Tag Archives: Nature’s patterns reflected in gold nanoparticles

Synthesized nanoparticles with the complexity of protein molecules

Caption: The structure of the largest gold nanoparticle to-date, Au246(SR)80, was resolved using x-ray crystallography. Credit: Carnegie Mellon University

Carnegie Mellon University (CMU) researchers synthesized a self-assembled nanoparticle of gold as they built on their 2015 work described in my April 14, 2015 posting (Nature’s patterns reflected in gold nanoparticles). Here’s the latest from the team in a Jan. 23, 2017 news item on phys.org,

Chemists at Carnegie Mellon University have demonstrated that synthetic nanoparticles can achieve the same level of structural complexity, hierarchy and accuracy as their natural counterparts – biomolecules. The study, published in Science, also reveals the atomic-level mechanisms behind nanoparticle self-assembly.

The findings from the lab of Chemistry Professor Rongchao Jin provide researchers with an important window into how nanoparticles form, and will help guide the construction of nanoparticles, including those that can be used in the fabrication of computer chips, creation of new materials, and development of new drugs and drug delivery devices.

Caption: By resolving the structure of Au246, Carnegie Mellon researchers were able to visualize its hierarchical assembly into artificial solid. Credit: Carnegie Mellon University

A Jan.  23, 2017 CMU news release on EurekAlert, which originated the news item, expands on the theme,

“Most people think that nanoparticles are simple things, because they are so small. But when we look at nanoparticles at the atomic level, we found that they are full of wonders,” said Jin.

Nanoparticles are typically between 1 and 100 nanometers in size. Particles on the larger end of the nanoscale are harder to create precisely. Jin has been at the forefront of creating precise gold nanoparticles for a decade, first establishing the structure of an ultra-small Au25 nanocluster and then working on larger and larger ones. In 2015, his lab used X-ray crystallography to establish the structure of an Au133 nanoparticle and found that it contained complex, self-organized patterns that mirrored patterns found in nature.

In the current study, they sought to find out the mechanisms that caused these patterns to form. The researchers, led by graduate student Chenjie Zeng, established the structure of Au246, one of the largest and most complex nanoparticles created by scientists to-date and the largest gold nanoparticle to have its structure determined by X-ray crystallography. Au246 turned out to be an ideal candidate for deciphering the complex rules of self- assembly because it contains an ideal number of atoms and surface ligands and is about the same size and weight as a protein molecule.

Analysis of Au246’s structure revealed that the particles had much more in common with biomolecules than size. They found that the ligands in the nanoparticles self-assembled into rotational and parallel patterns that are strikingly similar to the patterns found in proteins’ secondary structure. This could indicate that nanoparticles of this size could easily interact with biological systems, providing new avenues for drug discovery.

The researchers also found that Au246 particles form by following two rules. First, they maximize the interactions between atoms, a mechanism that had been theorized but not yet seen. Second the nanoparticles match symmetric surface patterns, a mechanism that had not been considered previously. The matching, which is similar to puzzle pieces coming together, shows that the components of the particle can recognize each other by their patterns and spontaneously assemble into the highly ordered structure of a nanoparticle.

“Self-assembly is an important way of construction in the nanoworld. Understanding the rules of self-assembly is critical to designing and building up complex nanoparticles with a wide-range of functionalities,” said Zeng, the study’s lead author.

In future studies, Jin hopes to push the crystallization limits of nanoparticles even farther to larger and larger particles. He also plans to explore the particles’ electronic and catalytic power.

Here’s a link to and a citation for the paper,

Emergence of hierarchical structural complexities in nanoparticles and their assembly by Chenjie Zeng, Yuxiang Chen, Kristin Kirschbaum, Kelly J. Lambright, Rongchao Jin. Science  23 Dec 2016: Vol. 354, Issue 6319, pp. 1580-1584 DOI: 10.1126/science.aak9750

This paper is behind a paywall.

When an atom more or less makes a big difference

As scientists continue exploring the nanoscale, it seems that finding the number of atoms in your particle makes a difference is no longer so surprising. From a Jan. 28, 2016 news item on ScienceDaily,

Combining experimental investigations and theoretical simulations, researchers have explained why platinum nanoclusters of a specific size range facilitate the hydrogenation reaction used to produce ethane from ethylene. The research offers new insights into the role of cluster shapes in catalyzing reactions at the nanoscale, and could help materials scientists optimize nanocatalysts for a broad class of other reactions.

A Jan. 28, 2016 Georgia Institute of Technology (Georgia Tech) news release (*also on EurekAlert*), which originated the news item, expands on the theme,

At the macro-scale, the conversion of ethylene has long been considered among the reactions insensitive to the structure of the catalyst used. However, by examining reactions catalyzed by platinum clusters containing between 9 and 15 atoms, researchers in Germany and the United States found that at the nanoscale, that’s no longer true. The shape of nanoscale clusters, they found, can dramatically affect reaction efficiency.

While the study investigated only platinum nanoclusters and the ethylene reaction, the fundamental principles may apply to other catalysts and reactions, demonstrating how materials at the very smallest size scales can provide different properties than the same material in bulk quantities. …

“We have re-examined the validity of a very fundamental concept on a very fundamental reaction,” said Uzi Landman, a Regents’ Professor and F.E. Callaway Chair in the School of Physics at the Georgia Institute of Technology. “We found that in the ultra-small catalyst range, on the order of a nanometer in size, old concepts don’t hold. New types of reactivity can occur because of changes in one or two atoms of a cluster at the nanoscale.”

The widely-used conversion process actually involves two separate reactions: (1) dissociation of H2 molecules into single hydrogen atoms, and (2) their addition to the ethylene, which involves conversion of a double bond into a single bond. In addition to producing ethane, the reaction can also take an alternative route that leads to the production of ethylidyne, which poisons the catalyst and prevents further reaction.

The project began with Professor Ueli Heiz and researchers in his group at the Technical University of Munich experimentally examining reaction rates for clusters containing 9, 10, 11, 12 or 13 platinum atoms that had been placed atop a magnesium oxide substrate. The 9-atom nanoclusters failed to produce a significant reaction, while larger clusters catalyzed the ethylene hydrogenation reaction with increasingly better efficiency. The best reaction occurred with 13-atom clusters.

Bokwon Yoon, a research scientist in Georgia Tech’s Center for Computational Materials Science, and Landman, the center’s director, then used large-scale first-principles quantum mechanical simulations to understand how the size of the clusters – and their shape – affected the reactivity. Using their simulations, they discovered that the 9-atom cluster resembled a symmetrical “hut,” while the larger clusters had bulges that served to concentrate electrical charges from the substrate.

“That one atom changes the whole activity of the catalyst,” Landman said. “We found that the extra atom operates like a lightning rod. The distribution of the excess charge from the substrate helps facilitate the reaction. Platinum 9 has a compact shape that doesn’t facilitate the reaction, but adding just one atom changes everything.”

Here’s an illustration featuring the difference between a 9 atom cluster and a 10 atom cluster,

A single atom makes a difference in the catalytic properties of platinum nanoclusters. Shown are platinum 9 (top) and platinum 10 (bottom). (Credit: Uzi Landman, Georgia Tech)

A single atom makes a difference in the catalytic properties of platinum nanoclusters. Shown are platinum 9 (top) and platinum 10 (bottom). (Credit: Uzi Landman, Georgia Tech)

The news release explains why the larger clusters function as catalysts,

Nanoclusters with 13 atoms provided the maximum reactivity because the additional atoms shift the structure in a phenomena Landman calls “fluxionality.” This structural adjustment has also been noted in earlier work of these two research groups, in studies of clusters of gold [emphasis mine] which are used in other catalytic reactions.

“Dynamic fluxionality is the ability of the cluster to distort its structure to accommodate the reactants to actually enhance reactivity,” he explained. “Only very small aggregates of metal can show such behavior, which mimics a biochemical enzyme.”

The simulations showed that catalyst poisoning also varies with cluster size – and temperature. The 10-atom clusters can be poisoned at room temperature, while the 13-atom clusters are poisoned only at higher temperatures, helping to account for their improved reactivity.

“Small really is different,” said Landman. “Once you get into this size regime, the old rules of structure sensitivity and structure insensitivity must be assessed for their continued validity. It’s not a question anymore of surface-to-volume ratio because everything is on the surface in these very small clusters.”

While the project examined only one reaction and one type of catalyst, the principles governing nanoscale catalysis – and the importance of re-examining traditional expectations – likely apply to a broad range of reactions catalyzed by nanoclusters at the smallest size scale. Such nanocatalysts are becoming more attractive as a means of conserving supplies of costly platinum.

“It’s a much richer world at the nanoscale than at the macroscopic scale,” added Landman. “These are very important messages for materials scientists and chemists who wish to design catalysts for new purposes, because the capabilities can be very different.”

Along with the experimental surface characterization and reactivity measurements, the first-principles theoretical simulations provide a unique practical means for examining these structural and electronic issues because the clusters are too small to be seen with sufficient resolution using most electron microscopy techniques or traditional crystallography.

“We have looked at how the number of atoms dictates the geometrical structure of the cluster catalysts on the surface and how this geometrical structure is associated with electronic properties that bring about chemical bonding characteristics that enhance the reactions,” Landman added.

I highlighted the news release’s reference to gold nanoclusters as I have noted the number issue in two April 14, 2015 postings, neither of which featured Georgia Tech, Gold atoms: sometimes they’re a metal and sometimes they’re a molecule and Nature’s patterns reflected in gold nanoparticles.

Here’s a link to and a citation for the ‘platinum catalyst’ paper,

Structure sensitivity in the nonscalable regime explored via catalysed ethylene hydrogenation on supported platinum nanoclusters by Andrew S. Crampton, Marian D. Rötzer, Claron J. Ridge, Florian F. Schweinberger, Ueli Heiz, Bokwon Yoon, & Uzi Landman.  Nature Communications 7, Article number: 10389  doi:10.1038/ncomms10389 Published 28 January 2016

This paper is open access.

*’also on EurekAlert’ added Jan. 29, 2016.

Does the universe have a heartbeat?

It may be a bit fanciful to suggest the universe has a heartbeat but if University of Warwick (UK) researchers can state that dying stars have ‘irregular heartbeats’ then why can’t the universe have a heartbeat of sorts? Getting back to the University of Warwick, their August 26, 2015 press release (also on EurekAlert) has this to say,

Some dying stars suffer from ‘irregular heartbeats’, research led by astronomers at the University of Warwick has discovered.

The research confirms rapid brightening events in otherwise normal pulsating white dwarfs, which are stars in the final stage of their life cycles.

In addition to the regular rhythm from pulsations they expected on the white dwarf PG1149+057, which cause the star to get a few percent brighter and fainter every few minutes, the researchers also observed something completely unexpected every few days: arrhythmic, massive outbursts, which broke the star’s regular pulse and significantly heated up its surface for many hours.

The discovery was made possible by using the planet-hunting spacecraft Kepler, which stares unblinkingly at a small patch of sky, uninterrupted by clouds or sunrises.

Led by Dr JJ Hermes of the University of Warwick’s Astrophysics Group, the astronomers targeted the Kepler spacecraft on a specific star in the constellation Virgo, PG1149+057, which is roughly 120 light years from Earth.

Dr Hermes explains:

“We have essentially found rogue waves in a pulsating star, akin to ‘irregular heartbeats’. These were truly a surprise to see: we have been watching pulsating white dwarfs for more than 50 years now from the ground, and only by being able to stare uninterrupted for months from space have we been able to catch these events.”

The star with the irregular beat, PG1149+057, is a pulsating white dwarf, which is the burnt-out core of an evolved star, an extremely dense star which is almost entirely made up of carbon and oxygen. Our Sun will eventually become a white dwarf in more than six billion years, after it runs out of its nuclear fuel.

White dwarfs have been known to pulsate for decades, and some are exceptional clocks, with pulsations that have kept nearly perfect time for more than 40 years. Pulsations are believed to be a naturally occurring stage when a white dwarf reaches the right temperature to generate a mix of partially ionized hydrogen atoms at its surface.

That mix of excited atoms can store up and then release energy, causing the star to resonate with pulsations characteristically every few minutes. Astronomers can use the regular periods of these pulsations just like seismologists use earthquakes on Earth, to see below the surface of the star into its exotic interior. This was why astronomers targeted PG1149+057 with Kepler, hoping to learn more about its dense core. In the process, they caught a new glimpse at these unexpected outbursts.

“These are highly energetic events, which can raise the star’s overall brightness by more than 15% and its overall temperature by more than 750 degrees in a matter of an hour,” said Dr Hermes. “For context, the Sun will only increase in overall brightness by about 1% over the next 100 million years.”

