Tag Archives: National Natural Science Foundation of China (NSFC)

Future firefighters and wearable technology

I imagine this wearable technology would also be useful for the military too. However, the focus for these researchers from China is firefighting. (Given the situation with the Canadian wildfires in June 2023, we have 10x more than the average at this time in the season over the last 10 years, it’s good to see some work focused on safety for firefighters.) From a January 17, 2023 news item on phys.org,

Firefighting may look vastly different in the future thanks to intelligent fire suits and masks developed by multiple research institutions in China.

Researchers published results showing breathable electrodes woven into fabric used in fire suits have proven to be stable at temperatures over 520ºC. At these temperatures, the fabric is found to be essentially non-combustible with high rates of thermal protection time.

Caption: Scientists from multiple institutions address the challenges and limitations of current fire-fighting gear by introducing wearable, breathable sensors and electrodes to better serve firefighters. Credit: Nano Research, Tsinghua University Press

A January 17, 2023 Tsinghua University Press press release on EurekAlert, which originated the news item, provides more technical details,

The results show the efficacy and practicality of Janus graphene/poly(p-phenylene benzobisoxazole), or PBO, woven fabric in making firefighting “smarter” with the main goal being to manufacture products on an industrial scale that are flame-retardant but also intelligent enough to warn the firefighter of increased risks while traversing the flames.

“Conventional firefighting clothing and fire masks can ensure firemen’s safety to a certain extent,” said Wei Fan, professor at the School of Textile Science and Engineering at Xi’an Polytechnic University. “However, the fire scene often changes quickly, sometimes making firefighters trapped in the fire for failing to judge the risks in time. At this situation, firefighters also need to be rescued.”

The key here is the use of Janus graphene/PBO, woven fabrics. While not the first of its kind, the introduction of PBO fibers offers better strength and fire protection than other similar fibers, such as Kevlar. The PBO fibers are first woven into a fabric that is then irradiated using a CO2 infrared laser. From here, the fabric becomes the Janus graphene/PBO hybrid that is the focus of the study.   

The mask also utilizes a top and bottom layer of Janus graphene/PBO with a piezoelectric layer in between that acts as a way to convert mechanical pressures to electricity.

“The mask has a good smoke particle filtration effect, and the filtration efficiency of PM2.5 and PM3.0 reaches 95% and 100%, respectively. Meanwhile, the mask has good wearing comfort as its respiratory resistance (46.8 Pa) is lower than 49 Pa of commercial masks. Besides, the mask is sensitive to the speed and intensity of human breathing, which can dynamically monitor the health of the firemen” said Fan.

Flame-retardant electronics featured in these fire suits are flexible, heat resistant, quick to make and low-cost which makes scaling for industrial production a tangible achievement. This makes it more likely that the future of firefighting suits and masks will be able to effectively use this technology. Quick, effective responses can also reduce economic losses attributed to fires.

“The graphene/PBO woven fabrics-based sensors exhibit good repeatability and stability in human motion monitoring and NO2 gas detection, the main toxic gas in fires, which can be applied to firefighting suits to help firefighters effectively avoiding danger” Fan said. Being able to detect sharp increases in NO2 gas can help firefighters change course in an instant if needed and could be a lifesaving addition to firefighter gear.

Major improvements can be made in the firefighting field to better protect the firefighters by taking advantage of graphene/PBO woven and nonwoven fabrics. Widescale use of this technology can help the researchers reach their ultimate goal of reducing mortality and injury to those who risk their lives fighting fires.

Yu Luo and Yaping Miao of the School of Textile Science and Engineering at Xi’an Polytechnic University contributed equally to this work. Professor Wei Fan is the corresponding author. Yingying Zhang and Huimin Wang of the Department of Chemistry at Tsinghua University, Kai Dong of the Beijing Institute of Nanoenergy and Nanosystems at the Chinese Academy of Sciences, and Lin Hou and Yanyan Xu of Shaanxi Textile Research Institute Co., LTD, Weichun Chen and Yao Zhang of the School of Textile Science and Engineering at Xi’an Polytechnic University contributed to this research. 

This work was supported by the National Natural Science Foundation of China, Textile Vision Basic Research Program of China, Key Research and Development Program of Xianyang Science and Technology Bureau, Key Research and Development Program of Shaanxi Province, Natural Science Foundation of Shaanxi Province, and Scientific Research Project of Shaanxi Provincial Education Department.

Here are two links and a citation for the same paper,

Laser-induced Janus graphene/poly(p-phenylene benzobisoxazole) fabrics with intrinsic flame retardancy as flexible sensors and breathable electrodes for fire-fighting field by Yu Luo, Yaping Miao, Huimin Wang, Kai Dong, Lin Hou, Yanyan Xu, Weichun Chen, Yao Zhang, Yingying Zhang & Wei Fan. Nano Research (2023) DOI: https://doi.org/10.1007/s12274-023-5382-y Published12 January 2023

This link leads to a paywall.

Here’s the second link (to SciOpen)

Laser-induced Janus graphene/poly(p-phenylene benzobisoxazole) fabrics with intrinsic flame retardancy as flexible sensors and breathable electrodes for fire-fighting field. SciOpen Published January 12, 2023

This link leads to an open access journal published by Tsinghua University Press.

Classical music makes protein songs easier listening

Caption: This audio is oxytocin receptor protein music using the Fantasy Impromptu guided algorithm. Credit: Chen et al. / Heliyon

A September 29, 2021 news item on ScienceDaily describes new research into music as a means of communicating science,

In recent years, scientists have created music based on the structure of proteins as a creative way to better popularize science to the general public, but the resulting songs haven’t always been pleasant to the ear. In a study appearing September 29 [2021] in the journal Heliyon, researchers use the style of existing music genres to guide the structure of protein song to make it more musical. Using the style of Frédéric Chopin’s Fantaisie-Impromptu and other classical pieces as a guide, the researchers succeeded in converting proteins into song with greater musicality.

Scientists (Peng Zhang, Postdoctoral Researcher in Computational Biology at The Rockefeller University, and Yuzong Chen, Professor of Pharmacy at National University of Singapore [NUS]) wrote a September 29, 2021 essay for The Conversation about their protein songs (Note: Links have been removed),

There are many surprising analogies between proteins, the basic building blocks of life, and musical notation. These analogies can be used not only to help advance research, but also to make the complexity of proteins accessible to the public.

We’re computational biologists who believe that hearing the sound of life at the molecular level could help inspire people to learn more about biology and the computational sciences. While creating music based on proteins isn’t new, different musical styles and composition algorithms had yet to be explored. So we led a team of high school students and other scholars to figure out how to create classical music from proteins.

The musical analogies of proteins

Proteins are structured like folded chains. These chains are composed of small units of 20 possible amino acids, each labeled by a letter of the alphabet.

A protein chain can be represented as a string of these alphabetic letters, very much like a string of music notes in alphabetical notation.

Protein chains can also fold into wavy and curved patterns with ups, downs, turns and loops. Likewise, music consists of sound waves of higher and lower pitches, with changing tempos and repeating motifs.

Protein-to-music algorithms can thus map the structural and physiochemical features of a string of amino acids onto the musical features of a string of notes.

Enhancing the musicality of protein mapping

Protein-to-music mapping can be fine-tuned by basing it on the features of a specific music style. This enhances musicality, or the melodiousness of the song, when converting amino acid properties, such as sequence patterns and variations, into analogous musical properties, like pitch, note lengths and chords.

For our study, we specifically selected 19th-century Romantic period classical piano music, which includes composers like Chopin and Schubert, as a guide because it typically spans a wide range of notes with more complex features such as chromaticism, like playing both white and black keys on a piano in order of pitch, and chords. Music from this period also tends to have lighter and more graceful and emotive melodies. Songs are usually homophonic, meaning they follow a central melody with accompaniment. These features allowed us to test out a greater range of notes in our protein-to-music mapping algorithm. In this case, we chose to analyze features of Chopin’s “Fantaisie-Impromptu” to guide our development of the program.

If you have the time, I recommend reading the essay in its entirety and listening to the embedded audio files.

The September 29, 2021 Cell Press news release on EurekAlert repeats some of the same material but is worth reading on its own merits,

In recent years, scientists have created music based on the structure of proteins as a creative way to better popularize science to the general public, but the resulting songs haven’t always been pleasant to the ear. In a study appearing September 29 [2021] in the journal Heliyon, researchers use the style of existing music genres to guide the structure of protein song to make it more musical. Using the style of Frédéric Chopin’s Fantaisie-Impromptu and other classical pieces as a guide, the researchers succeeded in converting proteins into song with greater musicality.

