Tag Archives: NCC

Synthesizing nerve tissues with 3D printers and cellulose nanocrystals (CNC)

There are lots of stories about bioprinting and tissue engineering here and I think it’s time (again) for one which one has some good, detailed descriptions and, bonus, it features cellulose nanocrystals (CNC) and graphene. From a May 13, 2015 news item on Azonano,

The printer looks like a toaster oven with the front and sides removed. Its metal frame is built up around a stainless steel circle lit by an ultraviolet light. Stainless steel hydraulics and thin black tubes line the back edge, which lead to an inner, topside box made of red plastic.

In front, the metal is etched with the red Bio Bot logo. All together, the gray metal frame is small enough to fit on top of an old-fashioned school desk, but nothing about this 3D printer is old school. In fact, the tissue-printing machine is more like a sci-fi future in the flesh—and it has very real medical applications.

Researchers at Michigan Technological University hope to use this newly acquired 3D bioprinter to make synthesized nerve tissue. The key is developing the right “bioink” or printable tissue. The nanotechnology-inspired material could help regenerate damaged nerves for patients with spinal cord injuries, says Tolou Shokuhfar, an assistant professor of mechanical engineering and biomedical engineering at Michigan Tech.

Shokuhfar directs the In-Situ Nanomedicine and Nanoelectronics Laboratory at Michigan Tech, and she is an adjunct assistant professor in the Bioengineering Department and the College of Dentistry at the University of Illinois at Chicago.

In the bioprinting research, Shokuhfar collaborates with Reza Shahbazian-Yassar, the Richard and Elizabeth Henes Associate Professor in the Department of Mechanical Engineering-Engineering Mechanics at Michigan Tech. Shahbazian-Yassar’s highly interdisciplinary background on cellulose nanocrystals as biomaterials, funded by the National Science Foundation’s (NSF) Biomaterials Program, helped inspire the lab’s new 3D printing research. “Cellulose nanocrystals with extremely good mechanical properties are highly desirable for bioprinting of scaffolds that can be used for live tissues,” says Shahbazian-Yassar. [emphases mine]

A May 11, 2015 Michigan Technological University (MTU) news release by Allison Mills, which originated the news item, explains the ‘why’ of the research,

“We wanted to target a big issue,” Shokuhfar says, explaining that nerve regeneration is a particularly difficult biomedical engineering conundrum. “We are born with all the nerve cells we’ll ever have, and damaged nerves don’t heal very well.”

Other facilities are trying to address this issue as well. Many feature large, room-sized machines that have built-in cell culture hoods, incubators and refrigeration. The precision of this equipment allows them to print full organs. But innovation is more nimble at smaller scales.

“We can pursue nerve regeneration research with a simpler printer set-up,” says Shayan Shafiee, a PhD student working with Shokuhfar. He gestures to the small gray box across the lab bench.

He opens the red box under the top side of the printer’s box. Inside the plastic casing, a large syringe holds a red jelly-like fluid. Shafiee replenishes the needle-tipped printer, pulls up his laptop and, with a hydraulic whoosh, he starts to print a tissue scaffold.

The news release expands on the theme,

At his lab bench in the nanotechnology lab at Michigan Tech, Shafiee holds up a petri dish. Inside is what looks like a red gummy candy, about the size of a half-dollar.

Here’s a video from MTU illustrating the printing process,

Back to the news release, which notes graphene could be instrumental in this research,

“This is based on fractal geometry,” Shafiee explains, pointing out the small crenulations and holes pockmarking the jelly. “These are similar to our vertebrae—the idea is to let a nerve pass through the holes.”

Making the tissue compatible with nerve cells begins long before the printer starts up. Shafiee says the first step is to synthesize a biocompatible polymer that is syrupy—but not too thick—that can be printed. That means Shafiee and Shokuhfar have to create their own materials to print with; there is no Amazon.com or even a specialty shop for bioprinting nerves.

Nerves don’t just need a biocompatible tissue to act as a carrier for the cells. Nerve function is all about electric pulses. This is where Shokuhfar’s nanotechnology research comes in: Last year, she was awarded a CAREER grant from NSF for her work using graphene in biomaterials research. [emphasis mine] “Graphene is a wonder material,” she says. “And it has very good electrical conductivity properties.”

The team is extending the application of this material for nerve cell printing. “Our work always comes back to the question, is it printable or not?” Shafiee says, adding that a successful material—a biocompatible, graphene-bound polymer—may just melt, mush or flat out fail under the pressure of printing. After all, imagine building up a substance more delicate than a soufflé using only the point of a needle. And in the nanotechnology world, a needlepoint is big, even clumsy.

Shafiee and Shokuhfar see these issues as mechanical obstacles that can be overcome.

“It’s like other 3D printers, you need a design to work from,” Shafiee says, adding that he will tweak and hone the methodology for printing nerve cells throughout his dissertation work. He is also hopeful that the material will have use beyond nerve regeneration.

This looks like a news release designed to publicize work funded at MTU by the US National Science Foundation (NSF) which is why there is no mention of published work.

One final comment regarding cellulose nanocrystals (CNC). They have also been called nanocrystalline cellulose (NCC), which you will still see but it seems CNC is emerging as the generic term. NCC has been trademarked by CelluForce, a Canadian company researching and producing CNC (or if you prefer, NCC) from forest products.

The shorter, the better for cellulose nanofibres

Cellulose nanomaterials can be derived from any number of plants. In Canada, we tend to think of our trees first but there are other sources such as cotton, bananas, hemp, carrots, and more.

In anticipation that cellulose nanofibres will become increasingly important constituents of various products and having noticed a resemblance to carbon nanotubes, scientists in Switzerland have investigated the possible toxicity issues according to a May 7, 2015 news item on Nanowerk,

Plant-based cellulose nanofibres do not pose a short-term health risk, especially short fibres, shows a study conducted in the context of National Research Programme “Opportunities and Risks of Nanomaterials” (NRP 64). But lung cells are less efficient in eliminating longer fibres.

Similar to carbon nanotubes that are used in cycling helmets and tennis rackets, cellulose nanofibres are extremely light while being extremely tear-resistant. But their production is significantly cheaper because they can be manufactured from plant waste of cotton or banana plants. “It is only a matter of time before they prevail on the market,” says Christoph Weder of the Adolphe Merkle Institute at the University of Fribourg [Switzerland].