Interestingly, this is not the only white dwarf to show an irregular pulse. Recently, the Kepler spacecraft witnessed the first example of these strange outbursts while studying another white dwarf, KIC 4552982, which was observed from space for more than 2.5 years.

There is a narrow range of surface temperatures where pulsations can be excited in white dwarfs, and so far irregularities have only been seen in the coolest of those that pulsate. Thus, these irregular outbursts may not be just an oddity; they have the potential to change the way astronomers understand how pulsations, the regular heartbeats, ultimately cease in white dwarfs.

“The theory of stellar pulsations has long failed to explain why pulsations in white dwarfs stop at the temperature we observe them to,” argues Keaton Bell of the University of Texas at Austin, who analysed the first pulsating white dwarf to show an irregular heartbeat, KIC 4552982. “That both stars exhibiting this new outburst phenomenon are right at the temperature where pulsations shut down suggests that the outbursts could be the key to revealing the missing physics in our pulsation theory.”

Astronomers are still trying to settle on an explanation for these never-before-seen outbursts. Given the similarity between the first two stars to show this behaviour, they suspect it might have to do with how the pulsation waves interact with themselves, perhaps via a resonance.

“Ultimately, this may be a new type of nonlinear behaviour that is triggered when the amplitude of a pulsation passes a certain threshold, perhaps similar to rogue waves on the open seas here on Earth, which are massive, spontaneous waves that can be many times larger than average surface waves,” said Dr Hermes. “Still, this is a fresh discovery from observations, and there may be more to these irregular stellar heartbeats than we can imagine yet.”

Here’s a link to and a citation for the paper,

A Second Case of Outbursts in a Pulsating White Dwarf Observed by Kepler by J. J. Hermes, M. H. Montgomery, Keaton J. Bell, P. Chote, B. T. Gänsicke, Steven D. Kawaler, J. C. Clemens, Bart H. Dunlap, D. E. Winget, and D. J. Armstrong.
2015 ApJ 810 L5 (The Astrophysical Journal Letters Volume 810 Number 1). doi:10.1088/2041-8205/810/1/L5
Published 24 August 2015.

© 2015. The American Astronomical Society. All rights reserved.

This paper is behind a paywall but there is an earlier open access version available at arXiv.org,

A second case of outbursts in a pulsating white dwarf observed by Kepler by J. J. Hermes, M. H. Montgomery, Keaton J. Bell, P. Chote, B. T. Gaensicke, Steven D. Kawaler, J. C. Clemens, B. H. Dunlap, D. E. Winget, D. J. Armstrong.  arXiv.org > astro-ph > arXiv:1507.06319

In an attempt to find some live heart beats to illustrate this piece, I found this video from Wake Forest University’s body-on-a-chip program,

The video was released in an April 14, 2015 article by Joe Bargmann for Popular Mechanics,

A groundbreaking program has converted human skin cells into a network of functioning heart cells, and also fused them with lab-grown liver cells using a specialized 3D printer. Researchers at the Wake Forest Baptist Medical Center’s Institute for Regenerative Medicine provided Popular Mechanics with both still and moving images of the cells for a fascinating first look.

“The heart organoid beats because it contains specialized cardiac cells and because those cells are receiving the correct environmental cues,” says Ivy Mead, a Wake Forest graduate student and member of the research team. “We give them a special medium and keep them at the same temperature as the human body, and that makes them beat. We can also stimulate the miniature organ with electrical or chemical cues to alter the beating patterns. Also, when we grow them in three-dimensions it allows for them to interact with each other more easily, as they would in the human body.”

If you’re interested in body-on-a-chip projects, I have several stories here (suggestion: use body-on-a-chip as your search term in the blog search engine) and I encourage you to read Bargmann’s story in its entirety (the video no longer seems to be embedded there).

One final comment, there seems to be some interest in relating large systems to smaller ones. For example, humans and other animals along with white dwarf stars have heartbeats (as in this story) and patterns in a gold nanoparticle of 133 atoms resemble the Milky Way (my April 14, 2015 posting titled: Nature’s patterns reflected in gold nanoparticles).