Creating unique melodies from proteins is achieved by using a protein-to-music algorithm. This algorithm incorporates specific elements of proteins—like the size and position of amino acids—and maps them to various musical elements to create an auditory “blueprint” of the proteins’ structure.

“Existing protein music has mostly been designed by simple mapping of certain amino acid patterns to fundamental musical features such as pitches and note lengths, but they do not map well to more complex musical features such as rhythm and harmony,” says senior author Yu Zong Chen, a professor in the Department of Pharmacy at National University of Singapore. “By focusing on a music style, we can guide more complex mappings of combinations of amino acid patterns with various musical features.”

For their experiment, researchers analyzed the pitch, length, octaves, chords, dynamics, and main theme of four pieces from the mid-1800s Romantic era of classical music. These pieces, including Fantasie-Impromptu from Chopin and Wanderer Fantasy from Franz Schubert, were selected to represent the notable Fantasy-Impromptu genre that emerged during that time.

“We chose the specific music style of a Fantasy-Impromptu as it is characterized by freedom of expression, which we felt would complement how proteins regulate much of our bodily functions, including our moods,” says co-author Peng Zhang (@zhangpeng1202), a post-doctoral fellow at the Rockefeller University

Likewise, several of the proteins in the study were chosen for their similarities to the key attributes of the Fantasy-Impromptu style. Most of the 18 proteins tested regulate functions including human emotion, cognition, sensation, or performance which the authors say connect to the emotional and expressive of the genre.

Then, they mapped 104 structural, physicochemical, and binding amino acid properties of those proteins to the six musical features. “We screened the quantitative profile of each amino acid property against the quantized values of the different musical features to find the optimal mapped pairings. For example, we mapped the size of amino acid to note length, so that having a larger amino acid size corresponds to a shorter note length,” says Chen.

Across all the proteins tested, the researchers found that the musicality of the proteins was significantly improved. In particular, the protein receptor for oxytocin (OXTR) was judged to have one of the greatest increases in musicality when using the genre-guided algorithm, compared to an earlier version of the protein-to-music algorithm.

“The oxytocin receptor protein generated our favorite song,” says Zhang. “This protein sequence produced an identifiable main theme that repeats in rhythm throughout the piece, as well as some interesting motifs and patterns that recur independent of our algorithm. There were also some pleasant harmonic progressions; for example, many of the seventh chords naturally resolve.”

The authors do note, however, that while the guided algorithm increased the overall musicality of the protein songs, there is still much progress to be made before it resembles true human music.

“We believe a next step is to explore more music styles and more complex combinations of amino acid properties for enhanced musicality and novel music pieces. Another next step, a very important step, is to apply artificial intelligence to jointly learn complex amino acid properties and their combinations with respect to the features of various music styles for creating protein music of enhanced musicality,” says Chen.

###

Research supported by the National Key R&D Program of China, the National Natural Science Foundation of China, and Singapore Academic Funds.

Here’s a link to and a citation for the paper,

Protein Music of Enhanced Musicality by Music Style Guided Exploration of Diverse Amino Acid Properties by Nicole WanNi Tay, Fanxi Liu, Chaoxin Wang, Hui Zhang, Peng Zhang, Yu Zong Chen. Heliyon, 2021 DOI: https:// doi.org/10.1016/j.heliyon.2021.e07933 Published; September 29, 2021

This paper appears to be open access.

China is world leader in nanotechnology and in other fields too?

State of Chinese nanoscience/nanotechnology

China claims to be the world leader in the field in a white paper announced in an August 29, 2017 Springer Nature press release,

Springer Nature, the National Center for Nanoscience and Technology, China and the National Science Library of the Chinese Academy of Sciences (CAS) released in both Chinese and English a white paper entitled “Small Science in Big China: An overview of the state of Chinese nanoscience and technology” at NanoChina 2017, an international conference on nanoscience and technology held August 28 and 29 in Beijing. The white paper looks at the rapid growth of China’s nanoscience research into its current role as the world’s leader [emphasis mine], examines China’s strengths and challenges, and makes some suggestions for how its contribution to the field can continue to thrive.

The white paper points out that China has become a strong contributor to nanoscience research in the world, and is a powerhouse of nanotechnology R&D. Some of China’s basic research is leading the world. China’s applied nanoscience research and the industrialization of nanotechnologies have also begun to take shape. These achievements are largely due to China’s strong investment in nanoscience and technology. China’s nanoscience research is also moving from quantitative increase to quality improvement and innovation, with greater emphasis on the applications of nanotechnologies.

