power a belt containing 100 light emitting diodes (known as LEDs) and an electroluminescent panel.

The authors acknowledge funding from the National Natural Science Foundation of China and the Research Grants Council of Hong Kong Joint Research Scheme, City University of Hong Kong and the Sichuan Provincial Department of Science & Technology.

Here’s an image the researchers have used to illustrate their work,

 

Courtesy: American Chemical Society

Here’s a link to and a citation for the paper,

Waterproof and Tailorable Elastic Rechargeable Yarn Zinc Ion Batteries by a Cross-Linked Polyacrylamide Electrolyte by Hongfei Li, Zhuoxin Liu, Guojin Liang, Yang Huang, Yan Huang, Minshen Zhu, Zengxia Pe, Qi Xue, Zijie Tang, Yukun Wang, Baohua Li, and Chunyi Zhi. ACS Nano, Article ASAP DOI: 10.1021/acsnano.7b09003 Publication Date (Web): March 28, 2018

Copyright © 2018 American Chemical Society

This paper is behind a paywall.

A gripping problem: tree frogs lead the way

Courtesy: University of Glasgow

At least once a year, there must be a frog posting here (ETA: July 31, 2018 at 1640 hours: unusually, this is my second ‘frog’ posting in one week; my July 26, 2018 posting concerns a very desperate frog, Romeo). Prior to Romeo, this March 15, 2018 news item on phys.org tickled my fancy,

Scientists researching how tree frogs climb have discovered that a unique combination of adhesion and grip gives them perfect technique.

The new research, led by the University of Glasgow and published today [March 15, 2018] in the Journal of Experimental Biology, could have implications for areas of science such as robotics, as well as the production of climbing equipment and even tyre manufacture.

A March 15, 2018 University of Glasgow press release, which originated the news item, provides a little more detail,

Researchers found that, using their fluid-filled adhesive toe pads, tree frogs are able to grip to surfaces to climb. When surfaces aren’t smooth enough to allow adhesion, researchers found that the frogs relied on their long limbs to grip around objects.

University of Glasgow scientists Iain Hill and Jon Barnes gave the tree frogs a series of narrow and wide cylinders to climb. The research team found that on the narrow cylinders the frogs used their grip and adhesion pads, allowing them to climb the obstacle at speed. Wider cylinders were too large for the frogs to grip, so they could only climb more slowly using their suction adhesive pads.

When the cylinders were coated in sandpaper, preventing adhesion, the frogs could only climb the narrow ones slowly, using their grip. They were not able to climb the wider cylinders covered in sandpaper as they couldn’t use their grip or adhesion.

Dr Barnes said: “I have worked on tree frog research for many years and I find them fascinating. Work on tree frogs has been of interest to industry and other areas of science in the past, since their climbing abilities can offer us insights into the most efficient way to climb and stick to surfaces.

“Climbing robots, for instance, need ways to stick, they could be based either on gecko climbing or tree frog climbing.  This research demonstrates how a good climbing robot would need to combine gripping and adhesion to climb more efficiently.”

The study, “The biomechanics of tree frogs climbing curved surfaces: a gripping problem” is published in the Journal ofExperimental Biology. The work was funded by the Royal Society, London and by grants from the National Natural Science Foundation of China and the Natural Science Foundation of Jiangsu Province.

Here’s a link to and a citation for the paper (I love the pun in the title),

The biomechanics of tree frogs climbing curved surfaces: a gripping problem by Iain D. C. Hill, Benzheng Dong, W. Jon. P. Barnes, Aihong Ji, Thomas Endlein. Journal of Experimental Biology 2018 : jeb.168179 doi: 10.1242/jeb.168179 Published 19 January 2018

This paper is behind a paywall.