A May 7, 2015 Swiss National Science Foundation (SNSF) press release, which originated the news item, provides more detail,

In the context of the National Research Programme “Opportunities and Risks of Nanomaterials” (NRP 64), he collaborated with the team of Barbara Rothen-Rutishauser to examine whether these plant-based nanofibres are harmful to the lungs when inhaled. The investigation does not rely on animal testing; instead the group of Rothen-Rutishauser developped a complex 3D lung cell system to simulate the surface of the lungs by using various human cell cultures in the test tube.

The shorter, the better

Their results (*) show that cellulose nanofibres are not harmful: the analysed lung cells showed no signs of acute stress or inflammation. But there were clear differences between short and long fibres: the lung cell system efficiently eliminated short fibres while longer fibres stayed on the cell surface.

“The testing only lasted two days because we cannot grow the cell cultures for longer,” explains Barbara Rothen-Rutishauser. For this reason, she adds, they cannot say if the longer fibre may have a negative impact on the lungs in the long term. Tests involving carbon nanotubes have shown that lung cells lose their equilibrium when they are faced with long tubes because they try to incorporate them into the cell to no avail. “This frustrated phagocytosis can trigger an inflammatory reaction,” says Rothen-Rutishauser. To avoid potential harm, she recommends that companies developing products with nanofibres use fibres that are short and pliable instead of long and rigid.

National Research Programme “Opportunities and Risks of Nanomaterials” (NRP 64)

The National Research Programme “Opportunities and Risks of Nanomaterials” (NRP 64) hopes to be able to bridge the gaps in our current knowledge on nanomaterials. Opportunities and risks for human health and the environment in relation to the manufacture, use and disposal of synthetic nanomaterials need to be better understood. The projects started their research work in December 2010.

I have a link to and a citation for the paper (Note: They use the term cellulose nanocrystals in the paper’s title),

Fate of Cellulose Nanocrystal Aerosols Deposited on the Lung Cell Surface In Vitro by Carola Endes, Silvana Mueller, Calum Kinnear, Dimitri Vanhecke, E. Johan Foster, Alke Petri-Fink, Christoph Weder, Martin J. D. Clift, and Barbara Rothen-Rutishauser. Biomacromolecules, 2015, 16 (4), pp 1267–1275 DOI: 10.1021/acs.biomac.5b00055 Publication Date (Web): March 19, 2015

Copyright © 2015 American Chemical Society

While tracking down the 2015 paper, I found this from 2011,

Investigating the Interaction of Cellulose Nanofibers Derived from Cotton with a Sophisticated 3D Human Lung Cell Coculture by Martin J. D. Clift, E. Johan Foster, Dimitri Vanhecke, Daniel Studer, Peter Wick, Peter Gehr, Barbara Rothen-Rutishauser, and Christoph Weder. Biomacromolecules, 2011, 12 (10), pp 3666–3673 DOI: 10.1021/bm200865j Publication Date (Web): August 16, 2011

Copyright © 2011 American Chemical Society

Both papers are behind a paywall.

Cellullose nanocrystals (CNC) and better concrete

Earlier this week in a March 30, 2015 post, I was bemoaning the dearth of applications for cellulose nanocrystals (CNC) with concomitant poor prospects for commercialization and problems for producers such as Canada’s CelluForce. Possibly this work at Purdue University (Indiana, US) will help address some of those issues (from a March 31, 2015 news item on Nanowerk),

Cellulose nanocrystals derived from industrial byproducts have been shown to increase the strength of concrete, representing a potential renewable additive to improve the ubiquitous construction material.

The cellulose nanocrystals (CNCs) could be refined from byproducts generated in the paper, bioenergy, agriculture and pulp industries. They are extracted from structures called cellulose microfibrils, which help to give plants and trees their high strength, lightweight and resilience. Now, researchers at Purdue University have demonstrated that the cellulose nanocrystals can increase the tensile strength of concrete by 30 percent.

A March 31, 2015 Purdue University news release by Emil Venere, which originated the news item, further describes the research published in print as of February 2015 (Note: A link has been removed),

One factor limiting the strength and durability of today’s concrete is that not all of the cement particles are hydrated after being mixed, leaving pores and defects that hamper strength and durability.

“So, in essence, we are not using 100 percent of the cement,” Zavattieri [Pablo Zavattieri, an associate professor in the Lyles School of Civil Engineering] said.

However, the researchers have discovered that the cellulose nanocrystals increase the hydration of the concrete mixture, allowing more of it to cure and potentially altering the structure of concrete and strengthening it.  As a result, less concrete needs to be used.

The cellulose nanocrystals are about 3 to 20 nanometers wide by 50-500 nanometers long – or about 1/1,000th the width of a grain of sand – making them too small to study with light microscopes and difficult to measure with laboratory instruments. They come from a variety of biological sources, primarily trees and plants.

The concrete was studied using several analytical and imaging techniques. Because chemical reactions in concrete hardening are exothermic, some of the tests measured the amount of heat released, indicating an increase in hydration of the concrete. The researchers also hypothesized the precise location of the nanocrystals in the cement matrix and learned how they interact with cement particles in both fresh and hardened concrete. The nanocrystals were shown to form little inlets for water to better penetrate the concrete.

The research dovetails with the goals of P3Nano, a public-private partnership supporting development and use of wood-based nanomaterial for a wide-range of commercial products.

“The idea is to support and help Purdue further advance the CNC-Cement technology for full-scale field trials and the potential for commercialization,” Zavattieri said.

The researchers have provided an image,

This transmission electron microscope image shows cellulose nanocrystals, tiny structures derived from renewable sources that might be used to create a new class of biomaterials with many potential applications. The structures have been shown to increase the strength of concrete. (Purdue Life Sciences Microscopy Center)

This transmission electron microscope image shows cellulose nanocrystals, tiny structures derived from renewable sources that might be used to create a new class of biomaterials with many potential applications. The structures have been shown to increase the strength of concrete. (Purdue Life Sciences Microscopy Center)

Here’s a link to and a citation for the paper,

The influence of cellulose nanocrystal additions on the performance of cement paste by Yizheng Cao, Pablo Zavaterri, Jeff Youngblood, Robert Moon, and Jason Weiss. Cement and Concrete Composites, Volume 56, February 2015, Pages 73–83  DOI: 10.1016/j.cemconcomp.2014.11.008 Available online 18 November 2014

The paper is behind a paywall.

One final note, cellulose nanocrystals (CNC) may also be referred to nanocrystalline cellulose (NCC).

 

CelluForce celebrates a new investor but gives no details about research or applications

The most one can gather from the news item/press release is that CelluForce is researching applications in the oil and gas sector and that they’re very happy to receive money although there’s no indication as to how much. From a March 26, 2015 news item on Azonano,

CelluForce is pleased to announce an investment into the company by Schlumberger, the world’s leading supplier of technology, integrated project management and information solutions for the global oil and gas industry.

CelluForce’s March 25, 2015 press release does go on but there are no more details to be had,

This investment furthers the collaboration between CelluForce and Schlumberger to explore the use of CelluForce’s wood-derived nano-crystalline cellulose (CelluForce NCCTM) to enhance the productivity of oil and gas wells.

“We are very proud to be expanding our partnership with Schlumberger, the world’s leading oil and gas service company”, stated René Goguen, Acting President of CelluForce. “We have always believed that NCC applications hold promise extending far beyond the forest sector, and we see this investment from an international company as respected as Schlumberger as confirmation of this belief.”

NCC is a fundamental building block of trees that can be extracted from the forest biomass and has unique properties that offer a wide range of potential applications. Measured in units as small as nanometres, these tiny structures have strength properties comparable to steel and will have uses in a variety of industrial sectors.

The first small-scale NCC pilot plant was built and began operation in 2006 at FPInnovations’ laboratory in Montréal, Québec. Supported in part by Natural Resources Canada and the Ministère de l’Énergie et des Ressources naturelles du Québec, the pilot plant operation led to a scalable NCC production process and placed Canada in the pole position of the global race towards commercial NCC manufacture. Based on the success of the small-scale pilot plant, CelluForce, a joint venture of Domtar and FPInnovations, was created which led to the construction of a demonstration plant at Domtar’s mill in Windsor, Québec, having a production capacity of 1000 kg of NCC per day.

This announcement follows the recent announcement by the Honourable Greg Rickford, Minister of Natural Resources, of a $4.0 million contribution by Sustainable Development Technology Canada (SDTC) to optimize the extraction process of NCC from dry wood pulp and develop applications for its use in the oil and gas sector.

The $4M Canadian federal government investment was mentioned in my Feb. 19, 2015 post (scroll down about 40% of the way).

I get the feeling CelluForce is trying to recover from a setback and I wonder if it has anything to do with their production facility’s stockpile of NCC (aka, CNC or cellulose nanocrystals), first mentioned here in an Oct. 3, 2013 post. There was much fanfare about producing NCC/CNC but there was and is no substantive demand for the material in Canada or anywhere else globally.

Canada has three facilities that produce CNC (CelluForce being the largest) and there are production facilities in other countries. To date, there is no major application for CNC but given its properties, there is substantive research into how it could be commercialized. My Nov. 25, 2014 post covers a recent US report about commercializing nanocellulosic materials, including CNC.

I hope that CelluForce is able to overcome whatever problems it seems to be experiencing. Certainly, investments such as Schlumberger’s hint at the possibility. I wish the management team good luck.

SAPPI to locate cellulose nanofibril facility in the Netherlands

SAPPI (formerly South African Pulp and Paper Industries) has announced it will build a nanocellulose facility in the Netherlands. From a March 11, 2015 news item on Nanowerk,

Sappi Limited, a leading global producer of dissolving wood pulp and graphics, speciality and packaging papers, is pleased to announce that it will build a pilot-scale plant for low-cost Cellulose NanoFibrils (nanocellulose) production at the Brightlands Chemelot Campus in Sittard-Geleen in the Netherlands. The pilot plant is expected to be operational within nine months.

A March 11, 2015 SAPPI media release (also on PR Newswire), which originated the news item, provides more detail about SAPPI’s nanocellulose business plans and the proposed pilot plant,

Commenting on the decision, Andrea Rossi, Group Head Technology, Sappi Limited, explained that the pilot plant will help with Sappi’s move into new adjacent business fields based on renewable raw materials. Sappi’s strategy includes seeking growth opportunities by producing innovative performance materials from renewable resources. The raw material for the pilot plant would be supplied from any of Sappi’s Saiccor, Ngodwana and Cloquet dissolving wood pulp plants. The pilot plant is the precursor for Sappi to consider the construction of a commercial CNF plant.

He goes on to say “the pilot plant will test the manufacturing of dry re-dispersible Cellulose NanoFibrils (CNF) using the proprietary technology developed by Sappi and Edinburgh Napier University. The location of the pilot plant at Brightlands Chemelot Campus provides Sappi with easy access to multiple partners with whom Sappi will seek to co-develop products that will incorporate CNF across a large variety of product applications to optimise performance and to create unique characteristics for these products.

The CNF produced by Sappi will have unique morphology, specifically modified for either hydrophobic or hydrophilic applications. Products produced using Sappi’s CNF will be optimally suitable for conversion in lighter and stronger fibre-reinforced composites and plastics, in food and pharmaceutical applications, and in rheology modifiers as well as in barrier and other paper and coating applications.

Speaking on behalf of Brightlands Chemelot Campus, the CEO Bert Kip said “We’re proud that a globally leading company like Sappi has chosen our campus for their new facility. The initiative perfectly fits with our focus area on bio-based materials and our new pilot plant infrastructure.”

In December 2014, Sappi and Edinburgh Napier University announced the results of their 3 year project to find a low cost energy-saving process that would allow Sappi to produce the nanocellulose on a commercially viable basis – and importantly without producing large volumes of chemical waste water associated with existing techniques. At the time, Professor Rob English, who led the research with his Edinburgh Napier colleague, Dr. Rhodri Williams, said “What is significant about our process is the use of unique chemistry, which has allowed us to very easily break down the wood pulp fibers into nanocellulose. There is no expensive chemistry required and, most significantly, the chemicals used can be easily recycled and reused without generating large quantities of waste water.

Math Jennekens, R&D Director at Sappi Europe who is the project coordinator and will oversee the pilot plant, said “We are very excited to be able to move from a bench top environment into real-world production. Our targeted run-rate will be 8 tons per annum. We will produce a dry powder that can be easily redispersed in water. The nanocellulose is unmodified which makes it easier to combine with other materials. The product will be used to build partnerships to test the application of our nanocellulose across the widest range of uses.”