“China took an initial step into nanoscience research some twenty years ago, and has since grown its commitment at an unprecedented rate, as it has for scientific research as a whole. Such a growth is reflected both in research quantity and, importantly, in quality. Therefore, I regard nanoscience as a window through which to observe the development of Chinese science, and through which we could analyze how that rapid growth has happened. Further, the experience China has gained in developing nanoscience and related technologies is a valuable resource for the other countries and other fields of research to dig deep into and draw on,” said Arnout Jacobs, President, Greater China, Springer Nature.

The white paper explores at China’s research output relative to the rest of the world in terms of research paper output, research contribution contained in the Nano database, and finally patents, providing insight into China’s strengths and expertise in nano research. The white paper also presents the results of a survey of experts from the community discussing the outlook for and challenges to the future of China’s nanoscience research.

China nano research output: strong rise in quantity and quality

In 1997, around 13,000 nanoscience-related papers were published globally. By 2016, this number had risen to more than 154,000 nano-related research papers. This corresponds to a compound annual growth rate of 14% per annum, almost four times the growth in publications across all areas of research of 3.7%. Over the same period of time, the nano-related output from China grew from 820 papers in 1997 to over 52,000 papers in 2016, a compound annual growth rate of 24%.

China’s contribution to the global total has been growing steadily. In 1997, Chinese researchers co-authored just 6% of the nano-related papers contained in the Science Citation Index (SCI). By 2010, this grew to match the output of the United States. They now contribute over a third of the world’s total nanoscience output — almost twice that of the United States.

Additionally, China’s share of the most cited nanoscience papers has kept increasing year on year, with a compound annual growth rate of 22% — more than three times the global rate. It overtook the United States in 2014 and its contribution is now many times greater than that of any other country in the world, manifesting an impressive progression in both quantity and quality.

The rapid growth of nanoscience in China has been enabled by consistent and strong financial support from the Chinese government. As early as 1990, the State Science and Technology Committee, the predecessor of the Ministry of Science and Technology (MOST), launched the Climbing Up project on nanomaterial science. During the 1990s, the National Natural Science Foundation of China (NSFC) also funded nearly 1,000 small-scale projects in nanoscience. In the National Guideline on Medium- and Long-Term Program for Science and Technology Development (for 2006−2020) issued in early 2006 by the Chinese central government, nanoscience was identified as one of four areas of basic research and received the largest proportion of research budget out of the four areas. The brain boomerang, with more and more foreign-trained Chinese researchers returning from overseas, is another contributor to China’s rapid rise in nanoscience.

The white paper clarifies the role of Chinese institutions, including CAS, in driving China’s rise to become the world’s leader in nanoscience. Currently, CAS is the world’s largest producer of high impact nano research, contributing more than twice as many papers in the 1% most-cited nanoscience literature than its closest competitors. In addition to CAS, five other Chinese institutions are ranked among the global top 20 in terms of output of top cited 1% nanoscience papers — Tsinghua University, Fudan University, Zhejiang University, University of Science and Technology of China and Peking University.

Nano database reveals advantages and focus of China’s nano research

The Nano database (http://nano.nature.com) is a comprehensive platform that has been recently developed by Nature Research – part of Springer Nature – which contains nanoscience-related papers published in 167 peer-reviewed journals including Advanced Materials, Nano Letters, Nature, Science and more. Analysis of the Nano database of nanomaterial-containing articles published in top 30 journals during 2014–2016 shows that Chinese scientists explore a wide range of nanomaterials, the five most common of which are nanostructured materials, nanoparticles, nanosheets, nanodevices and nanoporous materials.

In terms of the research of applications, China has a clear leading edge in catalysis research, which is the most popular area of the country’s quality nanoscience papers. Chinese nano researchers also contributed significantly to nanomedicine and energy-related applications. China is relatively weaker in nanomaterials for electronics applications, compared to other research powerhouses, but robotics and lasers are emerging applications areas of nanoscience in China, and nanoscience papers addressing photonics and data storage applications also see strong growth in China. Over 80% of research from China listed in the database explicitly mentions applications of the nanostructures and nanomaterials described, notably higher than from most other leading nations such as the United States, Germany, the UK, Japan and France.

Nano also reveals the extent of China’s international collaborations in nano research. China has seen the percentage of its internationally collaborated papers increasing from 36% in 2014 to 44% in 2016. This level of international collaboration, similar to that of South Korea, is still much lower than that of the western countries, and the rate of growth is also not as fast as those in the United States, France and Germany.

The United States is China’s biggest international collaborator, contributing to 55% of China’s internationally collaborated papers on nanoscience that are included in the top 30 journals in the Nano database. Germany, Australia and Japan follow in a descending order as China’s collaborators on nano-related quality papers.

China’s patent output: topping the world, mostly applied domestically

Analysis of the Derwent Innovation Index (DII) database of Clarivate Analytics shows that China’s accumulative total number of patent applications for the past 20 years, amounting to 209,344 applications, or 45% of the global total, is more than twice as many as that of the United States, the second largest contributor to nano-related patents. China surpassed the United States and ranked the top in the world since 2008.

Five Chinese institutions, including the CAS, Zhejiang University, Tsinghua University, Hon Hai Precision Industry Co., Ltd. and Tianjin University can be found among the global top 10 institutional contributors to nano-related patent applications. CAS has been at the top of the global rankings since 2008, with a total of 11,218 patent applications for the past 20 years. Interestingly, outside of China, most of the other big institutional contributors among the top 10 are commercial enterprises, while in China, research or academic institutions are leading in patent applications.

However, the number of nano-related patents China applied overseas is still very low, accounting for only 2.61% of its total patent applications for the last 20 years cumulatively, whereas the proportion in the United States is nearly 50%. In some European countries, including the UK and France, more than 70% of patent applications are filed overseas.

China has high numbers of patent applications in several popular technical areas for nanotechnology use, and is strongest in patents for polymer compositions and macromolecular compounds. In comparison, nano-related patent applications in the United States, South Korea and Japan are mainly for electronics or semiconductor devices, with the United States leading the world in the cumulative number of patents for semiconductor devices.

Outlook, opportunities and challenges

The white paper highlights that the rapid rise of China’s research output and patent applications has painted a rosy picture for the development of Chinese nanoscience, and in both the traditionally strong subjects and newly emerging areas, Chinese nanoscience shows great potential.

Several interviewed experts in the survey identify catalysis and catalytic nanomaterials as the most promising nanoscience area for China. The use of nanotechnology in the energy and medical sectors was also considered very promising.

Some of the interviewed experts commented that the industrial impact of China’s nanotechnology is limited and there is still a gap between nanoscience research and the industrialization of nanotechnologies. Therefore, they recommended that the government invest more in applied research to drive the translation of nanoscience research and find ways to encourage enterprises to invest more in R&D.

As more and more young scientists enter the field, the competition for research funding is becoming more intense. However, this increasing competition for funding was not found to concern most interviewed young scientists, rather, they emphasized that the soft environment is more important. They recommended establishing channels that allow the suggestions or creative ideas of the young to be heard. Also, some interviewed young researchers commented that they felt that the current evaluation system was geared towards past achievements or favoured overseas experience, and recommended the development of an improved talent selection mechanism to ensure a sustainable growth of China’s nanoscience.

I have taken a look at the white paper and found it to be well written. It also provides a brief but thorough history of nanotechnology/nanoscience even adding a bit of historical information that was new to me. As for the rest of the white paper, it relies on bibliometrics (number of published papers and number of citations) and number of patents filed to lay the groundwork for claiming Chinese leadership in nanotechnology. As I’ve stated many times before, these are problematic measures but as far as I can determine they are almost the only ones we have. Frankly, as a Canadian, it doesn’t much matter to me since Canada no matter how you slice or dice it is always in a lower tier relative to science leadership in major fields. It’s the Americans who might feel inclined to debate leadership with regard to nanotechnology and other major fields and I leave it to to US commentators to take up the cudgels should they be inclined. The big bonuses here are the history, the glimpse into the Chinese perspective on the field of nanotechnology/nanoscience, and the analysis of weaknesses and strengths.

Coming up fast on Google and Amazon

A November 16, 2017 article by Christina Bonnington for Slate explores the possibility that a Chinese tech giant, Baidu,  will provide Google and Amazon serious competition in their quests to dominate world markets (Note: Links have been removed,

raven_h
The company took a playful approach to the form—but it has functional reasons for the design, too. Baidu

 

One of the most interesting companies in tech right now isn’t based in Palo Alto, or San Francisco, or Seattle. Baidu, a Chinese company with headquarters in Beijing, is taking on America’s biggest and most innovative tech titans—with style.

Baidu, a titan in its own right, leapt onto the scene as a competitor to Google in the search engine space. Since then, the company, largely underappreciated here in the U.S., has focused on beefing up its artificial intelligence efforts. Former AI chief Andrew Ng, upon leaving the company in March, credited Baidu’s CEO Robin Li on being one of the first technology leaders to fully appreciate the value of deep learning. Baidu now has a 1,300 person AI group, and that investment in AI has helped the company catch up to older, more established companies like Google and Amazon—both in emerging spaces, such as autonomous vehicles, and in consumer tech, as its latest announcement shows.

On Thursday [November 16, 2017], Baidu debuted its entrants to the popular virtual assistant space: a connected speaker and two robots. Baidu aims for the speaker to compete against options such as Amazon’s Echo line, Google Home, and Apple HomePod. Inside, the $256 device will utilize Baidu’s DuerOS conversational artificial intelligence platform, which is already used in more than 100 different smart home brands’ products. DuerOS will let you use your voice to do things like ask the speaker for information, play music, or hail a cab. Called the Raven H, the speaker includes high-end audio components from Tymphany and a unique design jointly created by acquired startup Raven Tech and Swedish consumer electronics company Teenage Engineering.

While the focus is on exciting new technology products from Baidu, the subtext, such as it is, suggests US companies had best keep an eye on its Chinese competitor(s).

Dutch/Chinese partnership to produce nanoparticles at the touch of a button

Now back to China and nanotechnology leadership and the production of nanoparticles. This announcement was made in a November 17, 2017 news item on Azonano,

Delft University of Technology [Netherlands] spin-off VSPARTICLE enters the booming Chinese market with a radical technology that allows researchers to produce nanoparticles at the push of a button. VSPARTICLE’s nanoparticle generator uses atoms, the worlds’ smallest building blocks, to provide a controllable source of nanoparticles. The start-up from Delft signed a distribution agreement with Bio-Sun to make their VSP-G1 nanoparticle generator available in China.

A November 16, 2017 VSPARTICLE press release, which originated the news item,

“We are honoured to cooperate with VSPARTICLE and bring the innovative VSP-G1 nanoparticle generator into the Chinese market. The VSP-G1 will create new possibilities for researchers in catalysis, aerosol, healthcare and electronics,” says Yinghui Cai, CEO of Bio-Sun.

With an exponential growth in nanoparticle research in the last decade, China is one of the leading countries in the field of nanotechnology and its applications. Vincent Laban, CFO of VSPARTICLE, explains: “Due to its immense investments in IOT, sensors, semiconductor technology, renewable energy and healthcare applications, China will eventually become one of our biggest markets. The collaboration with Bio-Sun offers a valuable opportunity to enter the Chinese market at exactly the right time.”

NANOPARTICLES ARE THE BUILDING BLOCKS OF THE FUTURE

Increasingly, scientists are focusing on nanoparticles as a key technology in enabling the transition to a sustainable future. Nanoparticles are used to make new types of sensors and smart electronics; provide new imaging and treatment possibilities in healthcare; and reduce harmful waste in chemical processes.

CURRENT RESEARCH TOOLKIT LACKS A FAST WAY FOR MAKING SPECIFIC BUILDING BLOCKS

With the latest tools in nanotechnology, researchers are exploring the possibilities of building novel materials. This is, however, a trial-and-error method. Getting the right nanoparticles often is a slow struggle, as most production methods take a substantial amount of effort and time to develop.

VSPARTICLE’S VSP-G1 NANOPARTICLE GENERATOR

With the VSP-G1 nanoparticle generator, VSPARTICLE makes the production of nanoparticles as easy as pushing a button. . Easy and fast iterations enable researchers to fast forward their research cycle, and verify their hypotheses.

VSPARTICLE

Born out of the research labs of Delft University of Technology, with over 20 years of experience in the synthesis of aerosol, VSPARTICLE believes there is a whole new world of possibilities and materials at the nanoscale. The company was founded in 2014 and has an international sales network in Europe, Japan and China.

BIO-SUN

Bio-Sun was founded in Beijing in 2010 and is a leader in promoting nanotechnology and biotechnology instruments in China. It serves many renowned customers in life science, drug discovery and material science. Bio-Sun has four branch offices in Qingdao, Shanghai, Guangzhou and Wuhan City, and a nationwide sale network.

That’s all folks!