Nano with green tea for sensitive teeth

The future will be beautiful if scientists are successful with a new DNA (deoxyribonucleic acid) sunscreen (my Aug. 3, 2017 posting) and a new dental material for people with sensitive teeth. From an Aug. 2, 2017 news item on phys.org,

An ice cold drink is refreshing in the summer, but for people with sensitive teeth, it can cause a painful jolt in the mouth. This condition can be treated, but many current approaches don’t last long. Now researchers report in the journal ACS [American Chemical Society] Applied Materials & Interfaces the development of a new material with an extract from green tea that could fix this problem—and help prevent cavities in these susceptible patients.

An Aug. 2, 2017 ACS news release, which originated the news item, describes the problem and the work in more detail,

Tooth sensitivity commonly occurs when the protective layers of teeth are worn away, revealing a bony tissue called dentin. This tissue contains microscopic hollow tubes that, when exposed, allow hot and cold liquids and food to contact the underlying nerve endings in the teeth, causing pain. Unprotected dentin is also vulnerable to cavity formation. Plugging these tubes with a mineral called nanohydroxyapatite is a long-standing approach to treating sensitivity. But the material doesn’t stand up well to regular brushing, grinding, erosion or acid produced by cavity-causing bacteria. Cui Huang and colleagues wanted to tackle sensitivity and beat the bacteria at the same time.

The researchers encapsulated nanohydroxyapatite and a green tea polyphenol — epigallocatechin-3-gallate, or EGCG — in silica nanoparticles, which can stand up to acid and wear and tear. EGCG has been shown in previous studies to fight Streptococcus mutans, which forms biofilms that cause cavities. Testing on extracted wisdom teeth showed that the material plugged the dentin tubules, released EGCG for at least 96 hours, stood up to tooth erosion and brushing and prevented biofilm formation. It also showed low toxicity. Based on these findings, the researchers say the material could indeed be a good candidate for combating tooth sensitivity and cavities.

The authors acknowledge funding from the National Natural Science Foundation of China, the Natural Science Foundation of Hubei Province of China and the Fundamental Research Funds for the Central Universities.

Here’s a link to and a citation for the paper,

Development of Epigallocatechin-3-gallate-Encapsulated Nanohydroxyapatite/Mesoporous Silica for Therapeutic Management of Dentin Surface by Jian Yu, Hongye Yang, Kang Li, Hongyu Ren, Jinmei Lei, and Cui Huang. ACS Appl. Mater. Interfaces, Article ASAP DOI: 10.1021/acsami.7b06597 Publication Date (Web): July 13, 2017

Copyright © 2017 American Chemical Society

This paper is behind a paywall.

Powering up your graphene implants so you don’t get fried in the process

A Sept. 23, 2016 news item on phys.org describes a way of making graphene-based medical implants safer,

In the future, our health may be monitored and maintained by tiny sensors and drug dispensers, deployed within the body and made from graphene—one of the strongest, lightest materials in the world. Graphene is composed of a single sheet of carbon atoms, linked together like razor-thin chicken wire, and its properties may be tuned in countless ways, making it a versatile material for tiny, next-generation implants.

But graphene is incredibly stiff, whereas biological tissue is soft. Because of this, any power applied to operate a graphene implant could precipitously heat up and fry surrounding cells.

Now, engineers from MIT [Massachusetts Institute of Technology] and Tsinghua University in Beijing have precisely simulated how electrical power may generate heat between a single layer of graphene and a simple cell membrane. While direct contact between the two layers inevitably overheats and kills the cell, the researchers found they could prevent this effect with a very thin, in-between layer of water.

A Sept. 23, 2016 MIT news release by Emily Chu, which originated the news item, provides more technical details,

By tuning the thickness of this intermediate water layer, the researchers could carefully control the amount of heat transferred between graphene and biological tissue. They also identified the critical power to apply to the graphene layer, without frying the cell membrane. …

Co-author Zhao Qin, a research scientist in MIT’s Department of Civil and Environmental Engineering (CEE), says the team’s simulations may help guide the development of graphene implants and their optimal power requirements.

“We’ve provided a lot of insight, like what’s the critical power we can accept that will not fry the cell,” Qin says. “But sometimes we might want to intentionally increase the temperature, because for some biomedical applications, we want to kill cells like cancer cells. This work can also be used as guidance [for those efforts.]”

Sandwich model

Typically, heat travels between two materials via vibrations in each material’s atoms. These atoms are always vibrating, at frequencies that depend on the properties of their materials. As a surface heats up, its atoms vibrate even more, causing collisions with other atoms and transferring heat in the process.

The researchers sought to accurately characterize the way heat travels, at the level of individual atoms, between graphene and biological tissue. To do this, they considered the simplest interface, comprising a small, 500-nanometer-square sheet of graphene and a simple cell membrane, separated by a thin layer of water.

“In the body, water is everywhere, and the outer surface of membranes will always like to interact with water, so you cannot totally remove it,” Qin says. “So we came up with a sandwich model for graphene, water, and membrane, that is a crystal clear system for seeing the thermal conductance between these two materials.”

Qin’s colleagues at Tsinghua University had previously developed a model to precisely simulate the interactions between atoms in graphene and water, using density functional theory — a computational modeling technique that considers the structure of an atom’s electrons in determining how that atom will interact with other atoms.

However, to apply this modeling technique to the group’s sandwich model, which comprised about half a million atoms, would have required an incredible amount of computational power. Instead, Qin and his colleagues used classical molecular dynamics — a mathematical technique based on a “force field” potential function, or a simplified version of the interactions between atoms — that enabled them to efficiently calculate interactions within larger atomic systems.

The researchers then built an atom-level sandwich model of graphene, water, and a cell membrane, based on the group’s simplified force field. They carried out molecular dynamics simulations in which they changed the amount of power applied to the graphene, as well as the thickness of the intermediate water layer, and observed the amount of heat that carried over from the graphene to the cell membrane.

Watery crystals

Because the stiffness of graphene and biological tissue is so different, Qin and his colleagues expected that heat would conduct rather poorly between the two materials, building up steeply in the graphene before flooding and overheating the cell membrane. However, the intermediate water layer helped dissipate this heat, easing its conduction and preventing a temperature spike in the cell membrane.

Looking more closely at the interactions within this interface, the researchers made a surprising discovery: Within the sandwich model, the water, pressed against graphene’s chicken-wire pattern, morphed into a similar crystal-like structure.

“Graphene’s lattice acts like a template to guide the water to form network structures,” Qin explains. “The water acts more like a solid material and makes the stiffness transition from graphene and membrane less abrupt. We think this helps heat to conduct from graphene to the membrane side.”

The group varied the thickness of the intermediate water layer in simulations, and found that a 1-nanometer-wide layer of water helped to dissipate heat very effectively. In terms of the power applied to the system, they calculated that about a megawatt of power per meter squared, applied in tiny, microsecond bursts, was the most power that could be applied to the interface without overheating the cell membrane.

Qin says going forward, implant designers can use the group’s model and simulations to determine the critical power requirements for graphene devices of different dimensions. As for how they might practically control the thickness of the intermediate water layer, he says graphene’s surface may be modified to attract a particular number of water molecules.

“I think graphene provides a very promising candidate for implantable devices,” Qin says. “Our calculations can provide knowledge for designing these devices in the future, for specific applications, like sensors, monitors, and other biomedical applications.”

This research was supported in part by the MIT International Science and Technology Initiative (MISTI): MIT-China Seed Fund, the National Natural Science Foundation of China, DARPA [US Defense Advanced Research Projects Agency], the Department of Defense (DoD) Office of Naval Research, the DoD Multidisciplinary Research Initiatives program, the MIT Energy Initiative, and the National Science Foundation.

Here’s a link to and a citation for the paper,

Intercalated water layers promote thermal dissipation at bio–nano interfaces by Yanlei Wang, Zhao Qin, Markus J. Buehler, & Zhiping Xu. Nature Communications 7, Article number: 12854 doi:10.1038/ncomms12854 Published 23 September 2016

This paper is open access.