Tag Archives: neuroscience

Nanoparticle-based radiogenetics to control brain cells

While the title for this post sounds like an opening for a zombie-themed story, this Oct. 8, 2014 news item on Nanowerk actually concerns brain research at Rockefeller University (US), Note: A link has been removed,

A proposal to develop a new way to remotely control brain cells from Sarah Stanley, a Research Associate in Rockefeller University’s Laboratory of Molecular Genetics, headed by Jeffrey M. Friedman, is among the first to receive funding from the BRAIN initiative. The project will make use of a technique called radiogenetics that combines the use of radio waves or magnetic fields with nanoparticles to turn neurons on or off.

An Oct. 7, 2014 Rockefeller University news release, which originated the news item, further describes the BRAIN initiative and the research (Note: Links have been removed),

The NIH [National Institutes of Health]  is one of four federal agencies involved in the BRAIN (Brain Research through Advancing Innovative Neurotechnologies) initiative. Following in the ambitious footsteps of the Human Genome Project, the BRAIN initiative seeks to create a dynamic map of the brain in action, a goal that requires the development of new technologies. The BRAIN initiative working group, which outlined the broad scope of the ambitious project, was co-chaired by Rockefeller’s Cori Bargmann, head of the Laboratory of Neural Circuits and Behavior.

Stanley’s grant, for $1.26 million over three years, is one of 58 projects to get BRAIN grants, the NIH announced. The NIH’s plan for its part of this national project, which has been pitched as “America’s next moonshot,” calls for $4.5 billion in federal funds over 12 years.

The technology Stanley is developing would enable researchers to manipulate the activity of neurons, as well as other cell types, in freely moving animals in order to better understand what these cells do. Other techniques for controlling selected groups of neurons exist, but her new nanoparticle-based technique has a unique combination of features that may enable new types of experimentation. For instance, it would allow researchers to rapidly activate or silence neurons within a small area of the brain or dispersed across a larger region, including those in difficult-to-access locations. Stanley also plans to explore the potential this method has for use treating patients.

“Francis Collins, director of the NIH, has discussed the need for studying the circuitry of the brain, which is formed by interconnected neurons. Our remote-control technology may provide a tool with which researchers can ask new questions about the roles of complex circuits in regulating behavior,” Stanley says.

Here’s an image that Rockefeller University has used to illustrate the concept of radio-controlled brain cells,

 

BRAIN control: The new technology uses radio waves to activate or silence cells remotely. The bright spots above represent cells with increased calcium after treatment with radio waves, a change that would allow neurons to fire. [downloaded from: http://newswire.rockefeller.edu/2014/10/07/rockefeller-neurobiology-lab-is-awarded-first-round-brain-initiative-grant/]

BRAIN control: The new technology uses radio waves to activate or silence cells remotely. The bright spots above represent cells with increased calcium after treatment with radio waves, a change that would allow neurons to fire. [downloaded from: http://newswire.rockefeller.edu/2014/10/07/rockefeller-neurobiology-lab-is-awarded-first-round-brain-initiative-grant/]

You can find out more about the US BRAIN initiative here.

Brains, prostheses, nanotechnology, and human enhancement: summary (part five of five)

The Brain research, ethics, and nanotechnology (part one of five) May 19, 2014 post kicked off a series titled ‘Brains, prostheses, nanotechnology, and human enhancement’ which brings together a number of developments in the worlds of neuroscience, prosthetics, and, incidentally, nanotechnology in the field of interest called human enhancement. Parts one through four are an attempt to draw together a number of new developments, mostly in the US and in Europe. Due to my language skills which extend to English and, more tenuously, French, I can’t provide a more ‘global perspective’.

Now for the summary. Ranging from research meant to divulge more about how the brain operates in hopes of healing conditions such as Parkinson’s and Alzeheimer’s diseases to utilizing public engagement exercises (first developed for nanotechnology) for public education and acceptance of brain research to the development of prostheses for the nervous system such as the Walk Again robotic suit for individuals with paraplegia (and, I expect quadriplegia [aka tetraplegia] in the future), brain research is huge in terms of its impact socially and economically across the globe.

Until now, I have not included information about neuromorphic engineering (creating computers with the processing capabilities of human brains). My May 16, 2014 posting (Wacky oxide. biological synchronicity, and human brainlike computing) features one of the latest developments along with this paragraph providing links to overview materials of the field,

As noted earlier, there are other approaches to creating an artificial brain, i.e., neuromorphic engineering. My April 7, 2014 posting is the most recent synopsis posted here; it includes excerpts from a Nanowerk Spotlight article overview along with a mention of the ‘brain jelly’ approach and a discussion of my somewhat extensive coverage of memristors and a mention of work on nanoionic devices. There is also a published roadmap to neuromorphic engineering featuring both analog and digital devices, mentioned in my April 18, 2014 posting.

There is an international brain (artificial and organic) enterprise underway. Meanwhile, work understanding the brain will lead to new therapies and, inevitably, attempts to enhance intelligence. There are already drugs and magic potions (e.g. oxygenated water in Mental clarity, stamina, endurance — is it in the bottle? Celebrity athletes tout the benefits of oxygenated water, but scientists have their doubts, a May 16,2014 article by Pamela Fayerman for the Vancouver Sun). In a June 19, 2009 posting featured Jamais Cascio’s  speculations about augmenting intelligence in an Atlantic magazine article.

While researchers such Miguel Nicolelis work on exoskeletons (externally worn robotic suits) controlled by the wearer’s thoughts and giving individuals with paraplegia the ability to walk, researchers from one of Germany’s Fraunhofer Institutes reveal a different technology for achieving the same ends. From a May 16, 2014 news item on Nanowerk,

People with severe injuries to their spinal cord currently have no prospect of recovery and remain confined to their wheelchairs. Now, all that could change with a new treatment that stimulates the spinal cord using electric impulses. The hope is that the technique will help paraplegic patients learn to walk again. From June 3 – 5 [2-14], Fraunhofer researchers will be at the Sensor + Test measurement fair in Nürnberg to showcase the implantable microelectrode sensors they have developed in the course of pre-clinical development work (Hall 12, Booth 12-537).

A May 14, 2014 Fraunhofer Institute news release, which originated the news item, provides more details about this technology along with an image of the implantable microelectrode sensors,

The implantable microelectrode sensors are flexible and wafer-thin. © Fraunhofer IMM

The implantable microelectrode sensors are flexible and wafer-thin.
© Fraunhofer IMM

Now a consortium of European research institutions and companies want to get affected patients quite literally back on their feet. In the EU’s [European Union’s] NEUWalk project, which has been awarded funding of some nine million euros, researchers are working on a new method of treatment designed to restore motor function in patients who have suffered severe injuries to their spinal cord. The technique relies on electrically stimulating the nerve pathways in the spinal cord. “In the injured area, the nerve cells have been damaged to such an extent that they no longer receive usable information from the brain, so the stimulation needs to be delivered beneath that,” explains Dr. Peter Detemple, head of department at the Fraunhofer Institute for Chemical Technology’s Mainz branch (IMM) and NEUWalk project coordinator. To do this, Detemple and his team are developing flexible, wafer-thin microelectrodes that are implanted within the spinal canal on the spinal cord. These multichannel electrode arrays stimulate the nerve pathways with electric impulses that are generated by the accompanying by microprocessor-controlled neurostimulator. “The various electrodes of the array are located around the nerve roots responsible for locomotion. By delivering a series of pulses, we can trigger those nerve roots in the correct order to provoke motion sequences of movements and support the motor function,” says Detemple.

Researchers from the consortium have already successfully conducted tests on rats in which the spinal cord had not been completely severed. As well as stimulating the spinal cord, the rats were given a combination of medicine and rehabilitation training. Afterwards the animals were able not only to walk but also to run, climb stairs and surmount obstacles. “We were able to trigger specific movements by delivering certain sequences of pulses to the various electrodes implanted on the spinal cord,” says Detemple. The research scientist and his team believe that the same approach could help people to walk again, too. “We hope that we will be able to transfer the results of our animal testing to people. Of course, people who have suffered injuries to their spinal cord will still be limited when it comes to sport or walking long distances. The first priority is to give them a certain level of independence so that they can move around their apartment and look after themselves, for instance, or walk for short distances without requiring assistance,” says Detemple.

Researchers from the NEUWalk project intend to try out their system on two patients this summer. In this case, the patients are not completely paraplegic, which means there is still some limited communication between the brain and the legs. The scientists are currently working on tailored implants for the intervention. “However, even if both trials are a success, it will still be a few years before the system is ready for the general market. First, the method has to undergo clinical studies and demonstrate its effectiveness among a wider group of patients,” says Detemple.

Patients with Parkinson’s disease could also benefit from the neural prostheses. The most well-known symptoms of the disease are trembling, extreme muscle tremors and a short, [emphasis mine] stooped gait that has a profound effect on patients’ mobility. Until now this neurodegenerative disorder has mostly been treated with dopamine agonists – drugs that chemically imitate the effects of dopamine but that often lead to severe side effects when taken over a longer period of time. Once the disease has reached an advanced stage, doctors often turn to deep brain stimulation. This involves a complex operation to implant electrodes in specific parts of the brain so that the nerve cells in the region can be stimulated or suppressed as required. In the NEUWalk project, researchers are working on electric spinal cord simulation – an altogether less dangerous intervention that should however ease the symptoms of Parkinson’s disease just as effectively. “Initial animal testing has yielded some very promising results,” says Detemple.

(For anyone interested in the NEUWalk project, you can find more here,) Note the reference to Parkinson’s in the context of work designed for people with paraplegia. Brain research and prosthetics (specifically neuroprosthetics or neural prosthetics), are interconnected. As for the nanotechnology connection, in its role as an enabling technology it has provided some of the tools that make these efforts possible. It has also made some of the work in neuromorphic engineering (attempts to create an artificial brain that mimics the human brain) possible. It is a given that research on the human brain will inform efforts in neuromorphic engineering and that attempts will be made to create prostheses for the brain (cyborg brain) and other enhancements.

One final comment, I’m not so sure that transferring approaches and techniques developed to gain public acceptance of nanotechnology are necessarily going to be effective. (Harthorn seemed to be suggesting in her presentation to the Presidential Presidential Commission for the Study of Bioethical Issues that these ‘nano’ approaches could be adopted. Other researchers [Caulfield with the genome and Racine with previous neuroscience efforts] also suggested their experience could be transferred. While some of that is likely true,, it should be noted that some self-interest may be involved as brain research is likely to be a fresh source of funding for social science researchers with experience in nanotechnology and genomics who may be finding their usual funding sources less generous than previously.)

The likelihood there will be a substantive public panic over brain research is higher than it ever was for a nanotechnology panic (I am speaking with the benefit of hindsight re: nano panics). Everyone understands the word, ‘brain’, far fewer understand the word ‘nanotechnology’ which means that the level of interest is lower and people are less likely to get disturbed by an obscure technology. (The GMO panic gained serious traction with the ‘Frankenfood’ branding and when it fused rather unexpectedly with another research story,  stem cell research. In the UK, one can also add the panic over ‘mad cow’ disease or Creutzfeldt-Jakob disease (CJD), as it’s also known, to the mix. It was the GMO and other assorted panics which provided the impetus for much of the public engagement funding for nanotechnology.)

All one has to do in this instance is start discussions about changing someone’s brain and cyborgs and these researchers may find they have a much more volatile situation on their hands. As well, everyone (the general public and civil society groups/activists, not just the social science and science researchers) involved in the nanotechnology public engagement exercises has learned from the experience. In the meantime, pop culture concerns itself with zombies and we all know what they like to eat.

Links to other posts in the Brains, prostheses, nanotechnology, and human enhancement five-part series

Part one: Brain research, ethics, and nanotechnology (May 19, 2014 post)

Part two: BRAIN and ethics in the US with some Canucks (not the hockey team) participating (May 19, 2014)

Part three: Gray Matters: Integrative Approaches for Neuroscience, Ethics, and Society issued May 2014 by US Presidential Bioethics Commission (May 20, 2014)

Part four: Brazil, the 2014 World Cup kickoff, and a mind-controlled exoskeleton (May 20, 2014)

Brazil, the 2014 World Cup kickoff, and a mind-controlled exoskeleton (part four of five)

The Brain research, ethics, and nanotechnology (part one of five) May 19, 2014 post kicked off a series titled ‘Brains, prostheses, nanotechnology, and human enhancement’ which brings together a number of developments in the worlds of neuroscience, prosthetics, and, incidentally, nanotechnology in the field of interest called human enhancement. Parts one through four are an attempt to draw together a number of new developments, mostly in the US and in Europe. Due to my language skills which extend to English and, more tenuously, French, I can’t provide a more ‘global perspective’. Part five features a summary.

Brazil’s World Cup for soccer/football which opens on June 12, 2014 will be the first public viewing of someone with paraplegia demonstrating a mind-controlled exoskeleton (or a robotic suit as it’s sometimes called) by opening the 2014 games with the first kick-off.

I’ve been covering this story since 2011 and, even so, was late to the party as per this May 7, 2014 article by Alejandra Martins for BBC World news online,

The World Cup curtain-raiser will see the first public demonstration of a mind-controlled exoskeleton that will enable a person with paralysis to walk.

If all goes as planned, the robotic suit will spring to life in front of almost 70,000 spectators and a global audience of billions of people.

The exoskeleton was developed by an international team of scientists as part of the Walk Again Project and is the culmination of more than a decade of work for Dr Miguel Nicolelis, a Brazilian neuroscientist based at Duke University in North Carolina. [emphasis mine]

Since November [2013], Dr Nicolelis has been training eight patients at a lab in Sao Paulo, in the midst of huge media speculation that one of them will stand up from his or her wheelchair and deliver the first kick of this year’s World Cup.

“That was the original plan,” the Duke University researcher told the BBC. “But not even I could tell you the specifics of how the demonstration will take place. This is being discussed at the moment.”

Speaking in Portuguese from Sao Paulo, Miguel Nicolelis explained that all the patients are over 20 years of age, with the oldest about 35.

“We started the training in a virtual environment with a simulator. In the last few days, four patients have donned the exoskeleton to take their first steps and one of them has used mental control to kick a ball,” he explained.

The history of Nicolelis’ work is covered here in a series of a posts starting the with an Oct. 5, 2011 post (Advertising for the 21st Century: B-Reel, ‘storytelling’, and mind control; scroll down 2/3 of the way for a reference to Ed Yong’s article where I first learned of Nicolelis).

The work was explored in more depth in a March 16, 2012 posting (Monkeys, mind control, robots, prosthetics, and the 2014 World Cup (soccer/football) and then followed up a year later by two posts which link Nicoleliis’ work with the Brain Activity Map (now called, BRAIN [Brain Research through Advancing Innovative Neurotechnologies] initiative: a March 4, 2013 (Brain-to-brain communication, organic computers, and BAM [brain activity map], the connectome) and a March 8,  2013 post (Prosthetics and the human brain) directly linking exoskeleton work in Holland and the project at Duke with current brain research and the dawning of a new relationship to one’s prosthestics,

On the heels of research which suggests that humans tend to view their prostheses, including wheel chairs, as part of their bodies, researchers in Europe  have announced the development of a working exoskeleton powered by the wearer’s thoughts.

Getting back to Brazil and Nicolelis’ technology, Ian Sample offers an excellent description in an April 1, 2014 article for the Guardian (Note: Links have been removed),

The technology in question is a mind-controlled robotic exoskeleton. The complex and conspicuous robotic suit, built from lightweight alloys and powered by hydraulics, has a simple enough function. When a paraplegic person straps themselves in, the machine does the job that their leg muscles no longer can.

The exoskeleton is the culmination of years of work by an international team of scientists and engineers on the Walk Again project. The robotics work was coordinated by Gordon Cheng at the Technical University in Munich, and French researchers built the exoskeleton. Nicolelis’s team focused on ways to read people’s brain waves, and use those signals to control robotic limbs.

To operate the exoskeleton, the person is helped into the suit and given a cap to wear that is fitted with electrodes to pick up their brain waves. These signals are passed to a computer worn in a backpack, where they are decoded and used to move hydraulic drivers on the suit.

The exoskeleton is powered by a battery – also carried in the backpack – that allows for two hours of continuous use.

“The movements are very smooth,” Nicolelis told the Guardian. “They are human movements, not robotic movements.”

Nicolelis says that in trials so far, his patients seem have taken to the exoskeleton. “This thing was made for me,” one patient told him after being strapped into the suit.

The operator’s feet rest on plates which have sensors to detect when contact is made with the ground. With each footfall, a signal shoots up to a vibrating device sewn into the forearm of the wearer’s shirt. The device seems to fool the brain into thinking that the sensation came from their foot. In virtual reality simulations, patients felt that their legs were moving and touching something.

Sample’s article includes a good schematic of the ‘suit’ which I have not been able to find elsewhere (meaning the Guardian likely has a copyright for the schematic and is why you won’t see it here) and speculation about robotics and prosthetics in the future.

Nicolelis and his team have a Facebook page for the Walk Again Project where you can get some of the latest information with  both English and Portuguese language entries as they prepare for the June 12, 2014 kickoff.

One final thought, this kickoff project represents an unlikely confluence of events. After all, what are the odds

    • that a Brazil-born researcher (Nicolelis) would be working on a project to give paraplegics the ability to walk again? and
    • that Brazil would host the World Cup in 2014 (the first time since 1950)? and
    • that the timing would coincide so a public demonstration at one of the world’s largest athletic events (of a sport particularly loved in Brazil) could be planned?

It becomes even more extraordinary when one considers that Brazil had isolated itself somewhat in the 1980s with a policy of nationalism vis à vis the computer industry (from the Brazil Science and Technology webpage on the ITA website),

In the early 1980s, the policy of technological nationalism and self-sufficiency had narrowed to the computer sector, where protective legislation tried to shield the Brazilian mini- and microcomputer industries from foreign competition. Here again, the policy allowed for the growth of local industry and a few well-qualified firms, but the effect on the productive capabilities of the economy as a whole was negative; and the inability to follow the international market in price and quality forced the policy to be discontinued.

For those who may have forgotten, the growth of the computer industry (specifically personal computers) in the 1980s figured hugely in a country’s economic health and, in this case,with  a big negative impact in Brazil.

Returning to 2014, the kickoff in Brazil (if successful) symbolizes more than an international athletic competition or a technical/medical achievement, this kick-off symbolizes a technological future for Brazil and its place on the world stage (despite the protests and social unrest) .

Links to other posts in the Brains, prostheses, nanotechnology, and human enhancement five-part series

Part one: Brain research, ethics, and nanotechnology (May 19, 2014 post)

Part two: BRAIN and ethics in the US with some Canucks (not the hockey team) participating (May 19, 2014)

Part three: Gray Matters: Integrative Approaches for Neuroscience, Ethics, and Society issued May 2014 by US Presidential Bioethics Commission (May 20, 2014)

Part five: Brains, prostheses, nanotechnology, and human enhancement: summary (May 20, 2014)

ETA June 16, 2014: The kickoff seems to have been a disappointment (June 15, 2014 news item on phys.org) and for those who might be interested in some of the reasons for the World Cup unrest and protests in Brazil, John Oliver provides an excoriating overview of the organization which organizes the World Cup games while professing his great love of the games, http://www.youtube.com/watch?v=DlJEt2KU33I

Gray Matters: Integrative Approaches for Neuroscience, Ethics, and Society issued May 2014 by US Presidential Bioethics Commission (part three of five)

The Brain research, ethics, and nanotechnology (part one of five) May 19, 2014 post kicked off a series titled ‘Brains, prostheses, nanotechnology, and human enhancement’ which brings together a number of developments in the worlds of neuroscience, prosthetics, and, incidentally, nanotechnology in the field of interest called human enhancement. Parts one through four are an attempt to draw together a number of new developments, mostly in the US and in Europe. Due to my language skills which extend to English and, more tenuously, French, I can’t provide a more ‘global perspective’. Part five features a summary.

A May 14, 2014 news release on EurekAlert announced the release of volume 1 (in a projected 2-volume series) from the US Presidential Commission for the Study of Bioethical Issues in response to a request from President Barack Obama regarding the BRAIN (Brain Research through Advancing Innovative Neurotechnologies) initiative,

Bioethics commission plays early role in BRAIN Initiative
Calls for integrating ethics explicitly throughout neuroscience research ‘Everyone benefits when the emphasis is on integration, not intervention’

Washington, DC— Calling for the integration of ethics across the life of neuroscientific research endeavors, the Presidential Commission for the Study of Bioethical Issues (Bioethics Commission) released volume one of its two-part response to President Obama’s request related to the Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative. The report, Gray Matters: Integrative Approaches for Neuroscience, Ethics, and Society, includes four recommendations for institutions and individuals engaged in neuroscience research including government agencies and other funders.

You can find volume one: Gray Matters: Integrative Approaches for Neuroscience, Ethics, and Society here. For those who prefer the short story, here’s more from the news release,

“Neurological conditions—which include addiction, chronic pain, dementia, depression, epilepsy, multiple sclerosis, Parkinson’s disease, schizophrenia, stroke, and traumatic brain injury, among other conditions—affect more than one billion people globally. Neuroscience has begun to make important breakthroughs, but given the complexity of the brain, we must better understand it in order to make desired progress,” said Amy Gutmann, Ph.D., Bioethics Commission Chair. “But because research on our brains strikes at the very core of who we are, the ethical stakes of neuroscience research could not be higher. Ethicists and scientists should be together at the table in the earliest stages of research planning fostering a fluent two-way conversation. Too often in our nation’s past, ethical lapses in research have had tragic consequences and derailed scientific progress.”

President Obama asked the Bioethics Commission to play a critical role in ensuring that neuroscientific investigational methods and protocols are consistent with sound ethical principles and practices. Specifically the President asked the Bioethics Commission to “identify proactively a set of core ethical standards – both to guide neuroscience research and to address some of the ethical dilemmas that may be raised by the application of neuroscience research findings.”

“Our rapidly advancing knowledge of the nervous system – and ability to detect disease sometimes even before symptoms begin – has not yet led to much needed breakthroughs in treatment, repair, and prevention; the BRAIN initiative will hopefully accelerate the trajectory of discoveries against terrible neurologic maladies,” Commission Member and neuroimmunologist Stephen Hauser, M.D., said.

In its report the Bioethics Commission noted that when facing the promise of neuroscience, we are compelled to consider carefully scientific advances that have the potential to alter our conception of the very private and autonomous nature of self. Our understanding of the mind, our private thoughts, and our volition necessitates careful reflection about the scientific, societal, and ethical aspects of neuroscience endeavors. Integrating ethics explicitly and systematically into the relatively new field of contemporary neuroscience allows us to incorporate ethical insights into the scientific process and to consider societal implications of neuroscience research from the start. Early ethics integration can prevent the need for corrective interventions resulting from ethical mishaps that erode public trust in science.

“In short, everyone benefits when the emphasis is on integration, not intervention,” Gutmann said. “Ethics in science must not come to the fore for the first time after something has gone wrong. An essential step is to include expert ethicists in the BRAIN Initiative advisory and review bodies.”

Recommendations

In its report the Bioethics Commission noted that although ethics is already integrated into science in various ways, more explicit and systematic integration serves to elucidate implicit ethical judgments and allows their merits to be assessed more thoughtfully. The Commission offered four recommendations.

  1. Integrate ethics early and explicitly throughout research: Institutions and individuals engaged in neuroscience research should integrate ethics across the life of a research endeavor, identifying the key ethical questions associated with their research and taking immediate steps to make explicit their systems for addressing those questions. Sufficient resources should be dedicated to support ethics integration. Approaches to ethics integration discussed by the Bioethics Commission include:a. Implementing ethics education at all levels
    b. Developing institutional infrastructure to facilitate integration
    c. Researching the ethical, legal, and social implications of scientific research
    d. Providing research ethics consultation services
    e. Engaging with stakeholders
    f. Including an ethics perspective on the research team
  2. Evaluate existing and innovative approaches to ethics integration: Government agencies and other research funders should initiate and support research that evaluates existing as well as innovative approaches to ethics integration. Institutions and individuals engaged in neuroscience research should take into account the best available evidence for what works when implementing, modifying, or improving systems for ethics integration.
  3. Integrate ethics and science through education at all levels: Government agencies and other research funders should initiate and support research that develops innovative models and evaluates existing and new models for integrating ethics and science through education at all levels.
  4. Explicitly include ethical perspectives on advisory and review bodies: BRAIN Initiative-related scientific advisory and funding review bodies should include substantive participation by persons with relevant expertise in the ethical and societal implications of the neuroscience research under consideration.

Next the Bioethics Commission will consider the ethical and societal implications of neuroscience research and its applications more broadly – ethical implications that a strongly integrated research and ethics infrastructure will be well equipped to address, and that myriad stakeholders, including scientists, ethicists, educators, public and private funders, advocacy organizations, and the public should be prepared to handle.

Gray Matters: Integrative Approaches for Neuroscience, Ethics, and Society is the Bioethics Commission’s seventh report. The Commission seeks to identify and promote policies and practices that ensure that scientific research, health care delivery, and technological innovation are conducted by the United States in a socially and ethically responsible manner. The Commission is an independent, deliberative panel of thoughtful experts that advises the President and the Administration, and, in so doing, educates the nation on bioethical issues. To date the Commission has:

  • Advised the White House on the benefits and risks of synthetic biology;
  • Completed an independent historical overview and ethical analysis of the U.S. Public Health Service STD experiments in Guatemala in the 1940s;
  • Assessed the rules that currently protect human participants in research;
  • Examined the pressing privacy concerns raised by the emergence and increasing use of whole genome sequencing;
  • Conducted a thorough review of the ethical considerations of conducting clinical trials of medical countermeasures with children, including the ethical considerations involved in conducting a pre-and post-event study of anthrax vaccine adsorbed for post-exposure prophylaxis with children; and
  • Offered ethical analysis and recommendations for clinicians, researchers, and direct-to-consumer testing companies on how to manage the increasingly common issue of incidental and secondary findings.

David Bruggeman offers a few thoughts on this volume of the series in a May 14, 2014 posting on his Pasco Phronesis blog,

Of specific application to the BRAIN Initiative is the need to include professionals with expertise in ethics in advisory boards and similar entities conducting research in this area.

Volume Two will focus more on the social and ethical implications of neuroscience research,  …

While it’s not mentioned in the news release, human enhancement is part of the discussion as per the hearing in February 2014. Perhaps it will be mentioned in volume two? Here’s an early post (July 27, 2009) I wrote in 2009 on human enhancement which provides some information about a then recent European Parliament report on the subject. The post was part of a series.

Links to other posts in the Brains, prostheses, nanotechnology, and human enhancement five-part series

Part one: Brain research, ethics, and nanotechnology (May 19, 2014 post)

Part two: BRAIN and ethics in the US with some Canucks (not the hockey team) participating (May 19, 2014)

Part four: Brazil, the 2014 World Cup kickoff, and a mind-controlled exoskeleton (May 20, 2014)

Part five: Brains, prostheses, nanotechnology, and human enhancement: summary (May 20, 2014)

BRAIN and ethics in the US with some Canucks (not the hockey team) participating (part two of five)

The Brain research, ethics, and nanotechnology (part one of five) May 19, 2014 post kicked off a series titled ‘Brains, prostheses, nanotechnology, and human enhancement’ which brings together a number of developments in the worlds of neuroscience*, prosthetics, and, incidentally, nanotechnology in the field of interest called human enhancement. Parts one through four are an attempt to draw together a number of new developments, mostly in the US and in Europe. Due to my language skills which extend to English and, more tenuously, French, I can’t provide a more ‘global perspective’. Part five features a summary.

Before further discussing the US Presidential Commission for the Study of Bioethical Issues ‘brain’ meetings mentioned in part one, I have some background information.

The US launched its self-explanatory BRAIN (Brain Research through Advancing Innovative Neurotechnologies) initiative (originally called BAM; Brain Activity Map) in 2013. (You can find more about the history and details in this Wikipedia entry.)

From the beginning there has been discussion about how nanotechnology will be of fundamental use in the US BRAIN initiative and the European Union’s 10 year Human Brain Project (there’s more about that in my Jan. 28, 2013 posting). There’s also a 2013 book (Nanotechnology, the Brain, and the Future) from Springer, which, according to the table of contents, presents an exciting (to me) range of ideas about nanotechnology and brain research,

I. Introduction and key resources

1. Nanotechnology, the brain, and the future: Anticipatory governance via end-to-end real-time technology assessment by Jason Scott Robert, Ira Bennett, and Clark A. Miller
2. The complex cognitive systems manifesto by Richard P. W. Loosemore
3. Analysis of bibliometric data for research at the intersection of nanotechnology and neuroscience by Christina Nulle, Clark A. Miller, Harmeet Singh, and Alan Porter
4. Public attitudes toward nanotechnology-enabled human enhancement in the United States by Sean Hays, Michael Cobb, and Clark A. Miller
5. U.S. news coverage of neuroscience nanotechnology: How U.S. newspapers have covered neuroscience nanotechnology during the last decade by Doo-Hun Choi, Anthony Dudo, and Dietram Scheufele
6. Nanoethics and the brain by Valerye Milleson
7. Nanotechnology and religion: A dialogue by Tobie Milford

II. Brain repair

8. The age of neuroelectronics by Adam Keiper
9. Cochlear implants and Deaf culture by Derrick Anderson
10. Healing the blind: Attitudes of blind people toward technologies to cure blindness by Arielle Silverman
11. Ethical, legal and social aspects of brain-implants using nano-scale materials and techniques by Francois Berger et al.
12. Nanotechnology, the brain, and personal identity by Stephanie Naufel

III. Brain enhancement

13. Narratives of intelligence: the sociotechnical context of cognitive enhancement by Sean Hays
14. Towards responsible use of cognitive-enhancing drugs by the healthy by Henry T. Greeley et al.
15. The opposite of human enhancement: Nanotechnology and the blind chicken debate by Paul B. Thompson
16. Anticipatory governance of human enhancement: The National Citizens’ Technology Forum by Patrick Hamlett, Michael Cobb, and David Guston
a. Arizona site report
b. California site report
c. Colorado site reportd. Georgia site report
e. New Hampshire site report
f. Wisconsin site report

IV. Brain damage

17. A review of nanoparticle functionality and toxicity on the central nervous system by Yang et al.
18. Recommendations for a municipal health and safety policy for nanomaterials: A Report to the City of Cambridge City Manager by Sam Lipson
19. Museum of Science Nanotechnology Forum lets participants be the judge by Mark Griffin
20. Nanotechnology policy and citizen engagement in Cambridge, Massachusetts: Local reflexive governance by Shannon Conley

Thanks to David Bruggeman’s May 13, 2014 posting on his Pasco Phronesis blog, I stumbled across both a future meeting notice and documentation of the  Feb. 2014 meeting of the Presidential Commission for the Study of Bioethical Issues (Note: Links have been removed),

Continuing from its last meeting (in February 2014), the Presidential Commission for the Study of Bioethical Issues will continue working on the BRAIN (Brain Research through Advancing Innovative Neurotechnologies) Initiative in its June 9-10 meeting in Atlanta, Georgia.  An agenda is still forthcoming, …

In other developments, Commission staff are apparently going to examine some efforts to engage bioethical issues through plays.  I’d be very excited to see some of this happen during a Commission meeting, but any little bit is interesting.  The authors of these plays, Karen H. Rothenburg and Lynn W. Bush, have published excerpts in their book The Drama of DNA: Narrative Genomics.  …

The Commission also has a YouTube channel …

Integrating a theatrical experience into the reams of public engagement exercises that technologies such as stem cell, GMO (genetically modified organisms), nanotechnology, etc. tend to spawn seems a delightful idea.

Interestingly, the meeting in June 2014 will coincide with the book’s release date. I dug further and found these snippets of information. The book is being published by Oxford University Press and is available in both paperback and e-book formats. The authors are not playwrights, as one might assume. From the Author Information page,

Lynn Bush, PhD, MS, MA is on the faculty of Pediatric Clinical Genetics at Columbia University Medical Center, a faculty associate at their Center for Bioethics, and serves as an ethicist on pediatric and genomic advisory committees for numerous academic medical centers and professional organizations. Dr. Bush has an interdisciplinary graduate background in clinical and developmental psychology, bioethics, genomics, public health, and neuroscience that informs her research, writing, and teaching on the ethical, psychological, and policy challenges of genomic medicine and clinical research with children, and prenatal-newborn screening and sequencing.

Karen H. Rothenberg, JD, MPA serves as Senior Advisor on Genomics and Society to the Director, National Human Genome Research Institute and Visiting Scholar, Department of Bioethics, Clinical Center, National Institutes of Health. She is the Marjorie Cook Professor of Law, Founding Director, Law & Health Care Program and former Dean at the University of Maryland Francis King Carey School of Law and Visiting Professor, Johns Hopkins Berman Institute of Bioethics. Professor Rothenberg has served as Chair of the Maryland Stem Cell Research Commission, President of the American Society of Law, Medicine and Ethics, and has been on many NIH expert committees, including the NIH Recombinant DNA Advisory Committee.

It is possible to get a table of contents for the book but I notice not a single playwright is mentioned in any of the promotional material for the book. While I like the idea in principle, it seems a bit odd and suggests that these are purpose-written plays. I have not had good experiences with purpose-written plays which tend to be didactic and dull, especially when they’re not devised by a professional storyteller.

You can find out more about the upcoming ‘bioethics’ June 9 – 10, 2014 meeting here.  As for the Feb. 10 – 11, 2014 meeting, the Brain research, ethics, and nanotechnology (part one of five) May 19, 2014 post featured Barbara Herr Harthorn’s (director of the Center for Nanotechnology in Society at the University of California at Santa Barbara) participation only.

It turns out, there are some Canadian tidbits. From the Meeting Sixteen: Feb. 10-11, 2014 webcasts page, (each presenter is featured in their own webcast of approximately 11 mins.)

Timothy Caulfield, LL.M., F.R.S.C., F.C.A.H.S.

Canada Research Chair in Health Law and Policy
Professor in the Faculty of Law
and the School of Public Health
University of Alberta

Eric Racine, Ph.D.

Director, Neuroethics Research Unit
Associate Research Professor
Institut de Recherches Cliniques de Montréal
Associate Research Professor,
Department of Medicine
Université de Montréal
Adjunct Professor, Department of Medicine and Department of Neurology and Neurosurgery,
McGill University

It was a surprise to see a couple of Canucks listed as presenters and I’m grateful that the Presidential Commission for the Study of Bioethical Issues is so generous with information. in addition to the webcasts, there is the Federal Register Notice of the meeting, an agenda, transcripts, and presentation materials. By the way, Caulfield discussed hype and Racine discussed public understanding of science with regard to neuroscience both fitting into the overall theme of communication. I’ll have to look more thoroughly but it seems to me there’s no mention of pop culture as a means of communicating about science and technology.

Links to other posts in the Brains, prostheses, nanotechnology, and human enhancement five-part series:

Part one: Brain research, ethics, and nanotechnology (May 19, 2014 post)

Part three: Gray Matters: Integrative Approaches for Neuroscience, Ethics, and Society issued May 2014 by US Presidential Bioethics Commission (May 20, 2014)

Part four: Brazil, the 2014 World Cup kickoff, and a mind-controlled exoskeleton (May 20, 2014)

Part five: Brains, prostheses, nanotechnology, and human enhancement: summary (May 20, 2014)

* ‘neursocience’ corrected to ‘neuroscience’ on May 20, 2014.

Two bits about the brain: fiction affects your brain and the US’s BRAIN Initiative is soliciting grant submissions

As a writer I love to believe my words have a lasting impact and while this research is focused on fiction, something I write more rarely than nonfiction, hope springs eternal that one day nonfiction too will be proved as having an impact (in a good way) on the brain. From a Jan. 3, 2014 news release on EurekAlert (or you can read the Dec. 17, 2013 Emory University news release by Carol Clark),

Many people can recall reading at least one cherished story that they say changed their life. Now researchers at Emory University have detected what may be biological traces related to this feeling: Actual changes in the brain that linger, at least for a few days, after reading a novel.

“Stories shape our lives and in some cases help define a person,” says neuroscientist Gregory Berns, lead author of the study and the director of Emory’s Center for Neuropolicy. “We want to understand how stories get into your brain, and what they do to it.”

His co-authors included Kristina Blaine and Brandon Pye from the Center for Neuropolicy, and Michael Prietula from Emory’s Goizueta Business School.

Neurobiological research using functional magnetic resonance imaging (fMRI) has begun to identify brain networks associated with reading stories. Most previous studies have focused on the cognitive processes involved in short stories, while subjects are actually reading them while they are in the fMRI scanner.

All of the study subjects read the same novel, “Pompeii,” a 2003 thriller by Robert Harris that is based on the real-life eruption of Mount Vesuvius in ancient Italy.

“The story follows a protagonist, who is outside the city of Pompeii and notices steam and strange things happening around the volcano,” Berns says. “He tries to get back to Pompeii in time to save the woman he loves. Meanwhile, the volcano continues to bubble and nobody in the city recognizes the signs.”

The researchers chose the book due to its page-turning plot. “It depicts true events in a fictional and dramatic way,” Berns says. “It was important to us that the book had a strong narrative line.”

For the first five days, the participants came in each morning for a base-line fMRI scan of their brains in a resting state. Then they were fed nine sections of the novel, about 30 pages each, over a nine-day period. They were asked to read the assigned section in the evening, and come in the following morning. After taking a quiz to ensure they had finished the assigned reading, the participants underwent an fMRI scan of their brain in a non-reading, resting state. After completing all nine sections of the novel, the participants returned for five more mornings to undergo additional scans in a resting state.

The results showed heightened connectivity in the left temporal cortex, an area of the brain associated with receptivity for language, on the mornings following the reading assignments. “Even though the participants were not actually reading the novel while they were in the scanner, they retained this heightened connectivity,” Berns says. “We call that a ‘shadow activity,’ almost like a muscle memory.”

Heightened connectivity was also seen in the central sulcus of the brain, the primary sensory motor region of the brain. Neurons of this region have been associated with making representations of sensation for the body, a phenomenon known as grounded cognition. Just thinking about running, for instance, can activate the neurons associated with the physical act of running.

“The neural changes that we found associated with physical sensation and movement systems suggest that reading a novel can transport you into the body of the protagonist,” Berns says. “We already knew that good stories can put you in someone else’s shoes in a figurative sense. Now we’re seeing that something may also be happening biologically.”

The neural changes were not just immediate reactions, Berns says, since they persisted the morning after the readings, and for the five days after the participants completed the novel.

“It remains an open question how long these neural changes might last,” Berns says. “But the fact that we’re detecting them over a few days for a randomly assigned novel suggests that your favorite novels could certainly have a bigger and longer-lasting effect on the biology of your brain.”

Here’s a link to and a citation for the paper,

Short- and Long-Term Effects of a Novel on Connectivity in the Brain by Gregory S. Berns, Kristina Blaine, Michael J. Prietula, and Brandon E. Pye. Brain Connectivity. 2013, 3(6): 590-600. doi:10.1089/brain.2013.0166.

This is an open access paper where you’ll notice the participants cover a narrow range of ages (from the Materials and Methods section of the paper,

A total of 21 participants were studied. Two were excluded from the fMRI analyses: one for insufficient attendance, and the other for image abnormalities. Before the experiment, participants were screened for the presence of medical and psychiatric diagnoses, and none were taking medications. There were 12 female and 9 male participants between the ages of 19 and 27 (mean 21.5). Emory University’s Institutional Review Board approved all procedures, and all participants gave written informed consent.

It’s always good to remember that university research often draws from student populations and the question one might want to ask is whether or not those results will remain the same, more or less, throughout someone’s life span.In any event, I find this research intriguing and hope they follow this up.

Currently known as the BRAIN (Brain Research through Advancing Innovative Neurotechnologies), I first wrote about the project under its old name BAM (Brain Activity Map) in two postings, first in a March 4, 2013 posting featuring brain-to-brain communication and other brain-related tidbits, then again, in an April 2, 2013 posting featuring an announcement about its federal funding. Today (Jan. 6, 2014), I stumbled across some BRAIN funding opportunities for researchers, from the BRAIN Initiative funding opportunities webpage,

NIH released six funding opportunity announcements in support of the President’s BRAIN Initiative. Collectively, these opportunities focus on building a new arsenal of tools and technologies for helping scientists unlock the mysteries of the brain. NIH [US National Institutes of Health] plans to invest $40 million in Fiscal Year 2014 through these opportunities, contingent upon the submission of a sufficient number of scientifically meritorious applications.

The opportunities currently available are as follows:

For the interested, in the near future there will be some informational conference calls regarding these opportunities,

Informational Conference Calls for Prospective Applicants

NIH will be hosting a series of informational conference calls to address technical questions regarding applications to each of the RFAs released under the BRAIN Initiative.   Information on dates and contacts for each of the conference calls is as follows:

January 10, 2014, 2:00-3:00 PM EST
RFA-MH-14-215, Transformative Approaches for Cell-Type Classification in the Brain

For call-in information, contact Andrea Beckel-Mitchener at [email protected].

January 13, 2014, 2:00-3:00 PM EST
RFA-MH-14-216, Development and Validation of Novel Tools to Analyze Cell-Specific and Circuit-Specific Processes in the Brain

For call-in information, contact Michelle Freund at [email protected].

January 15, 2014, 1:00-2:00 PM EST
RFA-MH-14-217, Planning for Next Generation Human Brain Imaging

For call-in information, contact Greg Farber at [email protected].

February 4, 2014, 1:00-2:30 PM EST
RFA-NS-14-007, New Technologies and Novel Approaches for Large-Scale Recording and Modulation in the Nervous System
RFA-NS-14-008, Optimization of Transformative Technologies for Large Scale Recording and Modulation in the Nervous System
RFA-NS-14-009, Integrated Approaches to Understanding Circuit Function in the Nervous System

For call-in information, contact Karen David at [email protected].
In addition to accessing the information provided in the upcoming conference calls, applicants are strongly encouraged to consult with the Scientific/Research Contacts listed in each of the RFAs to discuss the alignment of their proposed work with the goals of the RFA to which they intend to apply.

Good luck!

It’s kind of fascinating to see this much emphasis on brains what with the BRAIN Initiative in the US and the Human Brain Project in Europe (my Jan. 28, 2013 posting announcing the European Union’s winning Future and Emerging Technologies (FET) research projects, The prizes (1B Euros to be paid out over 10 years to each winner) had been won by the Human Brain FET project and the Graphene FET project, respectively

Putting a new spin on it: Whirling Dervishes and physics and ballet dancers and neuroscience

Many years ago I was dragged to a movie about J. Krishnamurti (a philosopher and spiritual teacher; there’s more in this Wikipedia essay) which, for some reason, featured Whirling Dervishes amongst many other topics. Watching those dervishes was hypnotic and I now find out it was also an experience in physics, according to a Nov. 26, 2013 news item on ScienceDaily,

A force that intricately links the rotation of the Earth with the direction of weather patterns in the atmosphere has been shown to play a crucial role in the creation of the hypnotic patterns created by the skirts of the Whirling Dervishes.

This is according to an international group of researchers who have demonstrated how the Coriolis force is essential for creating the archetypal, and sometimes counterintuitive, patterns that form on the surface of the Whirling Dervishes skirts by creating a set of very simple equations which govern how fixed or free-flowing cone-shaped structures behave when rotating.

The Nov. 26, 2013 Institute of Physics (IOP) news release on EurekAlert (also on the IOP website but dated Nov. 27, 2013), which originated the news item, gives an explanation of Whirling Dervishes and describes the research further,

The Whirling Dervishes, who have become a popular tourist attraction in Turkey, are a religious movement who commemorate the 13th-century Persian poet, