Tag Archives: neuromorphic engineering

IBM to build brain-inspired AI supercomputing system equal to 64 million neurons for US Air Force

This is the second IBM computer announcement I’ve stumbled onto within the last 4 weeks or so,  which seems like a veritable deluge given the last time I wrote about IBM’s computing efforts was in an Oct. 8, 2015 posting about carbon nanotubes,. I believe that up until now that was my  most recent posting about IBM and computers.

Moving onto the news, here’s more from a June 23, 3017 news item on Nanotechnology Now,

IBM (NYSE: IBM) and the U.S. Air Force Research Laboratory (AFRL) today [June 23, 2017] announced they are collaborating on a first-of-a-kind brain-inspired supercomputing system powered by a 64-chip array of the IBM TrueNorth Neurosynaptic System. The scalable platform IBM is building for AFRL will feature an end-to-end software ecosystem designed to enable deep neural-network learning and information discovery. The system’s advanced pattern recognition and sensory processing power will be the equivalent of 64 million neurons and 16 billion synapses, while the processor component will consume the energy equivalent of a dim light bulb – a mere 10 watts to power.

A June 23, 2017 IBM news release, which originated the news item, describes the proposed collaboration, which is based on IBM’s TrueNorth brain-inspired chip architecture (see my Aug. 8, 2014 posting for more about TrueNorth),

IBM researchers believe the brain-inspired, neural network design of TrueNorth will be far more efficient for pattern recognition and integrated sensory processing than systems powered by conventional chips. AFRL is investigating applications of the system in embedded, mobile, autonomous settings where, today, size, weight and power (SWaP) are key limiting factors.

The IBM TrueNorth Neurosynaptic System can efficiently convert data (such as images, video, audio and text) from multiple, distributed sensors into symbols in real time. AFRL will combine this “right-brain” perception capability of the system with the “left-brain” symbol processing capabilities of conventional computer systems. The large scale of the system will enable both “data parallelism” where multiple data sources can be run in parallel against the same neural network and “model parallelism” where independent neural networks form an ensemble that can be run in parallel on the same data.

“AFRL was the earliest adopter of TrueNorth for converting data into decisions,” said Daniel S. Goddard, director, information directorate, U.S. Air Force Research Lab. “The new neurosynaptic system will be used to enable new computing capabilities important to AFRL’s mission to explore, prototype and demonstrate high-impact, game-changing technologies that enable the Air Force and the nation to maintain its superior technical advantage.”

“The evolution of the IBM TrueNorth Neurosynaptic System is a solid proof point in our quest to lead the industry in AI hardware innovation,” said Dharmendra S. Modha, IBM Fellow, chief scientist, brain-inspired computing, IBM Research – Almaden. “Over the last six years, IBM has expanded the number of neurons per system from 256 to more than 64 million – an 800 percent annual increase over six years.’’

The system fits in a 4U-high (7”) space in a standard server rack and eight such systems will enable the unprecedented scale of 512 million neurons per rack. A single processor in the system consists of 5.4 billion transistors organized into 4,096 neural cores creating an array of 1 million digital neurons that communicate with one another via 256 million electrical synapses.    For CIFAR-100 dataset, TrueNorth achieves near state-of-the-art accuracy, while running at >1,500 frames/s and using 200 mW (effectively >7,000 frames/s per Watt) – orders of magnitude lower speed and energy than a conventional computer running inference on the same neural network.

The IBM TrueNorth Neurosynaptic System was originally developed under the auspices of Defense Advanced Research Projects Agency’s (DARPA) Systems of Neuromorphic Adaptive Plastic Scalable Electronics (SyNAPSE) program in collaboration with Cornell University. In 2016, the TrueNorth Team received the inaugural Misha Mahowald Prize for Neuromorphic Engineering and TrueNorth was accepted into the Computer History Museum.  Research with TrueNorth is currently being performed by more than 40 universities, government labs, and industrial partners on five continents.

There is an IBM video accompanying this news release, which seems more promotional than informational,

The IBM scientist featured in the video has a Dec. 19, 2016 posting on an IBM research blog which provides context for this collaboration with AFRL,

2016 was a big year for brain-inspired computing. My team and I proved in our paper “Convolutional networks for fast, energy-efficient neuromorphic computing” that the value of this breakthrough is that it can perform neural network inference at unprecedented ultra-low energy consumption. Simply stated, our TrueNorth chip’s non-von Neumann architecture mimics the brain’s neural architecture — giving it unprecedented efficiency and scalability over today’s computers.

The brain-inspired TrueNorth processor [is] a 70mW reconfigurable silicon chip with 1 million neurons, 256 million synapses, and 4096 parallel and distributed neural cores. For systems, we present a scale-out system loosely coupling 16 single-chip boards and a scale-up system tightly integrating 16 chips in a 4´4 configuration by exploiting TrueNorth’s native tiling.

For the scale-up systems we summarize our approach to physical placement of neural network, to reduce intra- and inter-chip network traffic. The ecosystem is in use at over 30 universities and government / corporate labs. Our platform is a substrate for a spectrum of applications from mobile and embedded computing to cloud and supercomputers.
TrueNorth Ecosystem for Brain-Inspired Computing: Scalable Systems, Software, and Applications

TrueNorth, once loaded with a neural network model, can be used in real-time as a sensory streaming inference engine, performing rapid and accurate classifications while using minimal energy. TrueNorth’s 1 million neurons consume only 70 mW, which is like having a neurosynaptic supercomputer the size of a postage stamp that can run on a smartphone battery for a week.

Recently, in collaboration with Lawrence Livermore National Laboratory, U.S. Air Force Research Laboratory, and U.S. Army Research Laboratory, we published our fifth paper at IEEE’s prestigious Supercomputing 2016 conference that summarizes the results of the team’s 12.5-year journey (see the associated graphic) to unlock this value proposition. [keep scrolling for the graphic]

Applying the mind of a chip

Three of our partners, U.S. Army Research Lab, U.S. Air Force Research Lab and Lawrence Livermore National Lab, contributed sections to the Supercomputing paper each showcasing a different TrueNorth system, as summarized by my colleagues Jun Sawada, Brian Taba, Pallab Datta, and Ben Shaw:

U.S. Army Research Lab (ARL) prototyped a computational offloading scheme to illustrate how TrueNorth’s low power profile enables computation at the point of data collection. Using the single-chip NS1e board and an Android tablet, ARL researchers created a demonstration system that allows visitors to their lab to hand write arithmetic expressions on the tablet, with handwriting streamed to the NS1e for character recognition, and recognized characters sent back to the tablet for arithmetic calculation.

Of course, the point here is not to make a handwriting calculator, it is to show how TrueNorth’s low power and real time pattern recognition might be deployed at the point of data collection to reduce latency, complexity and transmission bandwidth, as well as back-end data storage requirements in distributed systems.

U.S. Air Force Research Lab (AFRL) contributed another prototype application utilizing a TrueNorth scale-out system to perform a data-parallel text extraction and recognition task. In this application, an image of a document is segmented into individual characters that are streamed to AFRL’s NS1e16 TrueNorth system for parallel character recognition. Classification results are then sent to an inference-based natural language model to reconstruct words and sentences. This system can process 16,000 characters per second! AFRL plans to implement the word and sentence inference algorithms on TrueNorth, as well.

Lawrence Livermore National Lab (LLNL) has a 16-chip NS16e scale-up system to explore the potential of post-von Neumann computation through larger neural models and more complex algorithms, enabled by the native tiling characteristics of the TrueNorth chip. For the Supercomputing paper, they contributed a single-chip application performing in-situ process monitoring in an additive manufacturing process. LLNL trained a TrueNorth network to recognize seven classes related to track weld quality in welds produced by a selective laser melting machine. Real-time weld quality determination allows for closed-loop process improvement and immediate rejection of defective parts. This is one of several applications LLNL is developing to showcase TrueNorth as a scalable platform for low-power, real-time inference.

[downloaded from https://www.ibm.com/blogs/research/2016/12/the-brains-architecture-efficiency-on-a-chip/] Courtesy: IBM

I gather this 2017 announcement is the latest milestone on the TrueNorth journey.

Self-learning neuromorphic chip

There aren’t many details about this chip and so far as I can tell this technology is not based on a memristor. From a May 16, 2017 news item on plys.org,

Today [May 16, 2017], at the imec technology forum (ITF2017), imec demonstrated the world’s first self-learning neuromorphic chip. The brain-inspired chip, based on OxRAM technology, has the capability of self-learning and has been demonstrated to have the ability to compose music.

Here’s a sample,

A May 16, 2017 imec press release, which originated the news item, expands on the theme,

The human brain is a dream for computer scientists: it has a huge computing power while consuming only a few tens of Watts. Imec researchers are combining state-of-the-art hardware and software to design chips that feature these desirable characteristics of a self-learning system. Imec’s ultimate goal is to design the process technology and building blocks to make artificial intelligence to be energy efficient so that that it can be integrated into sensors. Such intelligent sensors will drive the internet of things forward. This would not only allow machine learning to be present in all sensors but also allow on-field learning capability to further improve the learning.

By co-optimizing the hardware and the software, the chip features machine learning and intelligence characteristics on a small area, while consuming only very little power. The chip is self-learning, meaning that is makes associations between what it has experienced and what it experiences. The more it experiences, the stronger the connections will be. The chip presented today has learned to compose new music and the rules for the composition are learnt on the fly.

It is imec’s ultimate goal to further advance both hardware and software to achieve very low-power, high-performance, low-cost and highly miniaturized neuromorphic chips that can be applied in many domains ranging for personal health, energy, traffic management etc. For example, neuromorphic chips integrated into sensors for health monitoring would enable to identify a particular heartrate change that could lead to heart abnormalities, and would learn to recognize slightly different ECG patterns that vary between individuals. Such neuromorphic chips would thus enable more customized and patient-centric monitoring.

“Because we have hardware, system design and software expertise under one roof, imec is ideally positioned to drive neuromorphic computing forward,” says Praveen Raghavan, distinguished member of the technical Staff at imec. “Our chip has evolved from co-optimizing logic, memory, algorithms and system in a holistic way. This way, we succeeded in developing the building blocks for such a self-learning system.”

About ITF

The Imec Technology Forum (ITF) is imec’s series of internationally acclaimed events with a clear focus on the technologies that will drive groundbreaking innovation in healthcare, smart cities and mobility, ICT, logistics and manufacturing, and energy.

At ITF, some of the world’s greatest minds in technology take the stage. Their talks cover a wide range of domains – such as advanced chip scaling, smart imaging, sensor and communication systems, the IoT, supercomputing, sustainable energy and battery technology, and much more. As leading innovators in their fields, they also present early insights in market trends, evolutions, and breakthroughs in nanoelectronics and digital technology: What will be successful and what not, in five or even ten years from now? How will technology evolve, and how fast? And who can help you implement your technology roadmaps?

About imec

Imec is the world-leading research and innovation hub in nano-electronics and digital technologies. The combination of our widely-acclaimed leadership in microchip technology and profound software and ICT expertise is what makes us unique. By leveraging our world-class infrastructure and local and global ecosystem of partners across a multitude of industries, we create groundbreaking innovation in application domains such as healthcare, smart cities and mobility, logistics and manufacturing, and energy.

As a trusted partner for companies, start-ups and universities we bring together close to 3,500 brilliant minds from over 75 nationalities. Imec is headquartered in Leuven, Belgium and also has distributed R&D groups at a number of Flemish universities, in the Netherlands, Taiwan, USA, China, and offices in India and Japan. In 2016, imec’s revenue (P&L) totaled 496 million euro. Further information on imec can be found at www.imec.be.

Imec is a registered trademark for the activities of IMEC International (a legal entity set up under Belgian law as a “stichting van openbaar nut”), imec Belgium (IMEC vzw supported by the Flemish Government), imec the Netherlands (Stichting IMEC Nederland, part of Holst Centre which is supported by the Dutch Government), imec Taiwan (IMEC Taiwan Co.) and imec China (IMEC Microelectronics (Shanghai) Co. Ltd.) and imec India (Imec India Private Limited), imec Florida (IMEC USA nanoelectronics design center).

I don’t usually include the ‘abouts’ but I was quite intrigued by imec. For anyone curious about the ITF (imec Forums), here’s a website with a listing all of the previously held and upcoming 2017 forums.

Predicting how a memristor functions

An April 3, 2017 news item on Nanowerk announces a new memristor development (Note: A link has been removed),

Researchers from the CNRS [Centre national de la recherche scientifique; France] , Thales, and the Universities of Bordeaux, Paris-Sud, and Evry have created an artificial synapse capable of learning autonomously. They were also able to model the device, which is essential for developing more complex circuits. The research was published in Nature Communications (“Learning through ferroelectric domain dynamics in solid-state synapses”)

An April 3, 2017 CNRS press release, which originated the news item, provides a nice introduction to the memristor concept before providing a few more details about this latest work (Note: A link has been removed),

One of the goals of biomimetics is to take inspiration from the functioning of the brain [also known as neuromorphic engineering or neuromorphic computing] in order to design increasingly intelligent machines. This principle is already at work in information technology, in the form of the algorithms used for completing certain tasks, such as image recognition; this, for instance, is what Facebook uses to identify photos. However, the procedure consumes a lot of energy. Vincent Garcia (Unité mixte de physique CNRS/Thales) and his colleagues have just taken a step forward in this area by creating directly on a chip an artificial synapse that is capable of learning. They have also developed a physical model that explains this learning capacity. This discovery opens the way to creating a network of synapses and hence intelligent systems requiring less time and energy.

Our brain’s learning process is linked to our synapses, which serve as connections between our neurons. The more the synapse is stimulated, the more the connection is reinforced and learning improved. Researchers took inspiration from this mechanism to design an artificial synapse, called a memristor. This electronic nanocomponent consists of a thin ferroelectric layer sandwiched between two electrodes, and whose resistance can be tuned using voltage pulses similar to those in neurons. If the resistance is low the synaptic connection will be strong, and if the resistance is high the connection will be weak. This capacity to adapt its resistance enables the synapse to learn.

Although research focusing on these artificial synapses is central to the concerns of many laboratories, the functioning of these devices remained largely unknown. The researchers have succeeded, for the first time, in developing a physical model able to predict how they function. This understanding of the process will make it possible to create more complex systems, such as a series of artificial neurons interconnected by these memristors.

As part of the ULPEC H2020 European project, this discovery will be used for real-time shape recognition using an innovative camera1 : the pixels remain inactive, except when they see a change in the angle of vision. The data processing procedure will require less energy, and will take less time to detect the selected objects. The research involved teams from the CNRS/Thales physics joint research unit, the Laboratoire de l’intégration du matériau au système (CNRS/Université de Bordeaux/Bordeaux INP), the University of Arkansas (US), the Centre de nanosciences et nanotechnologies (CNRS/Université Paris-Sud), the Université d’Evry, and Thales.

 

Image synapse


© Sören Boyn / CNRS/Thales physics joint research unit.

Artist’s impression of the electronic synapse: the particles represent electrons circulating through oxide, by analogy with neurotransmitters in biological synapses. The flow of electrons depends on the oxide’s ferroelectric domain structure, which is controlled by electric voltage pulses.


Here’s a link to and a citation for the paper,

Learning through ferroelectric domain dynamics in solid-state synapses by Sören Boyn, Julie Grollier, Gwendal Lecerf, Bin Xu, Nicolas Locatelli, Stéphane Fusil, Stéphanie Girod, Cécile Carrétéro, Karin Garcia, Stéphane Xavier, Jean Tomas, Laurent Bellaiche, Manuel Bibes, Agnès Barthélémy, Sylvain Saïghi, & Vincent Garcia. Nature Communications 8, Article number: 14736 (2017) doi:10.1038/ncomms14736 Published online: 03 April 2017

This paper is open access.

Thales or Thales Group is a French company, from its Wikipedia entry (Note: Links have been removed),

Thales Group (French: [talɛs]) is a French multinational company that designs and builds electrical systems and provides services for the aerospace, defence, transportation and security markets. Its headquarters are in La Défense[2] (the business district of Paris), and its stock is listed on the Euronext Paris.

The company changed its name to Thales (from the Greek philosopher Thales,[3] pronounced [talɛs] reflecting its pronunciation in French) from Thomson-CSF in December 2000 shortly after the £1.3 billion acquisition of Racal Electronics plc, a UK defence electronics group. It is partially state-owned by the French government,[4] and has operations in more than 56 countries. It has 64,000 employees and generated €14.9 billion in revenues in 2016. The Group is ranked as the 475th largest company in the world by Fortune 500 Global.[5] It is also the 10th largest defence contractor in the world[6] and 55% of its total sales are military sales.[4]

The ULPEC (Ultra-Low Power Event-Based Camera) H2020 [Horizon 2020 funded) European project can be found here,

The long term goal of ULPEC is to develop advanced vision applications with ultra-low power requirements and ultra-low latency. The output of the ULPEC project is a demonstrator connecting a neuromorphic event-based camera to a high speed ultra-low power consumption asynchronous visual data processing system (Spiking Neural Network with memristive synapses). Although ULPEC device aims to reach TRL 4, it is a highly application-oriented project: prospective use cases will b…

Finally, for anyone curious about Thales, the philosopher (from his Wikipedia entry), Note: Links have been removed,

Thales of Miletus (/ˈθeɪliːz/; Greek: Θαλῆς (ὁ Μῑλήσιος), Thalēs; c. 624 – c. 546 BC) was a pre-Socratic Greek/Phoenician philosopher, mathematician and astronomer from Miletus in Asia Minor (present-day Milet in Turkey). He was one of the Seven Sages of Greece. Many, most notably Aristotle, regard him as the first philosopher in the Greek tradition,[1][2] and he is otherwise historically recognized as the first individual in Western civilization known to have entertained and engaged in scientific philosophy.[3][4]

Does understanding your pet mean understanding artificial intelligence better?

Heather Roff’s take on artificial intelligence features an approach I haven’t seen before. From her March 30, 2017 essay for The Conversation (h/t March 31, 2017 news item on phys.org),

It turns out, though, that we already have a concept we can use when we think about AI: It’s how we think about animals. As a former animal trainer (albeit briefly) who now studies how people use AI, I know that animals and animal training can teach us quite a lot about how we ought to think about, approach and interact with artificial intelligence, both now and in the future.

Using animal analogies can help regular people understand many of the complex aspects of artificial intelligence. It can also help us think about how best to teach these systems new skills and, perhaps most importantly, how we can properly conceive of their limitations, even as we celebrate AI’s new possibilities.
Looking at constraints

As AI expert Maggie Boden explains, “Artificial intelligence seeks to make computers do the sorts of things that minds can do.” AI researchers are working on teaching computers to reason, perceive, plan, move and make associations. AI can see patterns in large data sets, predict the likelihood of an event occurring, plan a route, manage a person’s meeting schedule and even play war-game scenarios.

Many of these capabilities are, in themselves, unsurprising: Of course a robot can roll around a space and not collide with anything. But somehow AI seems more magical when the computer starts to put these skills together to accomplish tasks.

Thinking of AI as a trainable animal isn’t just useful for explaining it to the general public. It is also helpful for the researchers and engineers building the technology. If an AI scholar is trying to teach a system a new skill, thinking of the process from the perspective of an animal trainer could help identify potential problems or complications.

For instance, if I try to train my dog to sit, and every time I say “sit” the buzzer to the oven goes off, then my dog will begin to associate sitting not only with my command, but also with the sound of the oven’s buzzer. In essence, the buzzer becomes another signal telling the dog to sit, which is called an “accidental reinforcement.” If we look for accidental reinforcements or signals in AI systems that are not working properly, then we’ll know better not only what’s going wrong, but also what specific retraining will be most effective.

This requires us to understand what messages we are giving during AI training, as well as what the AI might be observing in the surrounding environment. The oven buzzer is a simple example; in the real world it will be far more complicated.

Before we welcome our AI overlords and hand over our lives and jobs to robots, we ought to pause and think about the kind of intelligences we are creating. …

Source: pixabay.com

It’s just last year (2016) that an AI system beat a human Go master player. Here’s how a March 17, 2016 article by John Russell for TechCrunch described the feat (Note: Links have been removed),

Much was written of an historic moment for artificial intelligence last week when a Google-developed AI beat one of the planet’s most sophisticated players of Go, an East Asia strategy game renowned for its deep thinking and strategy.

Go is viewed as one of the ultimate tests for an AI given the sheer possibilities on hand. “There are 1,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000 possible positions [in the game] — that’s more than the number of atoms in the universe, and more than a googol times larger than chess,” Google said earlier this year.

If you missed the series — which AlphaGo, the AI, won 4-1 — or were unsure of exactly why it was so significant, Google summed the general importance up in a post this week.

Far from just being a game, Demis Hassabis, CEO and Co-Founder of DeepMind — the Google-owned company behind AlphaGo — said the AI’s development is proof that it can be used to solve problems in ways that humans may be not be accustomed or able to do:

We’ve learned two important things from this experience. First, this test bodes well for AI’s potential in solving other problems. AlphaGo has the ability to look “globally” across a board—and find solutions that humans either have been trained not to play or would not consider. This has huge potential for using AlphaGo-like technology to find solutions that humans don’t necessarily see in other areas.

I find Roff’s thesis intriguing and is likely applicable to the short-term but in the longer term and in light of the attempts to  create devices that mimic neural plasticity and neuromorphic engineering  I don’t find her thesis convincing.

Ferroelectric roadmap to neuromorphic computing

Having written about memristors and neuromorphic engineering a number of times here, I’m  quite intrigued to see some research into another nanoscale device for mimicking the functions of a human brain.

The announcement about the latest research from the team at the US Department of Energy’s Argonne National Laboratory is in a Feb. 14, 2017 news item on Nanowerk (Note: A link has been removed),

Research published in Nature Scientific Reports (“Ferroelectric symmetry-protected multibit memory cell”) lays out a theoretical map to use ferroelectric material to process information using multivalued logic – a leap beyond the simple ones and zeroes that make up our current computing systems that could let us process information much more efficiently.

A Feb. 10, 2017 Argonne National Laboratory news release by Louise Lerner, which originated the news item, expands on the theme,

The language of computers is written in just two symbols – ones and zeroes, meaning yes or no. But a world of richer possibilities awaits us if we could expand to three or more values, so that the same physical switch could encode much more information.

“Most importantly, this novel logic unit will enable information processing using not only “yes” and “no”, but also “either yes or no” or “maybe” operations,” said Valerii Vinokur, a materials scientist and Distinguished Fellow at the U.S. Department of Energy’s Argonne National Laboratory and the corresponding author on the paper, along with Laurent Baudry with the Lille University of Science and Technology and Igor Lukyanchuk with the University of Picardie Jules Verne.

This is the way our brains operate, and they’re something on the order of a million times more efficient than the best computers we’ve ever managed to build – while consuming orders of magnitude less energy.

“Our brains process so much more information, but if our synapses were built like our current computers are, the brain would not just boil but evaporate from the energy they use,” Vinokur said.

While the advantages of this type of computing, called multivalued logic, have long been known, the problem is that we haven’t discovered a material system that could implement it. Right now, transistors can only operate as “on” or “off,” so this new system would have to find a new way to consistently maintain more states – as well as be easy to read and write and, ideally, to work at room temperature.

Hence Vinokur and the team’s interest in ferroelectrics, a class of materials whose polarization can be controlled with electric fields. As ferroelectrics physically change shape when the polarization changes, they’re very useful in sensors and other devices, such as medical ultrasound machines. Scientists are very interested in tapping these properties for computer memory and other applications; but the theory behind their behavior is very much still emerging.

The new paper lays out a recipe by which we could tap the properties of very thin films of a particular class of ferroelectric material called perovskites.

According to the calculations, perovskite films could hold two, three, or even four polarization positions that are energetically stable – “so they could ‘click’ into place, and thus provide a stable platform for encoding information,” Vinokur said.

The team calculated these stable configurations and how to manipulate the polarization to move it between stable positions using electric fields, Vinokur said.

“When we realize this in a device, it will enormously increase the efficiency of memory units and processors,” Vinokur said. “This offers a significant step towards realization of so-called neuromorphic computing, which strives to model the human brain.”

Vinokur said the team is working with experimentalists to apply the principles to create a working system

Here’s a link to and a citation for the paper,

Ferroelectric symmetry-protected multibit memory cell by Laurent Baudry, Igor Lukyanchuk, & Valerii M. Vinokur. Scientific Reports 7, Article number: 42196 (2017) doi:10.1038/srep42196 Published online: 08 February 2017

This paper is open access.

Changing synaptic connectivity with a memristor

The French have announced some research into memristive devices that mimic both short-term and long-term neural plasticity according to a Dec. 6, 2016 news item on Nanowerk,

Leti researchers have demonstrated that memristive devices are excellent candidates to emulate synaptic plasticity, the capability of synapses to enhance or diminish their connectivity between neurons, which is widely believed to be the cellular basis for learning and memory.

The breakthrough was presented today [Dec. 6, 2016] at IEDM [International Electron Devices Meeting] 2016 in San Francisco in the paper, “Experimental Demonstration of Short and Long Term Synaptic Plasticity Using OxRAM Multi k-bit Arrays for Reliable Detection in Highly Noisy Input Data”.

Neural systems such as the human brain exhibit various types and time periods of plasticity, e.g. synaptic modifications can last anywhere from seconds to days or months. However, prior research in utilizing synaptic plasticity using memristive devices relied primarily on simplified rules for plasticity and learning.

The project team, which includes researchers from Leti’s sister institute at CEA Tech, List, along with INSERM and Clinatec, proposed an architecture that implements both short- and long-term plasticity (STP and LTP) using RRAM devices.

A Dec. 6, 2016 Laboratoire d’électronique des technologies de l’information (LETI) press release, which originated the news item, elaborates,

“While implementing a learning rule for permanent modifications – LTP, based on spike-timing-dependent plasticity – we also incorporated the possibility of short-term modifications with STP, based on the Tsodyks/Markram model,” said Elisa Vianello, Leti non-volatile memories and cognitive computing specialist/research engineer. “We showed the benefits of utilizing both kinds of plasticity with visual pattern extraction and decoding of neural signals. LTP allows our artificial neural networks to learn patterns, and STP makes the learning process very robust against environmental noise.”

Resistive random-access memory (RRAM) devices coupled with a spike-coding scheme are key to implementing unsupervised learning with minimal hardware footprint and low power consumption. Embedding neuromorphic learning into low-power devices could enable design of autonomous systems, such as a brain-machine interface that makes decisions based on real-time, on-line processing of in-vivo recorded biological signals. Biological data are intrinsically highly noisy and the proposed combined LTP and STP learning rule is a powerful technique to improve the detection/recognition rate. This approach may enable the design of autonomous implantable devices for rehabilitation purposes

Leti, which has worked on RRAM to develop hardware neuromorphic architectures since 2010, is the coordinator of the H2020 [Horizon 2020] European project NeuRAM3. That project is working on fabricating a chip with architecture that supports state-of-the-art machine-learning algorithms and spike-based learning mechanisms.

That’s it folks.

Memristive-like qualities with pectin

As the drive to create a synthetic neuronal network, as powered by memristors, continues, scientists are investigating pectin. From a Nov. 11, 2016 news item on ScienceDaily,

Most of us know pectin as a key ingredient for making delicious jellies and jams, not as a component for a complex hybrid device that links biological and electronic systems. But a team of Italian scientists have built on previous work in this field using pectin with a high degree of methylation as the medium to create a new architecture of hybrid device with a double-layered polyelectrolyte that alone drives memristive behavior.

A Nov. 11, 2016 American Institute of Physics news release on EurekAlert, which originated the news item, defines memristors and describes the research,

A memristive device can be thought of as a synapse analogue, a device that has a memory. Simply stated, its behavior in a certain moment depends on its previous activity, similar to the way information in the human brain is transmitted from one neuron to another.

In an article published this week in AIP Advances, from AIP Publishing, the team explains the creation of the hybrid device. “In this research, we applied materials generally used in the pharmaceutical and food industries in our electrochemical devices,” said Angelica Cifarelli, a doctoral candidate at the University of Parma in Italy. “The idea of using the ‘buffering’ capability of these biocompatible materials as solid polyelectrolyte is completely innovative and our work is the first time that these bio-polymers have been used in devices based on organic polymers and in a memristive device.”

Memristors can provide a bridge for interfacing electronic circuits with nervous systems, moving us closer to realization of a double-layer perceptron, an element that can perform classification functions after an appropriate learning procedure. The main difficulty the research team faced was understanding the complex electrochemical interplay that is the basis for the memristive behavior, which would give them the means to control it. The team addressed this challenge by using commercial polymers, and modifying their electrochemical properties at the macroscopic level. The most surprising result was that it was possible to check the electrochemical response of the device by changing the formulation of gels acting as polyelectrolytes, allowing study of the ionic exchanges relating to the biological object, which activates the electrochemical response of the conductive polymer.

“Our developments open the way to make compatible polyaniline based devices with an interface that should be naturally, biologically and electrochemically compatible and functional,” said Cifarelli. The next steps are interfacing the memristor network with other living beings, for example, plants and ultimately the realization of hybrid systems that can “learn” and perform logic/classification functions.

Here’s a link to and a citation for the paper,

Polysaccarides-based gels and solid-state electronic devices with memresistive properties: Synergy between polyaniline electrochemistry and biology by Angelica Cifarelli, Tatiana Berzina, Antonella Parisini, Victor Erokhin, and Salvatore Iannotta. AIP Advances 6, 111302 (2016); http://dx.doi.org/10.1063/1.4966559 Published Nov. 8, 2016

This paper appears to be open access.

US white paper on neuromorphic computing (or the nanotechnology-inspired Grand Challenge for future computing)

The US has embarked on a number of what is called “Grand Challenges.” I first came across the concept when reading about the Bill and Melinda Gates (of Microsoft fame) Foundation. I gather these challenges are intended to provide funding for research that advances bold visions.

There is the US National Strategic Computing Initiative established on July 29, 2015 and its first anniversary results were announced one year to the day later. Within that initiative a nanotechnology-inspired Grand Challenge for Future Computing was issued and, according to a July 29, 2016 news item on Nanowerk, a white paper on the topic has been issued (Note: A link has been removed),

Today [July 29, 2016), Federal agencies participating in the National Nanotechnology Initiative (NNI) released a white paper (pdf) describing the collective Federal vision for the emerging and innovative solutions needed to realize the Nanotechnology-Inspired Grand Challenge for Future Computing.

The grand challenge, announced on October 20, 2015, is to “create a new type of computer that can proactively interpret and learn from data, solve unfamiliar problems using what it has learned, and operate with the energy efficiency of the human brain.” The white paper describes the technical priorities shared by the agencies, highlights the challenges and opportunities associated with these priorities, and presents a guiding vision for the research and development (R&D) needed to achieve key technical goals. By coordinating and collaborating across multiple levels of government, industry, academia, and nonprofit organizations, the nanotechnology and computer science communities can look beyond the decades-old approach to computing based on the von Neumann architecture and chart a new path that will continue the rapid pace of innovation beyond the next decade.

A July 29, 2016 US National Nanotechnology Coordination Office news release, which originated the news item, further and succinctly describes the contents of the paper,

“Materials and devices for computing have been and will continue to be a key application domain in the field of nanotechnology. As evident by the R&D topics highlighted in the white paper, this challenge will require the convergence of nanotechnology, neuroscience, and computer science to create a whole new paradigm for low-power computing with revolutionary, brain-like capabilities,” said Dr. Michael Meador, Director of the National Nanotechnology Coordination Office. …

The white paper was produced as a collaboration by technical staff at the Department of Energy, the National Science Foundation, the Department of Defense, the National Institute of Standards and Technology, and the Intelligence Community. …

The white paper titled “A Federal Vision for Future Computing: A Nanotechnology-Inspired Grand Challenge” is 15 pp. and it offers tidbits such as this (Note: Footnotes not included),

A new materials base may be needed for future electronic hardware. While most of today’s electronics use silicon, this approach is unsustainable if billions of disposable and short-lived sensor nodes are needed for the coming Internet-of-Things (IoT). To what extent can the materials base for the implementation of future information technology (IT) components and systems support sustainability through recycling and bio-degradability? More sustainable materials, such as compostable or biodegradable systems (polymers, paper, etc.) that can be recycled or reused,  may play an important role. The potential role for such alternative materials in the fabrication of integrated systems needs to be explored as well. [p. 5]

The basic architecture of computers today is essentially the same as those built in the 1940s—the von Neumann architecture—with separate compute, high-speed memory, and high-density storage components that are electronically interconnected. However, it is well known that continued performance increases using this architecture are not feasible in the long term, with power density constraints being one of the fundamental roadblocks.7 Further advances in the current approach using multiple cores, chip multiprocessors, and associated architectures are plagued by challenges in software and programming models. Thus,  research and development is required in radically new and different computing architectures involving processors, memory, input-output devices, and how they behave and are interconnected. [p. 7]

Neuroscience research suggests that the brain is a complex, high-performance computing system with low energy consumption and incredible parallelism. A highly plastic and flexible organ, the human brain is able to grow new neurons, synapses, and connections to cope with an ever-changing environment. Energy efficiency, growth, and flexibility occur at all scales, from molecular to cellular, and allow the brain, from early to late stage, to never stop learning and to act with proactive intelligence in both familiar and novel situations. Understanding how these mechanisms work and cooperate within and across scales has the potential to offer tremendous technical insights and novel engineering frameworks for materials, devices, and systems seeking to perform efficient and autonomous computing. This research focus area is the most synergistic with the national BRAIN Initiative. However, unlike the BRAIN Initiative, where the goal is to map the network connectivity of the brain, the objective here is to understand the nature, methods, and mechanisms for computation,  and how the brain performs some of its tasks. Even within this broad paradigm,  one can loosely distinguish between neuromorphic computing and artificial neural network (ANN) approaches. The goal of neuromorphic computing is oriented towards a hardware approach to reverse engineering the computational architecture of the brain. On the other hand, ANNs include algorithmic approaches arising from machinelearning,  which in turn could leverage advancements and understanding in neuroscience as well as novel cognitive, mathematical, and statistical techniques. Indeed, the ultimate intelligent systems may as well be the result of merging existing ANN (e.g., deep learning) and bio-inspired techniques. [p. 8]

As government documents go, this is quite readable.

For anyone interested in learning more about the future federal plans for computing in the US, there is a July 29, 2016 posting on the White House blog celebrating the first year of the US National Strategic Computing Initiative Strategic Plan (29 pp. PDF; awkward but that is the title).

Memory material with functions resembling synapses and neurons in the brain

This work comes from the University of Twente’s MESA+ Institute for Nanotechnology according to a July 8, 2016 news item on ScienceDaily,

Our brain does not work like a typical computer memory storing just ones and zeroes: thanks to a much larger variation in memory states, it can calculate faster consuming less energy. Scientists of the MESA+ Institute for Nanotechnology of the University of Twente (The Netherlands) now developed a ferro-electric material with a memory function resembling synapses and neurons in the brain, resulting in a multistate memory. …

A July 8, 2016 University of Twente press release, which originated the news item, provides more technical detail,

The material that could be the basic building block for ‘brain-inspired computing’ is lead-zirconium-titanate (PZT): a sandwich of materials with several attractive properties. One of them is that it is ferro-electric: you can switch it to a desired state, this state remains stable after the electric field is gone. This is called polarization: it leads to a fast memory function that is non-volatile. Combined with processor chips, a computer could be designed that starts much faster, for example. The UT scientists now added a thin layer of zinc oxide to the PZT, 25 nanometer thickness. They discovered that switching from one state to another not only happens from ‘zero’ to ‘one’ vice versa. It is possible to control smaller areas within the crystal: will they be polarized (‘flip’) or not?

In a PZT layer without zinc oxide (ZnO) there are basically two memorystates. Adding a nano layer of ZnO, every state in between is possible as well.

Multistate

By using variable writing times in those smaller areas, the result is that many states can be stored anywhere between zero and one. This resembles the way synapses and neurons ‘weigh’ signals in our brain. Multistate memories, coupled to transistors, could drastically improve the speed of pattern recognition, for example: our brain performs this kind of tasks consuming only a fraction of the energy a computer system needs. Looking at the graphs, the writing times seem quite long compared to nowaday’s processor speeds, but it is possible to create many memories in parallel. The function of the brain has already been mimicked in software like neurale networks, but in that case conventional digital hardware is still a limitation. The new material is a first step towards electronic hardware with a brain-like memory. Finding solutions for combining PZT with semiconductors, or even developing new kinds of semiconductors for this, is one of the next steps.

Here’s a link to and a citation for the paper,

Multistability in Bistable Ferroelectric Materials toward Adaptive Applications by Anirban Ghosh, Gertjan Koster, and Guus Rijnders. Advanced Functional Materials DOI: 10.1002/adfm.201601353 Version of Record online: 4 JUL 2016

© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

This paper is behind a paywall.

Artificial synapse rivals biological synapse in energy consumption

How can we make computers be like biological brains which do so much work and use so little power? It’s a question scientists from many countries are trying to answer and it seems South Korean scientists are proposing an answer. From a June 20, 2016 news item on Nanowerk,

News) Creation of an artificial intelligence system that fully emulates the functions of a human brain has long been a dream of scientists. A brain has many superior functions as compared with super computers, even though it has light weight, small volume, and consumes extremely low energy. This is required to construct an artificial neural network, in which a huge amount (1014)) of synapses is needed.

Most recently, great efforts have been made to realize synaptic functions in single electronic devices, such as using resistive random access memory (RRAM), phase change memory (PCM), conductive bridges, and synaptic transistors. Artificial synapses based on highly aligned nanostructures are still desired for the construction of a highly-integrated artificial neural network.

Prof. Tae-Woo Lee, research professor Wentao Xu, and Dr. Sung-Yong Min with the Dept. of Materials Science and Engineering at POSTECH [Pohang University of Science & Technology, South Korea] have succeeded in fabricating an organic nanofiber (ONF) electronic device that emulates not only the important working principles and energy consumption of biological synapses but also the morphology. …

A June 20, 2016 Pohang University of Science & Technology (POSTECH) news release on EurekAlert, which originated the news item, describes the work in more detail,

The morphology of ONFs is very similar to that of nerve fibers, which form crisscrossing grids to enable the high memory density of a human brain. Especially, based on the e-Nanowire printing technique, highly-aligned ONFs can be massively produced with precise control over alignment and dimension. This morphology potentially enables the future construction of high-density memory of a neuromorphic system.

Important working principles of a biological synapse have been emulated, such as paired-pulse facilitation (PPF), short-term plasticity (STP), long-term plasticity (LTP), spike-timing dependent plasticity (STDP), and spike-rate dependent plasticity (SRDP). Most amazingly, energy consumption of the device can be reduced to a femtojoule level per synaptic event, which is a value magnitudes lower than previous reports. It rivals that of a biological synapse. In addition, the organic artificial synapse devices not only provide a new research direction in neuromorphic electronics but even open a new era of organic electronics.

This technology will lead to the leap of brain-inspired electronics in both memory density and energy consumption aspects. The artificial synapse developed by Prof. Lee’s research team will provide important potential applications to neuromorphic computing systems and artificial intelligence systems for autonomous cars (or self-driving cars), analysis of big data, cognitive systems, robot control, medical diagnosis, stock trading analysis, remote sensing, and other smart human-interactive systems and machines in the future.

Here’s a link to and a citation for the paper,

Organic core-sheath nanowire artificial synapses with femtojoule energy consumption by Wentao Xu, Sung-Yong Min, Hyunsang Hwang, and Tae-Woo Lee. Science Advances  17 Jun 2016: Vol. 2, no. 6, e1501326 DOI: 10.1126/sciadv.1501326

This paper is open access.