He went on to thank the Government of the Province of Limburg in the Netherlands for their significant support and financial contribution towards the establishment of the pilot plant.

This business with a pilot production plant reminds me of CelluForce which has a cellulose nanocrystal (CNC) or, as it’s also known, nanocellulose crystal (NCC) production plant located in Windsor, Québec. They too announced a production plant which opened to fanfare in January 2012. in my Oct. 3, 2013 post (scroll down about 60% of the way) I noted that production had stopped in August 2013 due to a growing stockpile. As of March 11, 2015, I was not able to find any updates about the stockpile on the CelluForce website. The most recent CelluForce information I’ve been able to find is in a Feb. 19, 2015 posting (scroll down about 40% of the way).

Cellulose nanocrystals (CNC), also known as nanocrystalline cellulose (NCC), and toxicity; some Celluforce news; anti-petroleum extremists

The February 2015 issue of Industrial Biotechnology is hosting a special in depth research section on the topic of cellulose nanotechnology. A Feb. 19, 2015 news item on Phys.org features a specific article in the special section (Note: A link has been removed),

Novel nanomaterials derived from cellulose have many promising industrial applications, are biobased and biodegradable, and can be produced at relatively low cost. Their potential toxicity—whether ingested, inhaled, on contact with the skin, or on exposure to cells within the body—is a topic of intense discussion, and the latest evidence and insights on cellulose nanocrystal toxicity are presented in a Review article in Industrial Biotechnology.

Maren Roman, PhD, Virginia Tech, Blacksburg, VA, describes the preparation of cellulose nanocrystals (CNCs) and highlights the key factors that are an essential part of studies to assess the potential adverse health effects of CNCs by various types of exposure. In the article “Toxicity of Cellulose Nanocrystals: A Review” , Dr. Roman discusses the current literature on the pulmonary, oral, dermal, and cytotoxicity of CNCs, provides an in-depth view on their effects on human health, and suggests areas for future research.

There has been much Canadian investment both federal and provincial in cellulose nanocrystals (CNC). There’s also been a fair degree of confusion regarding the name. In Canada, which was a research leader initially, it was called nanocrystalline cellulose (NCC) but over time a new term was coined cellulose nanocrystals (CNC). The new name was more in keeping with the naming conventions for other nanoscale cellulose materials such as  cellulose nanofibrils, etc. Hopefully, this confusion will resolve itself now that Celluforce, a Canadian company, has trademarked NCC. (More about Celluforce later in this post.)

Getting back to toxicity and CNC, here’s a link to and a citation for Maron’s research paper,

Toxicity of Cellulose Nanocrystals: A Review by Roman Maren. Industrial Biotechnology. February 2015, 11(1): 25-33. doi:10.1089/ind.2014.0024.

The article is open access at this time. For anyone who doesn’t have the time to read it, here’s the conclusion,

Current studies of the oral and dermal toxicity of CNCs have shown a lack of adverse health effects. The available studies, however, are still very limited in number (two oral toxicity studies and three dermal toxicity studies) and in the variety of tested CNC materials (CelluForce’s NCC). Additional oral and dermal toxicity studies are needed to support the general conclusion that CNCs are nontoxic upon ingestion or contact with the skin. Studies of pulmonary and cytotoxicity, on the other hand, have yielded discordant results. The questions of whether CNCs have adverse health effects on inhalation and whether they elicit inflammatory or oxidative stress responses at the cellular level therefore warrant further investigation. The toxicity of CNCs will depend strongly on their physicochemical properties—in particular, surface chemistry, including particle charge, and degree of aggregation, which determines particle shape and dimensions. Therefore, these properties—which in turn depend strongly on the cellulose source, CNC preparation procedure, and post-processing or sample preparation methods, such as lyophilization, aerosolization, sonication, or sterilization—need to be carefully measured in the final samples.

Another factor that might affect the outcomes of toxicity studies are sample contaminants, such as endotoxins or toxic chemical impurities. Samples for exposure tests should therefore be carefully analyzed for such contaminants prior to testing. Ideally, because detection of toxic chemical contaminants may be difficult, control experiments should be carried out with suitable blanks from which the CNCs have been removed, for example by membrane filtration. Moreover, especially in cytotoxicity assessments, the effect of CNCs on pH and their aggregation in the cell culture medium need to be monitored. Only by careful particle characterization and exclusion of interfering factors will we be able to develop a detailed understanding of the potential adverse health effects of CNCs.

If I understand this rightly, CNC seems safe (more or less) when ingested orally (food/drink) or applied to the skin (dermal application) but inhalation seems problematic and there are indications that this could lead to inflammation of lung cells. Other conclusions suggest both the source for the cellulose and CNC preparation may affect its toxicity. I encourage you to read the whole research paper as this author provides good explanations of the terms and summaries of previous research, as well as, some very well considered research.

Here’s more about Industrial Biotechnology’s special research section in the February 2015 issue, from a Feb. 19, 2015 Mary Ann Liebert publishers press release (also on EurekAlert*),

The article is part of an IB IN DEPTH special research section entitled “Cellulose Nanotechnology: Fundamentals and Applications,” led by Guest Editors Jose Moran-Mirabal, PhD and Emily Cranston, PhD, McMaster University, Hamilton, Canada. In addition to the Review article by Dr. Roman, the issue includes Reviews by M. Rose, M. Babi, and J. Moran-Mirabal (“The Study of Cellulose Structure and Depolymerization Through Single-Molecule Methods”) and by X.F. Zhao and W.T. Winter (“Cellulose/cellulose-based nanospheres: Perspectives and prospective”); Original Research articles by A. Rivkin, T. Abitbol, Y. Nevo, et al. (“Bionanocomposite films from resilin-CBD bound to cellulose nanocrystals), and P. Criado, C. Fraschini, S. Salmieri, et al. (“Evaluation of antioxidant cellulose nanocrystals and applications in gellan gum films”); and the Overview article “Cellulose Nanotechnology on the Rise,” by Drs. Moran-Mirabal and Cranston.

Meanwhile Celluforce announces a $4M ‘contribution’ from Sustainable Development Technology Canada (SDTC), from a Feb. 16, 2015 Celluforce news release,

CelluForce welcomes the announcement by Sustainable Development Technology Canada (SDTC) of a contribution of $4.0 million to optimize the extraction process of Nanocrystaline Cellulose (NCC) from dry wood pulp and develop applications for its use in the oil and gas sector. The announcement was made in Quebec City today [Feb. 16, 2015] by the Honourable Greg Rickford, Minister of Natural Resources and Minister for the Federal Economic Development Initiative for Northern Ontario.

NCC is a fundamental building block of trees that can be extracted from the forest biomass and has unique properties that offer a wide range of potential applications. Measured in units as small as nanometres, these tiny structures have strength properties comparable to steel and will have uses in a variety of industrial sectors. In particular, NCC is touted as having the potential to significantly advance the oil and gas industry.

Our Government is positioning Canada as a global leader in the clean technology sector by supporting innovative projects aimed at growing our economy while contributing to a cleaner environment,” said the Honourable Greg Rickford, Canada’s Minister of Natural Resources. [emphasis mine] “By developing our resources responsibly, exploring next-generation transportation and advancing clean energy technology, the projects announced today will create jobs and improve innovation opportunities in Quebec and across Canada.”

“World-class research led to the development of this ground breaking extraction process and placed Canada at the leading edge of NCC research”, stated René Goguen, Acting President of CelluForce Inc. “This announcement by SDTC sets the stage for the pre-commercial development of applications that will not only support Canada’s forest sector but also the oil and gas sector, both of which are important drivers of the Canadian economy.”

This project will further improve and optimize the process developed by CelluForce to extract nanocrystalline cellulose (CelluForce NCC™) from dry wood pulp. In addition to improving the extraction process, this project will investigate additional applications for the oil-and-gas industry such as cementing using this renewable forestry resource.

There’s very little information in this news release other than the fact that CelluForce’s $4M doesn’t need to be repaid seeing it’s described as a ‘contribution’ rather than an investment. The difference between a contribution and a grant, which is what these funds used to be called, somewhat mystifies me unless this is a translation issue.

As for the news release content, it is remarkably scant. This $4M will be spent on improving the extraction process and on applications for the oil and gas industry. Neither the improvements nor the possible applications are described. Hopefully, the government has some means of establishing whether or not those funds (sorry, the contribution) were used for the purposes described.

I am glad to see this in this news release, “Our Government is positioning Canada as a global leader in the clean technology sector …” although I’m not sure how it fits with recent attempts to brand environmentalists as part of an ‘anti-petroleum’ movement as described in a Feb. 19, 2015 post by Glyn Moody for Techdirt (Note: A link has been removed),

As Techdirt has been warning for some time, one of the dangers with the flood of “anti-terrorist” laws and powers is that they are easily redirected against other groups for very different purposes. A story in the Globe and Mail provides another chilling reminder of how that works:

The RCMP [Royal Canadian Mounted Police] has labelled the “anti-petroleum” movement as a growing and violent threat to Canada’s security, raising fears among environmentalists that they face increased surveillance, and possibly worse, under the Harper government’s new terrorism legislation.

As the Globe and Mail article makes clear, environmentalists are now being considered as part of an “anti-petroleum” movement. That’s not just some irrelevant rebranding: it means that new legislation supposedly targeting “terrorism” can be applied.

It seems logically incoherent to me that the government wants clean tech while condemning environmentalists. Whether or not you buy climate change science (for the record, I do), you have to admit that we are running out of petroleum. At heart, both the government and the environmentalists have to agree that we need new sources for fuel. It doesn’t make any sense to spend valuable money, time, and resources on pursuing environmentalists.

This business about the ‘anti-petroleum’ movement reminds me of a copyright kerfuffle including James Moore, currently the Minister of Industry, and writer Cory Doctorow. Moore, Minister of Canadian Heritage at the time, at some sort of public event, labeled Doctorow as a ‘radical extremist’ regarding his (Doctorow’s) views on copyright. The comments achieved notoriety when it appeared that Moore and the organizers denied the comments ever took place. The organizers seemed to have edited the offending video and Moore made public denials. You can read more about the incident in my June 25, 2010 post. Here’s an excerpt from the post which may explain why I feel there is a similarity,

… By simultaneously linking individuals who use violence to achieve their ends (the usual application for the term ‘radical extremists’) to individuals who are debating, discussing, and writing commentaries critical of your political aims you render the term into a joke and you minimize the violence associated with it.

Although with ‘anti-petroleum’, it seems they could decide any dissension is a form of violence. It should be noted that in Canada the Ministry of Industry, is tightly coupled with the Ministry of Natural Resources since the Canadian economy has been and continues to be largely resource-based.

For anyone interested in CelluForce and NCC/CNC, here’s a sampling of my previous posts on the topic,

CelluForce (nanocrystalline cellulose) plant opens (Dec. 15, 2011)

Double honours for NCC (ArboraNano and CelluForce recognized) (May 25, 2012)

You say nanocrystalline cellulose, I say cellulose nanocrystals; CelluForce at Japan conference and at UK conference (Oct. 15, 2012)

Designing nanocellulose (?) products in Finland; update on Canada’s CelluForce (Oct. 3, 2013) Note: CelluForce stopped producing NCC due to a growing stockpile.

There’s a lot more about CNC on this blog* should you care to search. One final note, I gather there’s a new interim boss at CelluForce, René Goguen replacing Jean Moreau.

* EurekAlert link added Feb. 20, 2015.

* ‘on the CNC blog’ changed to ‘about CNC on this blog’ on March 4, 2015.

Commercializing cellulosic nanomaterials—a report from the US Dept. of Agriculture

Earlier this year in an April 10, 2014 post, I announced a then upcoming ‘nano commercialization’ workshop focused on cellulose nanomaterials in particular. While the report from the workshop, held in May, seems to have been published in August, news of its existence seems to have surfaced only now. From a Nov. 24, 2014 news item on Nanowerk (Note: A link has been removed),

The U.S. Forest Service has released a report that details the pathway to commercializing affordable, renewable, and biodegradable cellulose nanomaterials from trees. Cellulosic nanomaterials are tiny, naturally occurring structural building blocks and hold great promise for many new and improved commercial products. Commercializing these materials also has the potential to create hundreds of thousands of American jobs while helping to restore our nation’s forests.