Gold atoms: sometimes they’re a metal and sometimes they’re a molecule

Fascinating work out of Finland shows that a minor change in the number of gold atoms in your gold nanoparticle can mean the difference between a metal and a molecule (coincidentally, this phenomenon is alluded to in my April 14, 2015 post (Nature’s patterns reflected in gold nanoparticles); more about that at the end of this piece. Getting back to Finland and when gold is metal and when it’s a molecule, here’s more from an April 10, 2015 news item on ScienceDaily,

Researchers at the Nanoscience Center at the University of Jyväskylä, Finland, have shown that dramatic changes in the electronic properties of nanometre-sized chunks of gold occur in well-defined size range. Small gold nanoclusters could be used, for instance, in short-term storage of energy or electric charge in the field of molecular electronics. Funded by the Academy of Finland, the researchers have been able to obtain new information which is important, among other things, in developing bioimaging and sensing based on metal-like clusters.

An April 10, 2015 news release (also on EurekAlert) on the Academy of Finland (Suomen Akatemia) website, which originated the news item, describes the work in more detail,

Two recent papers by the researchers at Jyväskylä (1, 2) demonstrate that the electronic properties of two different but still quite similar gold nanoclusters can be drastically different. The clusters were synthesised by chemical methods incorporating a stabilising ligand layer on their surface. The researchers found that the smaller cluster, with up to 102 gold atoms, behaves like a giant molecule while the larger one, with at least 144 gold atoms, already behaves, in principle, like a macroscopic chunk of metal, but in nanosize.

The fundamentally different behaviour of these two differently sized gold nanoclusters was demonstrated by shining a laser light onto solution samples containing the clusters and by monitoring how energy dissipates from the clusters into the surrounding solvent.

“Molecules behave drastically different from metals,” said Professor Mika Pettersson, the principal investigator of the team conducting the experiments. “The additional energy from light, absorbed by the metal-like clusters, transfers to the environment extremely rapidly, in about one hundred billionth of a second, while a molecule-like cluster is excited to a higher energy state and dissipates the energy into the environment with a rate that is at least 100 times slower. This is exactly what we saw: the 102-gold atom cluster is a giant molecule showing even a transient magnetic state while the 144-gold atom cluster is already a metal. We’ve thus managed to bracket an important size region where this fundamentally interesting change in the behaviour takes place.”

“These experimental results go together very well with what our team has seen from computational simulations on these systems,” said Professor Hannu Häkkinen, a co-author of the studies and the scientific director of the nanoscience centre. “My team predicted this kind of behaviour back in 2008-2009 when we saw big differences in the electronic structure of exactly these nanoclusters. It’s wonderful that robust spectroscopic experiments have now proved these phenomena. In fact, the metal-like 144-atom cluster is even more interesting, since we just published a theoretical paper where we saw a big enhancement of the metallic properties of just a few copper atoms mixed with gold.” (3)

Here are links to and citation for the papers,

Ultrafast Electronic Relaxation and Vibrational Cooling Dynamics of Au144(SC2H4Ph)60 Nanocluster Probed by Transient Mid-IR Spectroscopy by Satu Mustalahti, Pasi Myllyperkiö, Tanja Lahtinen, Kirsi Salorinne, Sami Malola, Jaakko Koivisto, Hannu Häkkinen, and Mika Pettersson. J. Phys. Chem. C, 2014, 118 (31), pp 18233–18239 DOI: 10.1021/jp505464z Publication Date (Web): July 3, 2014

Copyright © 2014 American Chemical Society

Copper Induces a Core Plasmon in Intermetallic Au(144,145)–xCux(SR)60 Nanoclusters by Sami Malola, Michael J. Hartmann, and Hannu Häkkinen. J. Phys. Chem. Lett., 2015, 6 (3), pp 515–520 DOI: 10.1021/jz502637b Publication Date (Web): January 22, 2015

Copyright © 2015 American Chemical Society

Molecule-like Photodynamics of Au102(pMBA)44 Nanocluster by Satu Mustalahti, Pasi Myllyperkiö, Sami Malola, Tanja Lahtinen, Kirsi Salorinne, Jaakko Koivisto, Hannu Häkkinen, and Mika Pettersson. ACS Nano, 2015, 9 (3), pp 2328–2335 DOI: 10.1021/nn506711a Publication Date (Web): February 22, 2015

Copyright © 2015 American Chemical Society

These papers are behind paywalls.

As for my April 14, 2015 post (Nature’s patterns reflected in gold nanoparticles), researchers at Carnegie Mellon University were researching patterns in different sized gold nanoparticles when this was noted in passing,

… Normally, gold is one of the best conductors of electrical current, but the size of Au133 is so small that the particle hasn’t yet become metallic. …