Tag Archives: neuroscience

Emerging technology and the law

I have three news bits about legal issues that are arising as a consequence of emerging technologies.

Deep neural networks, art, and copyright

Caption: The rise of automated art opens new creative avenues, coupled with new problems for copyright protection. Credit: Provided by: Alexander Mordvintsev, Christopher Olah and Mike Tyka

Presumably this artwork is a demonstration of automated art although they never really do explain how in the news item/news release. An April 26, 2017 news item on ScienceDaily announces research into copyright and the latest in using neural networks to create art,

In 1968, sociologist Jean Baudrillard wrote on automatism that “contained within it is the dream of a dominated world […] that serves an inert and dreamy humanity.”

With the growing popularity of Deep Neural Networks (DNN’s), this dream is fast becoming a reality.

Dr. Jean-Marc Deltorn, researcher at the Centre d’études internationales de la propriété intellectuelle in Strasbourg, argues that we must remain a responsive and responsible force in this process of automation — not inert dominators. As he demonstrates in a recent Frontiers in Digital Humanities paper, the dream of automation demands a careful study of the legal problems linked to copyright.

An April 26, 2017 Frontiers (publishing) news release on EurekAlert, which originated the news item, describes the research in more detail,

For more than half a century, artists have looked to computational processes as a way of expanding their vision. DNN’s are the culmination of this cross-pollination: by learning to identify a complex number of patterns, they can generate new creations.

These systems are made up of complex algorithms modeled on the transmission of signals between neurons in the brain.

DNN creations rely in equal measure on human inputs and the non-human algorithmic networks that process them.

Inputs are fed into the system, which is layered. Each layer provides an opportunity for a more refined knowledge of the inputs (shape, color, lines). Neural networks compare actual outputs to expected ones, and correct the predictive error through repetition and optimization. They train their own pattern recognition, thereby optimizing their learning curve and producing increasingly accurate outputs.

The deeper the layers are, the higher the level of abstraction. The highest layers are able to identify the contents of a given input with reasonable accuracy, after extended periods of training.

Creation thus becomes increasingly automated through what Deltorn calls “the arcane traceries of deep architecture”. The results are sufficiently abstracted from their sources to produce original creations that have been exhibited in galleries, sold at auction and performed at concerts.

The originality of DNN’s is a combined product of technological automation on one hand, human inputs and decisions on the other.

DNN’s are gaining popularity. Various platforms (such as DeepDream) now allow internet users to generate their very own new creations . This popularization of the automation process calls for a comprehensive legal framework that ensures a creator’s economic and moral rights with regards to his work – copyright protection.

Form, originality and attribution are the three requirements for copyright. And while DNN creations satisfy the first of these three, the claim to originality and attribution will depend largely on a given country legislation and on the traceability of the human creator.

Legislation usually sets a low threshold to originality. As DNN creations could in theory be able to create an endless number of riffs on source materials, the uncurbed creation of original works could inflate the existing number of copyright protections.

Additionally, a small number of national copyright laws confers attribution to what UK legislation defines loosely as “the person by whom the arrangements necessary for the creation of the work are undertaken.” In the case of DNN’s, this could mean anybody from the programmer to the user of a DNN interface.

Combined with an overly supple take on originality, this view on attribution would further increase the number of copyrightable works.

The risk, in both cases, is that artists will be less willing to publish their own works, for fear of infringement of DNN copyright protections.

In order to promote creativity – one seminal aim of copyright protection – the issue must be limited to creations that manifest a personal voice “and not just the electric glint of a computational engine,” to quote Deltorn. A delicate act of discernment.

DNN’s promise new avenues of creative expression for artists – with potential caveats. Copyright protection – a “catalyst to creativity” – must be contained. Many of us gently bask in the glow of an increasingly automated form of technology. But if we want to safeguard the ineffable quality that defines much art, it might be a good idea to hone in more closely on the differences between the electric and the creative spark.

This research is and be will part of a broader Frontiers Research Topic collection of articles on Deep Learning and Digital Humanities.

Here’s a link to and a citation for the paper,

Deep Creations: Intellectual Property and the Automata by Jean-Marc Deltorn. Front. Digit. Humanit., 01 February 2017 | https://doi.org/10.3389/fdigh.2017.00003

This paper is open access.

Conference on governance of emerging technologies

I received an April 17, 2017 notice via email about this upcoming conference. Here’s more from the Fifth Annual Conference on Governance of Emerging Technologies: Law, Policy and Ethics webpage,

The Fifth Annual Conference on Governance of Emerging Technologies:

Law, Policy and Ethics held at the new

Beus Center for Law & Society in Phoenix, AZ

May 17-19, 2017!

Call for Abstracts – Now Closed

The conference will consist of plenary and session presentations and discussions on regulatory, governance, legal, policy, social and ethical aspects of emerging technologies, including (but not limited to) nanotechnology, synthetic biology, gene editing, biotechnology, genomics, personalized medicine, human enhancement technologies, telecommunications, information technologies, surveillance technologies, geoengineering, neuroscience, artificial intelligence, and robotics. The conference is premised on the belief that there is much to be learned and shared from and across the governance experience and proposals for these various emerging technologies.

Keynote Speakers:

Gillian HadfieldRichard L. and Antoinette Schamoi Kirtland Professor of Law and Professor of Economics USC [University of Southern California] Gould School of Law

Shobita Parthasarathy, Associate Professor of Public Policy and Women’s Studies, Director, Science, Technology, and Public Policy Program University of Michigan

Stuart Russell, Professor at [University of California] Berkeley, is a computer scientist known for his contributions to artificial intelligence

Craig Shank, Vice President for Corporate Standards Group in Microsoft’s Corporate, External and Legal Affairs (CELA)

Plenary Panels:

Innovation – Responsible and/or Permissionless

Ellen-Marie Forsberg, Senior Researcher/Research Manager at Oslo and Akershus University College of Applied Sciences

Adam Thierer, Senior Research Fellow with the Technology Policy Program at the Mercatus Center at George Mason University

Wendell Wallach, Consultant, ethicist, and scholar at Yale University’s Interdisciplinary Center for Bioethics

 Gene Drives, Trade and International Regulations

Greg Kaebnick, Director, Editorial Department; Editor, Hastings Center Report; Research Scholar, Hastings Center

Jennifer Kuzma, Goodnight-North Carolina GlaxoSmithKline Foundation Distinguished Professor in Social Sciences in the School of Public and International Affairs (SPIA) and co-director of the Genetic Engineering and Society (GES) Center at North Carolina State University

Andrew Maynard, Senior Sustainability Scholar, Julie Ann Wrigley Global Institute of Sustainability Director, Risk Innovation Lab, School for the Future of Innovation in Society Professor, School for the Future of Innovation in Society, Arizona State University

Gary Marchant, Regents’ Professor of Law, Professor of Law Faculty Director and Faculty Fellow, Center for Law, Science & Innovation, Arizona State University

Marc Saner, Inaugural Director of the Institute for Science, Society and Policy, and Associate Professor, University of Ottawa Department of Geography

Big Data

Anupam Chander, Martin Luther King, Jr. Professor of Law and Director, California International Law Center, UC Davis School of Law

Pilar Ossorio, Professor of Law and Bioethics, University of Wisconsin, School of Law and School of Medicine and Public Health; Morgridge Institute for Research, Ethics Scholar-in-Residence

George Poste, Chief Scientist, Complex Adaptive Systems Initiative (CASI) (http://www.casi.asu.edu/), Regents’ Professor and Del E. Webb Chair in Health Innovation, Arizona State University

Emily Shuckburgh, climate scientist and deputy head of the Polar Oceans Team at the British Antarctic Survey, University of Cambridge

 Responsible Development of AI

Spring Berman, Ira A. Fulton Schools of Engineering, Arizona State University

John Havens, The IEEE [Institute of Electrical and Electronics Engineers] Global Initiative for Ethical Considerations in Artificial Intelligence and Autonomous Systems

Subbarao Kambhampati, Senior Sustainability Scientist, Julie Ann Wrigley Global Institute of Sustainability, Professor, School of Computing, Informatics and Decision Systems Engineering, Ira A. Fulton Schools of Engineering, Arizona State University

Wendell Wallach, Consultant, Ethicist, and Scholar at Yale University’s Interdisciplinary Center for Bioethics

Existential and Catastrophic Ricks [sic]

Tony Barrett, Co-Founder and Director of Research of the Global Catastrophic Risk Institute

Haydn Belfield,  Academic Project Administrator, Centre for the Study of Existential Risk at the University of Cambridge

Margaret E. Kosal Associate Director, Sam Nunn School of International Affairs, Georgia Institute of Technology

Catherine Rhodes,  Academic Project Manager, Centre for the Study of Existential Risk at CSER, University of Cambridge

These were the panels that are of interest to me; there are others on the homepage.

Here’s some information from the Conference registration webpage,

Early Bird Registration – $50 off until May 1! Enter discount code: earlybirdGETs50

New: Group Discount – Register 2+ attendees together and receive an additional 20% off for all group members!

Click Here to Register!

Conference registration fees are as follows:

  • General (non-CLE) Registration: $150.00
  • CLE Registration: $350.00
  • *Current Student / ASU Law Alumni Registration: $50.00
  • ^Cybsersecurity sessions only (May 19): $100 CLE / $50 General / Free for students (registration info coming soon)

There you have it.

Neuro-techno future laws

I’m pretty sure this isn’t the first exploration of potential legal issues arising from research into neuroscience although it’s the first one I’ve stumbled across. From an April 25, 2017 news item on phys.org,

New human rights laws to prepare for advances in neurotechnology that put the ‘freedom of the mind’ at risk have been proposed today in the open access journal Life Sciences, Society and Policy.

The authors of the study suggest four new human rights laws could emerge in the near future to protect against exploitation and loss of privacy. The four laws are: the right to cognitive liberty, the right to mental privacy, the right to mental integrity and the right to psychological continuity.

An April 25, 2017 Biomed Central news release on EurekAlert, which originated the news item, describes the work in more detail,

Marcello Ienca, lead author and PhD student at the Institute for Biomedical Ethics at the University of Basel, said: “The mind is considered to be the last refuge of personal freedom and self-determination, but advances in neural engineering, brain imaging and neurotechnology put the freedom of the mind at risk. Our proposed laws would give people the right to refuse coercive and invasive neurotechnology, protect the privacy of data collected by neurotechnology, and protect the physical and psychological aspects of the mind from damage by the misuse of neurotechnology.”

Advances in neurotechnology, such as sophisticated brain imaging and the development of brain-computer interfaces, have led to these technologies moving away from a clinical setting and into the consumer domain. While these advances may be beneficial for individuals and society, there is a risk that the technology could be misused and create unprecedented threats to personal freedom.

Professor Roberto Andorno, co-author of the research, explained: “Brain imaging technology has already reached a point where there is discussion over its legitimacy in criminal court, for example as a tool for assessing criminal responsibility or even the risk of reoffending. Consumer companies are using brain imaging for ‘neuromarketing’, to understand consumer behaviour and elicit desired responses from customers. There are also tools such as ‘brain decoders’ which can turn brain imaging data into images, text or sound. All of these could pose a threat to personal freedom which we sought to address with the development of four new human rights laws.”

The authors explain that as neurotechnology improves and becomes commonplace, there is a risk that the technology could be hacked, allowing a third-party to ‘eavesdrop’ on someone’s mind. In the future, a brain-computer interface used to control consumer technology could put the user at risk of physical and psychological damage caused by a third-party attack on the technology. There are also ethical and legal concerns over the protection of data generated by these devices that need to be considered.

International human rights laws make no specific mention to neuroscience, although advances in biomedicine have become intertwined with laws, such as those concerning human genetic data. Similar to the historical trajectory of the genetic revolution, the authors state that the on-going neurorevolution will force a reconceptualization of human rights laws and even the creation of new ones.

Marcello Ienca added: “Science-fiction can teach us a lot about the potential threat of technology. Neurotechnology featured in famous stories has in some cases already become a reality, while others are inching ever closer, or exist as military and commercial prototypes. We need to be prepared to deal with the impact these technologies will have on our personal freedom.”

Here’s a link to and a citation for the paper,

Towards new human rights in the age of neuroscience and neurotechnology by Marcello Ienca and Roberto Andorno. Life Sciences, Society and Policy201713:5 DOI: 10.1186/s40504-017-0050-1 Published: 26 April 2017

©  The Author(s). 2017

This paper is open access.

The memristor as the ‘missing link’ in bioelectronic medicine?

The last time I featured memrisors and a neuronal network it was in an April 22, 2016 posting about Russian research in that field. This latest work comes from the UK’s University of Southampton. From a Sept. 27, 2016 news item on phys.org,

New research, led by the University of Southampton, has demonstrated that a nanoscale device, called a memristor, could be the ‘missing link’ in the development of implants that use electrical signals from the brain to help treat medical conditions.

Monitoring neuronal cell activity is fundamental to neuroscience and the development of neuroprosthetics – biomedically engineered devices that are driven by neural activity. However, a persistent problem is the device being able to process the neural data in real-time, which imposes restrictive requirements on bandwidth, energy and computation capacity.

In a new study, published in Nature Communications, the researchers showed that memristors could provide real-time processing of neuronal signals (spiking events) leading to efficient data compression and the potential to develop more precise and affordable neuroprosthetics and bioelectronic medicines.

A Sept. 27, 2016 University of Southampton press release, which originated the news item, expands on the theme,

Memristors are electrical components that limit or regulate the flow of electrical current in a circuit and can remember the amount of charge that was flowing through it and retain the data, even when the power is turned off.

Lead author Isha Gupta, Postgraduate Research Student at the University of Southampton, said: “Our work can significantly contribute towards further enhancing the understanding of neuroscience, developing neuroprosthetics and bio-electronic medicines by building tools essential for interpreting the big data in a more effective way.”

The research team developed a nanoscale Memristive Integrating Sensor (MIS) into which they fed a series of voltage-time samples, which replicated neuronal electrical activity.

Acting like synapses in the brain, the metal-oxide MIS was able to encode and compress (up to 200 times) neuronal spiking activity recorded by multi-electrode arrays. Besides addressing the bandwidth constraints, this approach was also very power efficient – the power needed per recording channel was up to 100 times less when compared to current best practice.

Co-author Dr Themis Prodromakis, Reader in Nanoelectronics and EPSRC Fellow in Electronics and Computer Science at the University of Southampton said: “We are thrilled that we succeeded in demonstrating that these emerging nanoscale devices, despite being rather simple in architecture, possess ultra-rich dynamics that can be harnessed beyond the obvious memory applications to address the fundamental constraints in bandwidth and power that currently prohibit scaling neural interfaces beyond 1,000 recording channels.”

The Prodromakis Group at the University of Southampton is acknowledged as world-leading in this field, collaborating among others with Leon Chua (a Diamond Jubilee Visiting Academic at the University of Southampton), who theoretically predicted the existence of memristors in 1971.

Here’s a link to and a citation for the paper,

Real-time encoding and compression of neuronal spikes by metal-oxide memristors by Isha Gupta, Alexantrou Serb, Ali Khiat, Ralf Zeitler, Stefano Vassanelli, & Themistoklis Prodromakis. Nature Communications 7, Article number: 12805 doi:10.1038/ncomms12805 Published  26 September 2016

This is an open access paper.

For anyone who’s interested in better understanding memristors, there’s an interview with Forrest H Bennett III in my April 7, 2010 posting and you can always check Wikipedia.

Curiosity Collider (Vancouver, Canada) presents Neural Constellations: Exploring Connectivity

I think of Curiosity Collider as an informal art/science  presenter but I gather the organizers’ ambitions are more grand. From the Curiosity Collider’s About Us page,

Curiosity Collider provides an inclusive community [emphasis mine] hub for curious innovators from any discipline. Our non-profit foundation, based in Vancouver, Canada, fosters participatory partnerships between science & technology, art & culture, business communities, and educational foundations to inspire new ways to experience science. The Collider’s growing community supports and promotes the daily relevance of science with our events and projects. Curiosity Collider is a catalyst for collaborations that seed and grow engaging science communication projects.

Be inspired by the curiosity of others. Our Curiosity Collider events cross disciplinary lines to promote creative inspiration. Meet scientists, visual and performing artists, culinary perfectionists, passionate educators, and entrepreneurs who share a curiosity for science.

Help us create curiosity for science. Spark curiosity in others with your own ideas and projects. Get in touch with us and use our curiosity events to showcase how your work creates innovative new ways to experience science.

I wish they hadn’t described themselves as an “inclusive community.” This often means exactly the opposite.

Take for example the website. The background is in black, the heads are white, and the text is grey. This is a website for people under the age of 40. If you want to be inclusive, you make your website legible for everyone.

That said, there’s an upcoming Curiosity Collider event which looks promising (from a July 20, 2016 email notice),

Neural Constellations: Exploring Connectivity

An Evening of Art, Science and Performance under the Dome

“We are made of star stuff,” Carl Sagan once said. From constellations to our nervous system, from stars to our neurons. We’re colliding neuroscience and astronomy with performance art, sound, dance, and animation for one amazing evening under the planetarium dome. Together, let’s explore similar patterns at the macro (astronomy) and micro (neurobiology) scale by taking a tour through both outer and inner space.

This show is curated by Curiosity Collider’s Creative Director Char Hoyt, along with Special Guest Curator Naila Kuhlmann, and developed in collaboration with the MacMillan Space Centre. There will also be an Art-Science silent auction to raise funding for future Curiosity Collider activities.

Participating performers include:

The July 20, 2016 notice also provides information about date, time, location, and cost,

When
7:30pm on Thursday, August 18th 2016. Join us for drinks and snacks when doors open at 6:30pm.

Where
H. R. MacMillan Space Centre (1100 Chestnut Street, Vancouver, BC)

Cost
$20.00 sliding scale. Proceeds will be used to cover the cost of running this event, and to fund future Curiosity Collider events. Curiosity Collider is a registered BC non-profit organization. Purchase tickets on our Eventbrite page.

Head to the Facebook event page: Let us know you are coming and share this event with others! We will also share event updates and performer profiles on the Facebook page.

There is a pretty poster,

CuriostiytCollider_AugEvent_NeuralConstellations

[downloaded from http://www.curiositycollider.org/events/]

Enjoy!

US White House’s grand computing challenge could mean a boost for research into artificial intelligence and brains

An Oct. 20, 2015 posting by Lynn Bergeson on Nanotechnology Now announces a US White House challenge incorporating nanotechnology, computing, and brain research (Note: A link has been removed),

On October 20, 2015, the White House announced a grand challenge to develop transformational computing capabilities by combining innovations in multiple scientific disciplines. See https://www.whitehouse.gov/blog/2015/10/15/nanotechnology-inspired-grand-challenge-future-computing The Office of Science and Technology Policy (OSTP) states that, after considering over 100 responses to its June 17, 2015, request for information, it “is excited to announce the following grand challenge that addresses three Administration priorities — the National Nanotechnology Initiative, the National Strategic Computing Initiative (NSCI), and the BRAIN initiative.” The grand challenge is to “[c]reate a new type of computer that can proactively interpret and learn from data, solve unfamiliar problems using what it has learned, and operate with the energy efficiency of the human brain.”

Here’s where the Oct. 20, 2015 posting, which originated the news item, by Lloyd Whitman, Randy Bryant, and Tom Kalil for the US White House blog gets interesting,

 While it continues to be a national priority to advance conventional digital computing—which has been the engine of the information technology revolution—current technology falls far short of the human brain in terms of both the brain’s sensing and problem-solving abilities and its low power consumption. Many experts predict that fundamental physical limitations will prevent transistor technology from ever matching these twin characteristics. We are therefore challenging the nanotechnology and computer science communities to look beyond the decades-old approach to computing based on the Von Neumann architecture as implemented with transistor-based processors, and chart a new path that will continue the rapid pace of innovation beyond the next decade.

There are growing problems facing the Nation that the new computing capabilities envisioned in this challenge might address, from delivering individualized treatments for disease, to allowing advanced robots to work safely alongside people, to proactively identifying and blocking cyber intrusions. To meet this challenge, major breakthroughs are needed not only in the basic devices that store and process information and the amount of energy they require, but in the way a computer analyzes images, sounds, and patterns; interprets and learns from data; and identifies and solves problems. [emphases mine]

Many of these breakthroughs will require new kinds of nanoscale devices and materials integrated into three-dimensional systems and may take a decade or more to achieve. These nanotechnology innovations will have to be developed in close coordination with new computer architectures, and will likely be informed by our growing understanding of the brain—a remarkable, fault-tolerant system that consumes less power than an incandescent light bulb.

Recent progress in developing novel, low-power methods of sensing and computation—including neuromorphic, magneto-electronic, and analog systems—combined with dramatic advances in neuroscience and cognitive sciences, lead us to believe that this ambitious challenge is now within our reach. …

This is the first time I’ve come across anything that publicly links the BRAIN initiative to computing, artificial intelligence, and artificial brains. (For my own sake, I make an arbitrary distinction between algorithms [artificial intelligence] and devices that simulate neural plasticity [artificial brains].)The emphasis in the past has always been on new strategies for dealing with Parkinson’s and other neurological diseases and conditions.

Brain-friendly interface to replace neural prosthetics one day?

This research will not find itself occupying anyone’s brain for some time to come but it is interesting to find out that neural prosthetics have some drawbacks and there is work being done to address them. From an Aug. 10, 2015 news item on Azonano,

Instead of using neural prosthetic devices–which suffer from immune-system rejection and are believed to fail due to a material and mechanical mismatch–a multi-institutional team, including Lohitash Karumbaiah of the University of Georgia’s Regenerative Bioscience Center, has developed a brain-friendly extracellular matrix environment of neuronal cells that contain very little foreign material. These by-design electrodes are shielded by a covering that the brain recognizes as part of its own composition.

An Aug. 5, 2015 University of Georgia news release, which originated the news item, describes the new approach and technique in more detail,

Although once believed to be devoid of immune cells and therefore of immune responses, the brain is now recognized to have its own immune system that protects it against foreign invaders.

“This is not by any means the device that you’re going to implant into a patient,” said Karumbaiah, an assistant professor of animal and dairy science in the UGA College of Agricultural and Environmental Sciences. “This is proof of concept that extracellular matrix can be used to ensheathe a functioning electrode without the use of any other foreign or synthetic materials.”

Implantable neural prosthetic devices in the brain have been around for almost two decades, helping people living with limb loss and spinal cord injury become more independent. However, not only do neural prosthetic devices suffer from immune-system rejection, but most are believed to eventually fail because of a mismatch between the soft brain tissue and the rigid devices.

The collaboration, led by Wen Shen and Mark Allen of the University of Pennsylvania, found that the extracellular matrix derived electrodes adapted to the mechanical properties of brain tissue and were capable of acquiring neural recordings from the brain cortex.

“Neural interface technology is literally mind boggling, considering that one might someday control a prosthetic limb with one’s own thoughts,” Karumbaiah said.

The study’s joint collaborators were Ravi Bellamkonda, who conceived the new approach and is chair of the Wallace H. Coulter Department of Biomedical Engineering at the Georgia Institute of Technology and Emory University, as well as Allen, who at the time was director of the Institute for Electronics and Nanotechnology.

“Hopefully, once we converge upon the nanofabrication techniques that would enable these to be clinically translational, this same methodology could then be applied in getting these extracellular matrix derived electrodes to be the next wave of brain implants,” Karumbaiah said.

Currently, one out of every 190 Americans is living with limb loss, according to the National Institutes of Health. There is a significant burden in cost of care and quality of life for people suffering from this disability.

The research team is one part of many in the prosthesis industry, which includes those who design the robotics for the artificial limbs, others who make the neural prosthetic devices and developers who design the software that decodes the neural signal.

“What neural prosthetic devices do is communicate seamlessly to an external prosthesis,” Karumbaiah said, “providing independence of function without having to have a person or a facility dedicated to their care.”

Karumbaiah hopes further collaboration will allow them to make positive changes in the industry, saying that, “it’s the researcher-to-industry kind of conversation that now needs to take place, where companies need to come in and ask: ‘What have you learned? How are the devices deficient, and how can we make them better?'”

Here’s a link to and a citation for the paper,

Extracellular matrix-based intracortical microelectrodes: Toward a microfabricated neural interface based on natural materials by Wen Shen, Lohitash Karumbaiah, Xi Liu, Tarun Saxena, Shuodan Chen, Radhika Patkar, Ravi V. Bellamkonda, & Mark G. Allen. Microsystems & Nanoengineering 1, Article number: 15010 (2015) doi:10.1038/micronano.2015.10

This appears to be an open access paper.

One final note, I have written frequently about prosthetics and neural prosthetics, which you can find by using either of those terms and/or human enhancement. Here’s my latest piece, a March 25, 2015 posting.

Science and music festivals such as Latitude 2015 and some Guerilla Science

Science has been gaining prominence at music festivals in Britain if nowhere else. I wrote about the Glastonbury Festival’s foray into science in a July 12, 2011 posting which featured the Guerilla Science group tent and mentioned other of the festival’s science and technology efforts over the years. More recently, I noticed that Stephen Hawking was scheduled for the 2015 Glastonbury Festival (he had to cancel due to personal reasons).

The 2015 Latitude Festival seems to have more luck with its science-themed events. according to a July 22, 2015 posting by Suzi Gage for the Guardian’s science blogs,

Why do people go to music festivals? When I was 18 years old and heading to Reading festival the answer was very much ‘to listen to Pulp and Beck in a field while drinking overpriced beer and definitely not trying to sneak a hip flask on to the site’. But I’ve grown up since then, and so, it seems, have festivals.

At Latitude this weekend, I probably only watched a handful of bands. Not to say that the musical lineup wasn’t great, but there was so much more on offer that caught my attention. The Wellcome Trust funded a large number of talks, interactive sessions and demos that appeared both in their ‘hub’, a tiny tent on the outskirts of the festival, but also in the Literary Tent at the heart of the festival and at other locations across the site.

The programming of the science content was imaginative, often pairing a scientist with an author who had written on a similar topic. This was effective in that it allowed a discussion, but kept it from becoming too technical or full of jargon.

Dr Robin Carhart-Harris, an expert in psychedelics, was paired with Zoe Cormier, author of ‘Sex Drugs and Rock and Roll’ in the Literary Tent, to discuss the use of psychedelics as ‘medicine for the soul’. [emphasis mine] Robin was very measured in his description of the trials he has been involved with at Imperial College London, being clear that while preliminary findings about psilocybin in treatment-resistant depression might be exciting, there’s a long way to go in such research. Talking about drugs at a festival is always going to be a crowd pleaser, but both Robin and Zoe never sensationalized.

A highlight for me was a session organised by The Psychologist magazine, featuring Professor Sarah-Jayne Blakemore and Fiona Neil, author of The Good Girl. Entitled ‘Being Young Never Gets Old’, it claimed to ‘debunk’ teenagers. …

Gage’s piece is a good read and I find it interesting she makes no comment about a literary tent at a music festival. I don’t know of a music festival in Canada that would feature literature or literature and science together.

Guerilla Science

I highlighted Zoe Cormier’s name as a participant (born in Canada and living in London, England) as she is a founder of Guerilla Science, the group I mentioned earlier with regard to the Glastonbury Festival. A science communicator with some fairly outrageous events under her belt, her and her co-founder’s ‘guerilla’ approach to science is exciting. I mentioned their annual Secret Garden event in a Aug. 1, 2012 posting where they sang and danced the Higgs Boson and otherwise celebrated elementary particles. The 2015 Secret Garden Party featured rest, noise, and neuroscience. (Perhaps it’s not too early to plan attendance at the 2016 Secret Garden Party?) Here’s an excerpt from this year’s lineup found in Louis’ July 15, 2015 posting on the Guerilla Science website,

Friday [July 24, 2015]

….

12:00 – Rest & Noise Shorts

Crash, bang, shush, zzz… four short talks about rest and noise from artist Zach Walker, psychologist Will Lawn and neuroscientists Ed Bracey and Melissa Ellamil.

13.00 Speed, Synapse… Go!

Two teams go head-to-head in a competition to see whose neurotransmitters can move the fastest. What happens when cocaine, marijuana and ketamine are introduced? Join us for some fast and furious neuroscientific gameplay.

15.00 Craft a Connectome

Help us transform the Guerilla Science tent into a giant model brain with a tangle of woolen connections. Neuroscientists Julia Huntenburg and Melissa Ellamil will be on hand to conduct our connectome and coax it into a resting state.

16.00 Sound, Fire and Water

We test out our new toy: a fire organ that visualises sound in flames! Join engineers from Buro Happold and artist Zach Walker as we make fire, water and cornstarch dance and jump to the beat.

Saturday [July 25, 2015]

11.00 Hearing the Voice

Philosopher Sam Wilkinson explores the idea of the brain as a hypothesis testing machine. He asks whether thinking about the mind in this way can help explain mental illness, hallucinations and the voices in our heads.

15.00 – The Unquiet Mind

Hallucinations are our contact with the unreal but are also a window into human nature. Neuroscientist and clinical psychologist Vaughan Bell reveals what they tell us about brain function and the limits of human experience.

Sunday [July 26, 2015]

12.00 Phantom Terrains

Frank Swain and Daniel Jones present their project to listen in to wireless networks. By streaming wi-fi signals to a pair of hearing aids, Frank can hear the changing landscapes of data that silently surround us.

13.00 Rest and Nose

Join chemists Rose Gray and Alex Bour and neuroscientist Ed Bracey to explore the links between relaxation, rest and sense of smell. Create a perfume to lull yourself to sleep, help you unwind and evoke a peaceful place or time.

..

For anyone interested in Guerilla Science, this is their website. They do organize events year round.

Brain data (neuroscience) crowdsourced at Toronto’s (Canada) 2013 Nuit Blanche event

The brain data was crowdsourced in 2013 in Toronto but only recently published according to a July 8, 2015 Baycrest Centre for Geriatric Care news release (also on EurekAlert),

Neuroscientists in Toronto have shown that crowdsourcing brain data with hundreds of adults in a short period of time could be a new frontier in neuroscience and lead to new insights about the brain.

More than 500 adults aged 18 and older participated in the experiment at the 2013 Scotiabank Nuit Blanche arts event in Toronto. Baycrest, in partnership with the University of Toronto and industry partners, created a large-scale art-science installation called My Virtual Dream. Festival-goers were invited to wear a Muse™ wireless electroencephalography (EEG) headband and participate in a brief collective neurofeedback experience in groups of 20 inside a 60-foot geodesic dome. The group’s collective EEG signals triggered a specific catalogue of artistic imagery displayed on the dome’s 360-degree interior, along with spontaneous musical interpretation by live musicians on stage.

The installation was one of the most popular at Nuit Blanche, with an average lineup wait time of two hours.

Studying brains in a social and multi-sensory environment is closer to real life and may help scientists to approach questions of complex real-life social cognition that otherwise are not accessible in traditional labs that study one person’s cognitive functions at a time.

“In traditional lab settings, the environment is so controlled that you can lose some of the fine points of real-time brain activity that occur in a social life setting,” said Dr. Kovacevic, creative producer of My Virtual Dream and program manager of the Centre for Integrative Brain Dynamics at Baycrest’s Rotman Research Institute.

“What we’ve done is taken the lab to the public. We collaborated with multi-media artists, made this experiment incredibly engaging, attracted highly motivated subjects which is not easy to do in the traditional lab setting, and collected useful scientific data from their experience.”

Results from the experiment not only demonstrated the scientific viability of collective neurofeedback as a potential new avenue of neuroscience research that takes into account individuality, complexity and sociability of the human mind, but yielded new evidence that neurofeedback learning can have an effect on the brain almost immediately.

Neurofeedback learning supports mindful awareness and joins a growing market for wearable biofeedback devices. The device used in this study, Muse™, is a clinical-grade EEG brain computer interface (BCI) headband that helps individuals to be more aware of their brain states (relaxed versus focused versus distracted) and learn self-regulation of brain function to fit their personal goals.

A total of 523 adults (209 males, 314 females), ranging in age from 18 to 89, with an average age of 31, contributed their EEG brain data for the study. Each session involved 20 participants being seated in a semicircle in front of a stage and divided into four groups (“pods”) of five. They played a collective neurofeedback computer game where they were required to manipulate their mental states of relaxation and concentration. The neurofeedback training lasted 6.5 minutes, which is much shorter than typical neurofeedback training experiments.

The massive amount of EEG data collected in one night yielded an interesting and statistically relevant finding – that subtle brain activity changes were taking place within approximately one minute of the neurofeedback learning exercise – unprecedented speed of learning changes that have not been demonstrated before.

“These results really open up a whole new domain of neuroscience study that actively engages the public to advance our understanding of the brain,” said Dr. Randy McIntosh, director of the Rotman Research Institute and vice-president of Research at Baycrest. He is a senior author on the paper.

The idea for the Nuit Blanche art -science experiment was inspired by Baycrest’s ongoing international project to build the world’s first functional, virtual brain – a research and diagnostic tool that could one day revolutionize brain healthcare.

Baycrest cognitive neuroscientists collaborated with artists and gaming and wearable technology industry partners for over a year to create the My Virtual Dream installation. Partners included the University of Toronto, Scotiabank Nuit Blanche, Muse™ and Uken Games.

Here’s a link to and a citation for the paper,

‘My Virtual Dream’: Collective Neurofeedback in an Immersive Art Environment by Natasha Kovacevic, Petra Ritter, William Tays, Sylvain Moreno, and Anthony Randal McIntosh. DOI: 10.1371/journal.pone.0130129 PLOS Published: July 8, 2015

This is an open access paper.

A few final words, I last wrote about MUSE (a Canadian technology company) in a March 6, 2015 posting. Uken Games , also a Canadian company, is new to this blog.

Gray Matters volume 2: Integrative Approaches for Neuroscience, Ethics, and Society issued March 2015 by US Presidential Bioethics Commission

The second and final volume in the Grey Matters  set (from the US Presidential Commission for the Study of Bioethical Issues produced in response to a request from President Barack Obama regarding the BRAIN (Brain Research through Advancing Innovative Neurotechnologies) initiative) has just been released.

The formal title of the latest volume is Gray Matters: Topics at the Intersection of Neuroscience, Ethics, and Society, volume two. The first was titled: Gray Matters: Integrative Approaches for Neuroscience, Ethics, and Society, volume one.)

According to volume 2 of the report’s executive summary,

… In its first volume on neuroscience and ethics, Gray Matters: Integrative Approaches for Neuroscience, Ethics, and Society, the Bioethics Commission emphasized the importance of integrating ethics and neuroscience throughout the research endeavor.1 This second volume, Gray Matters: Topics at the Intersection of Neuroscience, Ethics, and Society, takes an in-depth look at three topics at the intersection of neuroscience and society that have captured the public’s attention.

The Bioethics Commission found widespread agreement that contemporary neuroscience holds great promise for relieving human suffering from a number of devastating neurological disorders. Less agreement exists on multiple other topics, and the Bioethics Commission focused on three cauldrons of controversy—cognitive enhancement, consent capacity, and neuroscienceand the legal system. These topics illustrate the ethical tensions and societal implications of advancing neuroscience and technology, and bring into heightened relief many important ethical considerations.

A March 26, 2015 post by David Bruggeman on his Pasco Phronesis blog further describes the 168 pp. second volume of the report,

There are fourteen main recommendations in the report:

Prioritize Existing Strategies to Maintain and Improve Neural Health

Continue to examine and develop existing tools and techniques for brain health

Prioritize Treatment of Neurological Disorders

As with the previous recommendation, it would be valuable to focus on existing means of addressing neurological disorders and working to improve them.

Study Novel Neural Modifiers to Augment or Enhance Neural Function

Existing research in this area is limited and inconclusive.

Ensure Equitable Access to Novel Neural Modifiers to Augment or Enhance Neural Function

Access to cognitive enhancements will need to be handled carefully to avoid exacerbating societal inequities (think the stratified societies of the film Elysium or the Star Trek episode “The Cloud Minders“).

Create Guidance About the Use of Neural Modifiers

Professional societies and expert groups need to develop guidance for health care providers that receive requests for prescriptions for cognitive enhancements (something like an off-label use of attention deficit drugs, beta blockers or other medicines to boost cognition rather than address perceived deficits).

If you don’t have time to look at the 2nd volume, David’s post covers many of the important points.

International Women’s Day March 8, 2015: Pioneering Women of Physics, Science goes to the Movies, and Transistor

In honour of International Women’s Day 2015, here are four items about women and science. The first features Canada’s Perimeter Institute (PI) and a tribute to pioneering women in physics, from a Feb. 26, 2015 PI news release,

They discovered pulsars, found the first evidence of dark matter, pioneered mathematics, radioactivity, nuclear fission, elasticity, and computer programming, and have even stopped light.

Jocelyn Bell Burnell

Rosalind Franklin

Hedy Lamarr

Wu Chien ShiungIt’s a fascinating group of women and these four provide a taste only.

The second item about women in science is also from the Perimeter Institute, which is hosting an ‘Inspiring Future Women in Science’ conference on Friday, May 6, 2015. From the PI program page,

Are you interested in turning your love of science into a career?  Perimeter Institute is inviting female high school students to participate in an inspirational half day conference on Friday March 6, 2015.  The goal is to bring together like minded young women with a strong interest in science and expose them to the rewards, challenges and possibilities of a career in science.

kEYNOTE ADDRESSES

Rima Brek – Rima is a Ubisoft veteran of 16 years and a founding team member of the Toronto studio. There, she was responsible for kick-starting the technology team and helping ship the critically-acclaimed Tom Clancy’s Splinter Cell Blacklist. She is a sought-after advisor whose guidance and leadership have directly helped Ubisoft Toronto grow to over 300 game developers in just five years.

Dianna Cowern – Dianna is a science communicator and educator. She received her degree in physics from MIT and completed a post-baccalaureate fellowship in astrophysics at Harvard. She then worked on mobile applications as a software engineer at General Electric before beginning a position at the University of California, San Diego as a physics outreach coordinator. She is the primary content creator for her educational YouTube channel, Physics Girl.

Roslyn Bern – As president of the Leacross Foundation, Roslyn Bern has been creating opportunities for women and girls throughout Canada. She has worked on initiatives for over 20 years, as an educator, a business woman, and as a philanthropist. She has focused on developing scholarships and bursaries for girls in under-represented career fields. She has been instrumental on sending teenage girls to the Arctic and Antarctic with Students on Ice, and created a partnership with colleges and corporations to certify STEM women in Electrical engineering. …

By the time this piece is posted it will be too late to attend this year’s event but interested parties could plan for next year in Waterloo, Ontario, Canada.

The third item concerns an initiative from the Public Radio Exchange, PRX. Called Transistor; a STEM [science, technology, engineering, and mathematics] audio project. From the series page,

Transistor is a transformative STEM podcast, taking the electricity of a story and channeling it to listeners. Three scientist hosts — a biologist, an astrophysicist, and a neuroscientist — report on conundrums, curiosities, and current events in and beyond their fields. Sprinkled among their episodes are the winners of the STEM Story Project, a competition we held for unique science radio.

Much as the transistor radio was a new technical leap, this Transistor features new women voices and sounds from new science producers.

PRX presents Transistor, applying our storytelling and podcast experience to science. The Sloan Foundation powers Transistor with funding and support. And listeners complete the circuit.

The Feb. 18, 2015 PRX news release offers more details about the hosts and their first podcasts,

PRX is thrilled to announce the launch of a new weekly podcast series Transistor (official press release). Three scientist hosts — a biologist, an astrophysicist, and a neuroscientist — report on conundrums, curiosities, and current events in and beyond their fields. Sprinkled among their episodes are the winners of the PRX STEM Story Project, a competition we held for unique science radio.

Just as the transistor radio was a new technical leap, this Transistor features new women voices and their science perspectives. We’ve launched with four episodes from our three scientist hosts:

  • Dr. Michelle Thaller, an astrophysicist at NASA’s Goddard Space Flight Center, who studies binary stars and the life cycles of the stars.
    • We Are Stardust: We’re closer than ever before to discovering if we’re not alone in the universe. Astrophysicist Michelle Thaller visits the NASA lab that discovered that comets contain some of the very same chemical elements that we contain. Then, Michelle talks to a Vatican planetary scientist about how science and religion can meet on the topic of life beyond Earth.
  • Dr. Christina Agapakis, a biologist and writer based in Los Angeles. Her research focuses on the intersection of microbiology and design, exploring the symbiosis among microbes and biology, technology, and culture.
    • Food, Meet Fungus: The microbiome — the trillions of bacteria, fungi, and viruses that live in and on our body — is hot right now. We explore what we do know in the face of so much hope and hype, starting with food.
  • Dr. Wendy Suzuki, a Professor of Neural Science and Psychology in the Center for Neural Science at New York University, whose research focuses on understanding how our brains form and retain new long-term memories and the effects of aerobic exercise on memory. Her book Healthy Brain, Happy Life will be published by Harper Collins in the Spring of 2015.
    • Totally Cerebral: Untangling the Mystery of Memory: Neuroscientist Wendy Suzuki introduces us to scientists who have uncovered some of the deepest secrets about our brains. She begins by talking with experimental psychologist Brenda Milner [interviewed in her office at McGill University, Montréal, Quebéc], who in the 1950s, completely changed our understanding of the parts of the brain important for forming new long-term memories.
    • Totally Cerebral: The Man Without a Memory: Imagine never being able to form a new long term memory after the age of 27. Welcome to the life of the famous amnesic patient “HM”. Neuroscientist Suzanne Corkin studied HM for almost half a century, and gives us a glimpse of what daily life was like for him, and his tremendous contribution to our understanding of how our memories work.

Each scientist is working with a talented independent producer: Lauren Ober, Julie Burstein, and Kerry Donahue.

Subscribe to the show through iTunes or RSS, or you can stream it on PRX.org.

I listened to all four of the introductory programs which ranged in running time from about 16 mins. to 37 mins. All three hosts are obviously excited about sharing their science stories and I look forward to hearing more from them.

The last item comes from David Bruggeman’s Feb. 20, 2015 post on his Pasco Phronesis blog (Note: A link has been removed),

Science Goes to the Movies is a new program produced by the City University of New York and sponsored by the Alfred P. Sloan Foundation. … The hosts are Faith Salie, a journalist and host you might have heard before as a panelist on Wait Wait…Don’t Tell Me, and Dr. Heather Berlin, a neuroscientist whose research focuses on brain-body relationships and psychological disorders.  (In what makes for a small world, Berlin is married to Canadian rap troubadour Baba Brinkman.) …

Science Goes to the Movies can be found here where you’ll also find a video of the first episode,

Hallucinations and black holes vie for the 2015 Oscar. Co-hosts Faith Salie and Dr. Heather Berlin are joined by AMNH astrophysicist Dr. Emily Rice for a look at the science in three of the top films of the year, Birdman, The Theory of Everything, and Interstellar.

Episode 102 featuring Into the Woods and the Imitation Game will première on March 20, 2015,

Science Goes to the Movies looks at The Imitation Game and Into the Woods. With special guest cryptologist Rosario Gennaro, we discuss pattern recognition in the work of both Alan Turing and Stephen Sondheim.

Science Goes to the Movies is made possible by generous support from the Alfred P. Sloan Foundation.

Kudos to the Alfred P. Sloan foundation for funding two exciting ventures: Transistors and Science Goes to the Movies.

Getting back to where I started: Happy International Women’s Day 2015!

Nanoparticle-based radiogenetics to control brain cells

While the title for this post sounds like an opening for a zombie-themed story, this Oct. 8, 2014 news item on Nanowerk actually concerns brain research at Rockefeller University (US), Note: A link has been removed,

A proposal to develop a new way to remotely control brain cells from Sarah Stanley, a Research Associate in Rockefeller University’s Laboratory of Molecular Genetics, headed by Jeffrey M. Friedman, is among the first to receive funding from the BRAIN initiative. The project will make use of a technique called radiogenetics that combines the use of radio waves or magnetic fields with nanoparticles to turn neurons on or off.

An Oct. 7, 2014 Rockefeller University news release, which originated the news item, further describes the BRAIN initiative and the research (Note: Links have been removed),

The NIH [National Institutes of Health]  is one of four federal agencies involved in the BRAIN (Brain Research through Advancing Innovative Neurotechnologies) initiative. Following in the ambitious footsteps of the Human Genome Project, the BRAIN initiative seeks to create a dynamic map of the brain in action, a goal that requires the development of new technologies. The BRAIN initiative working group, which outlined the broad scope of the ambitious project, was co-chaired by Rockefeller’s Cori Bargmann, head of the Laboratory of Neural Circuits and Behavior.

Stanley’s grant, for $1.26 million over three years, is one of 58 projects to get BRAIN grants, the NIH announced. The NIH’s plan for its part of this national project, which has been pitched as “America’s next moonshot,” calls for $4.5 billion in federal funds over 12 years.

The technology Stanley is developing would enable researchers to manipulate the activity of neurons, as well as other cell types, in freely moving animals in order to better understand what these cells do. Other techniques for controlling selected groups of neurons exist, but her new nanoparticle-based technique has a unique combination of features that may enable new types of experimentation. For instance, it would allow researchers to rapidly activate or silence neurons within a small area of the brain or dispersed across a larger region, including those in difficult-to-access locations. Stanley also plans to explore the potential this method has for use treating patients.

“Francis Collins, director of the NIH, has discussed the need for studying the circuitry of the brain, which is formed by interconnected neurons. Our remote-control technology may provide a tool with which researchers can ask new questions about the roles of complex circuits in regulating behavior,” Stanley says.

Here’s an image that Rockefeller University has used to illustrate the concept of radio-controlled brain cells,

 

BRAIN control: The new technology uses radio waves to activate or silence cells remotely. The bright spots above represent cells with increased calcium after treatment with radio waves, a change that would allow neurons to fire. [downloaded from: http://newswire.rockefeller.edu/2014/10/07/rockefeller-neurobiology-lab-is-awarded-first-round-brain-initiative-grant/]

BRAIN control: The new technology uses radio waves to activate or silence cells remotely. The bright spots above represent cells with increased calcium after treatment with radio waves, a change that would allow neurons to fire. [downloaded from: http://newswire.rockefeller.edu/2014/10/07/rockefeller-neurobiology-lab-is-awarded-first-round-brain-initiative-grant/]

You can find out more about the US BRAIN initiative here.