“This report is yet another important step toward commercializing a material that can aid in restoring our nations’ forests, provide jobs, and improve products that make the lives of Americans better every day,” said U.S. Forest Service Chief Tom Tidwell. “The Forest Service plans to generate greater public and market awareness of the benefits and uses for these naturally-occurring nanomaterials.”

The report, titled “Cellulose Nanomaterials – A Path towards Commercialization” (pdf), is a result of a workshop held earlier this year that brought together a wide range of experts from industry, academia, and government to ensure that commercialization efforts are driven by market and user materials needs.

A Nov. 24, 2014 US Dept. of Agriculture news release (Note: The US Forest Service is a division of the US Dept. of Agriculture), which originated the news item, provides more detail about the reasons for holding the workshop (Note: A link has been removed),

Cellulose nanomaterials have the potential to add value to an array of new and improved products across a range of industries, including electronics, construction, food, energy, health care, automotive, aerospace, and defense, according to Ted Wegner, assistant director at the U.S. Forest Service Forest Products Laboratory in Madison, Wis.

“These environmentally friendly materials are extremely attractive because they have a unique combination of high strength, high stiffness, and light weight at what looks to be affordable prices,” Wegner explained. “Creating market pull for cellulose nanomaterials is critical to its commercialization.

The success of this commercialization effort is important to the U.S. Forest Service for another key reason: creating forests that are more resilient to disturbances through restorative actions. Removing excess biomass from overgrown forests and making it into higher value products like nanocellulose, is a win for the environment and for the economy.

“Finding high-value, high-volume uses for low-value materials is the key to successful forest restoration,” said Michael T. Rains, Director of the Northern Research Station and Forest Products Laboratory. “With about 400 million acres of America’s forests in need of some type of restorative action, finding markets for wood-based nanocellulose could have a huge impact on the economic viability of that work.”

The U.S. Forest Service, in collaboration with the U.S. National Nanotechnology Initiative, organized the workshop. Participants included over 130 stakeholders from large volume industrial users, specialty users, Federal Government agencies, academia, non-government organizations, cellulose nanomaterials manufactures and industry consultants. The workshop generated market-driven input in three areas: Opportunities for Commercialization, Barriers to Commercialization, and Research and Development Roles and Priorities. Issues identified by participants included the need for more data on materials properties, performance, and environmental, health, and safety implications and the need for a more aggressive U.S. response to opportunities for advancing and developing cellulose nanomaterial.

“The workshop was a great opportunity to get research ideas directly from the people who want to use the material,” says World Nieh, the U.S. Forest Service’s national program lead for forest products. “Getting the market perspective and finding out what barriers they have encountered is invaluable guidance for moving research in a direction that will bring cellulose nanomaterials into the marketplace for commercial use.”

The mission of the U.S. Forest Service, part U.S. Department of Agriculture, is to sustain the health, diversity and productivity of the nation’s forests and grasslands to meet the needs of present and future generations. The agency manages 193 million acres of public land, provides assistance to state and private landowners, and maintains the largest forestry research organization in the world. Public lands the Forest Service manages contribute more than $13 billion to the economy each year through visitor spending alone. Those same lands provide 20 percent of the nation’s clean water supply, a value estimated at $7.2 billion per year. The agency has either a direct or indirect role in stewardship of about 80 percent of the 850 million forested acres within the U.S., of which 100 million acres are urban forests where most Americans live.

The report titled, “Cellulose Nanomaterials – A Path towards Commercialization,” notes the situation from the US perspective (from p. 5 of the PDF report),

Despite great market potential, commercialization of cellulose nanomaterials in the United States is moving slowly. In contrast, foreign research, development, and deployment (RD&D) of cellulose nanomaterials has received significant governmental support through investments and coordination. [emphasis mine] U.S. RD&D activities have received much less government support and instead have relied on public-private partnerships and private sector investment. Without additional action to increase government investments and coordination, the United States could miss the window of opportunity for global leadership and end up being an “also ran” that has to import cellulose nanomaterials and products made by incorporating cellulose nanomaterials. If this happens, significant economic and social benefits would be lost. Accelerated commercialization for both the production and application of cellulose nanomaterials in a wide array of products is a critical national challenge.

I know the Canadian government has invested heavily in cellulose nanomaterials particularly in Québec (CelluForce, a DomTar and FPInnovations production facility for CNC [cellulose nanocrystals] also known as NCC [nanocrystalline cellulose]). There’s also some investment in Alberta (an unnamed CNC production facility) and Saskatchewan (Blue Goose Biorefineries). As for other countries and constituencies which come to mind and have reported on cellulose nanomaterial research, there’s Brazil, the European Union, Sweden, Finland, and Israel. I do not have details about government investments in those constituencies. I believe the report’s source supporting this contention is in Appendix E,  (from p. 41 of the PDF report),

Moon, Robert, and Colleen Walker. 2012. “Research into Cellulose
Nanomaterials Spans the Globe.” Paper360 7(3): 32–34. EBSCOhost. Accessed June 17, 2014 [behind a paywall]

Here’s a description of the barriers to commercialization (from p. 6 of the PDF report),

Clarifying the problems to be solved is a precursor to identifying solutions. The workshop identified critical barriers that are slowing commercialization. These barriers included lack of collaboration among potential producers and users; coordination of efforts among government, industry, and academia; lack of characterization and standards for cellulose nanomaterials; the need for greater market pull; and the need to overcome processing technical challenges related to cellulose nanomaterials dewatering and dispersion. While significant, these barriers are not insurmountable as long as the underlying technical challenges are properly addressed. With the right focus and sufficient resources, R&D should be able to overcome these key identified barriers.

There’s a list of potential applications (p. 7 of the PDF report).

Cellulose nanomaterials have demonstrated potential applications in a wide array of industrial sectors, including electronics, construction, packaging, food, energy, health care, automotive, and defense. Cellulose nanomaterials are projected to be less expensive than many other nanomaterials and, among other characteristics, tout an impressive strength-to-weight ratio (Erickson 2012, 26). The theoretical strength-to-weight performance offered by cellulose nanomaterials are unmatched by current technology (NIST 2008,
17). Furthermore, cellulose nanomaterials have proven to have major environmental benefits because they are recyclable, biodegradable, and produced from renewable resources.

I wonder if that strength-to-weight ratio comment is an indirect reference to carbon nanotubes which are usually the ‘strength darlings’ of the nanotech community.

More detail about potential applications is given on p. 9 of the PDF report,

All forms of cellulose nanomaterials are lightweight, strong, and stiff. CNCs possess photonic and piezoelectric properties, while CNFs can provide very stable hydrogels and aerogels. In addition, cellulose nanomaterials have low materials cost potential compared to other competing materials and, in their unmodified state, have so far shown few environmental, health, and safety (EHS) concerns (Ireland, Jones, Moon, Wegner, and Nieh 2014, 6). Currently, cellulose nanomaterials have demonstrated great potential for use in many areas, including aerogels, oil drilling additives, paints, coatings, adhesives, cement, food additives, lightweight packaging materials, paper, health care products, tissue scaffolding, lightweight vehicle armor, space technology, and automotive parts. Hence, cellulose nanomaterials have the potential to positively impact numerous industries. An important attribute of cellulose nanomaterials is that they are derived from renewable and broadly available resources (i.e., plant, animal, bacterial, and algal biomass). They are biodegradable and bring recyclability to products that contain them.

This particular passage should sound a familiar note for Canadians, from p. 11 of the PDF report,

However, commercialization of cellulose nanomaterials in the United States has been moving slowly. Since 2009, the USDA Forest Service has invested around $20 million in cellulose nanomaterials R&D, a small fraction of the $680 million spent on cellulose nanomaterials R&D by governments worldwide (Erickson 2014, 26). In order to remain globally competitive, accelerated research, development, and commercialization
of cellulose nanomaterials in the United States is imperative. Otherwise, the manufacturing of cellulose nanomaterials and cellulose nanomaterial-enabled products will be established by foreign producers, and the United States will be purchasing these materials from other countries. [emphasis mine] Establishing a large-scale production of cellulose nanomaterials in the United States is critical for creating new uses from wood—which is, in turn, vital to the future of forest management and the livelihood of landowners.

Here are some of the challenges and barriers identified in the workshop (pp. 19 – 21 of the PDF report),

Need for Characterization and Standards:
In order for a new material to be adopted for use, it must be well understood and end users must have confidence that the material is the same from one batch to the next. There is a need to better characterize cellulose nanomaterials with respect to their structure, surface properties, and performance. …

Production and Processing Methods:
Commercialization is inhibited by the lack of processing and production methods and know-how for ensuring uniform, reliable, and cost-effective production of cellulose nanomaterials, especially at large volumes. This is both a scale-up and a process control issue. …

Need for More Complete EHS Information:
Limited EHS information creates a significant barrier to commercialization because any uncertainty regarding material safety and the pending regulatory environment presents risk for early movers across all industries. …

Need for Market Pull and Cost/Benefit Performance:
As noted earlier, cellulose nanomaterials have potential applications in a wide range of areas, but there is no single need that is driving their commercial development. Stakeholders suggested several reasons, including lack of awareness of the material and its properties and a need for better market understanding. Commercialization will require market pull in order to incentivize manufacturers, yet there is no perceptible demand for cellulose nanomaterials at the moment. …

Challenge of Dewatering/Drying:
One of the most significant technical challenges identified is the dewatering of cellulose nanomaterials into a dry and usable form for incorporation into other materials. The lack of an energy-efficient, cost-effective drying process inhibits commercialization of cellulose nanomaterials, particularly for non-aqueous applications. Cellulose nanomaterials in low-concentration aqueous suspensions raise resource and transportation costs, which make them less viable commercially.

Technology Readiness:
Technology readiness is a major challenge in the adoption of cellulose nanomaterials. One obstacle in developing a market for cellulose nanomaterials is the lack of information on the basic properties of different types of cellulose nanomaterials, as noted in the characterization and standards discussion. …

The rest of the report concerns Research & Development (R&D) Roles and Priorities and the Path Forward. In total, this document is 44 pp. long and includes a number of appendices. Here’s where you can read “Cellulose Nanomaterials – A Path towards Commercialization.”

Final words on TAPPI’s June 2014 Nanotechnology for Renewable Materials conference

A July 8, 2014 news item on Nanowerk provides some statistics about the recently ended (June 23 – 26, 2014) TAPPI (Technical Association for the Pulp, Paper, Packaging and Converting Industries) Conference on Nanotechnology for Renewable Materials,

Over 230 delegates from 25 countries gathered in Vancouver, British Columbia, Canada last week at TAPPI’s 9th International Conference on Nanotechnology for Renewable Nanomaterials. “This year’s conference was exceptional,” noted co-chair Wadood Hamad, Priniciple Scientist, FPInnovations. “The keynote and technical presentations were of very high quality. The advancements made in many applications show great promise, and we will see expanded commercial use of these renewable biomaterials.”

An identical news item dated July 7, 2014 on Nanotechnology Now,notes the commercial announcements made during the conference,

Several key commercial announcements were made at this year’s conference, highlighting the tangible growth in this emerging market area of renewable biopolymers:

Celluforce, which opened their commercial plant in January 2012, shared six advanced commercial projects.

Imerys announced the launch of their new FiberLean™ MFC innovative composite, which enables a 10-15% reduction in fiber usage for papermaking applications.

Representatives from the newly formed BioFilaments shared information on their unique high performance biomaterial derived from wood cellulose to be used as reinforcing agents and rheological modifiers.

Blue Goose Biorefineries presented their patent-pending process for producing cellulose nanocrystals from wood pulp.

Nippon Paper Industries introduced Cellenpia, their cellulose nanofibers produced from their pre-commercial plant.

GL&V presented their commercial system, developed with the University of Maine, to produce cellulose nanofibrils at a very low energy cost.

American Process Inc. presented their latest results of producing lignin-coated nanocellulose particles using their AVAP® technology which produces a material that is more easily dispersed and has enhanced properties.

I wish them good luck with their projects.

Nanocellulose and an intensity of structural colour

I love the topic of structural colour (or color, depending on your spelling preferences) and have covered it many times and in many ways. One of the best pieces I’ve encountered about structural colour (an article by Christina Luiggi for The Scientist provided an overview of structural colour as it’s found in plants and animals) was featured in my Feb. 7, 2013 posting. If you go to my posting, you’ll find a link to Luiggi’s article which I recommend reading in its entirety if you have the time.

As for this latest nanocellulose story, a June 13, 2014 news item on Nanowerk describes University of Cambridge (UK) research into films and structural colour,

Brightly-coloured, iridescent films, made from the same wood pulp that is used to make paper, could potentially substitute traditional toxic pigments in the textile and security industries. The films use the same principle as can be seen in some of the most vivid colours in nature, resulting in colours which do not fade, even after a century.

Some of the brightest and most colourful materials in nature – such as peacock feathers, butterfly wings and opals – get their colour not from pigments, but from their internal structure alone.

Researchers from the University of Cambridge have recreated a similar structure in the lab, resulting in brightly-coloured films which could be used for textile or security applications.

A June 13, 2014 University of Cambridge news release, which originated the news item, describe the phenomenon of structural colour as it applies to cellulose materials,

In plants such as Pollia condensata, striking iridescent and metallic colours are the result of cellulose fibres arranged in spiral stacks, which reflect light at specific wavelengths. [emphasis mine]

Cellulose is made up of long chains of sugar molecules, and is the most abundant biomass material in nature. It can be found in the cells of every plant and is the main compound that gives cell walls their strength.

The news release goes on to provide a brief description of the research,

The researchers used wood pulp, the same material that is used for producing paper, as their starting material. Through manipulating the structure of the cellulose contained in the wood pulp, the researchers were able to fabricate iridescent colour films without using pigments.

To make the films, the researchers extracted cellulose nanocrystals from the wood pulp. When suspended in water, the rod-like nanocrystals spontaneously assemble into nanostructured layers that selectively reflect light of a specific colour. The colour reflected depends on the dimensions of the layers. By varying humidity conditions during the film fabrication, the researchers were able to change the reflected colour and capture the different phases of the colour formation.

Cellulose nanocrystals (CNC) are also known as nanocrystalline cellulose (NCC).

Here’s a link to and a citation for  the paper,

Controlled, Bio-inspired Self-Assembly of Cellulose-Based Chiral Reflectors by Ahu Gumrah Dumanli, Gen Kamita, Jasper Landman, Hanne van der Kooij, Beverley J. Glover, Jeremy J. Baumberg, Ullrich Steiner, and Silvia Vignolini. Optical Materials Article first published online: 30 MAY 2014 DOI: 10.1002/adom.201400112

© 2014 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

While the researchers have supplied an image of the Pollia condensata, I prefer this one, which is also featured in my Feb. 7, 2013 posting,

AGELESS BRILLIANCE: Although the pigment-derived leaf color of this decades-old specimen of the African perennial Pollia condensata has faded, the fruit still maintains its intense metallic-blue iridescence.COURTESY OF P.J. RUDALL [downloaded from http://www.the-scientist.com/?articles.view/articleNo/34200/title/Color-from-Structure/]

AGELESS BRILLIANCE: Although the pigment-derived leaf color of this decades-old specimen of the African perennial Pollia condensata has faded, the fruit still maintains its intense metallic-blue iridescence.COURTESY OF P.J. RUDALL [downloaded from http://www.the-scientist.com/?articles.view/articleNo/34200/title/Color-from-Structure/]

Stunning, non?

Doubling paper strength with nanofibrils; a nanocellulose story

A June 3, 2014 Cerealus news release on PR Newswire announces a successful commercial trial for a new nanoscale process making paper stronger,

Cerealus, working with the University of Maine Process Development Center continues to be a leader in innovative technologies for Paper and Forestry research. Utilizing Cerealus’ unique starch encapsulation technology and UMaine’s proprietary developments, the collaborative effort enabled a novel bio-based cellulose nanofibrils (CNF) process to be used in paper and paperboard manufacturing at significantly higher levels than previously possible to develop high strength, lightweight and lower cost paper and paperboard.

The latest commercial trial doubled cellulose Nanofibril utilization in paper with the patent pending starch encapsulation technology, marketed as Cerenano™. This project confirms the promise of nanotechnology to deliver dramatic improvement in sheet density, porosity, surface quality and Z-direction strength (internal bond). Paper mills can expect:

  •     Tighter sheet
  •     More uniform surface
  •     Better printability
  •     Reduced opacity
  •     Reduced energy requirements

The collaborative private/public partnership has significantly improved the economic prospects for deploying nanotechnology in paper, wood and forestry products. A recent report estimates the current addressable market for nano cellulose at $500 million for North America.

Mike Bilodeau, Director of the UMaine Process Development Center underscored the commercial scalability of this project by saying, “This technology represents a significant break-through in the ability to leverage the unique properties of cellulose nanofibrils in paper and paperboard products.”

Tony Jabar, CEO and founder of Cerealus goes on to say, “Cerealus takes great pride in taking a lead role to create cutting edge nanocellulose technology. Successful paper makers appreciate innovation as a key to sustained profitability in the challenging paper making sector of our economy. This new development is our third generation technology and demonstrates the value of our collaboration with the University of Maine Process Development Center.”

Cerenano™ is a high performance additive that enables efficient loading of high levels of starch thus creating strong internal bond strength. The successful commercial trial demonstrated positive economic benefits and commercial scalability. The likely next phase in product development will be size press applications.

The University of Maine is working with several private companies and federal agencies to accelerate the commercialization of cellulose nanofibrils. This effort has significant implications to the health of National Forests and private timberland, as well as strategic and economic impacts to the domestic Forest Products Industry.

You can find Cerealus here and Cerenano™ page here where there’s a link to a 50 pp. presentation on Cerenano. From the presentation,

Using Renewable Nanotechnology (and Other Novel Approaches) to Improve Base Paper Performance
AWA Conferences & Events
AWA Silicone Technology Seminar 2014
March 19, 2014
Park Plaza Hotel Amsterdam Airport
Amsterdam, Netherlands
Robert Hamilton
President
Stirling Consulting, Inc.

I was particularly interested to see this (from p. 3 of the presentation),

Cellulose Nanofibrils (CNF)
The Renewable Nanomaterial

• CNF can be made from any plant matter.
# Process uses a series of mechanical refining steps.
# Resulting material is FDA compliant and compatible with any aqueous system. CNF is cellulose.

• Not to be confused with Cellulose NanoCrystals (CNC)
# Produced using more expensive strong acid hydrolysis process.

It’s the first time I’ve stumbled across a comparison of any kind between CNC (also known as NCC, nanocrystalline cellulose) and CNF and I find it quite instructive.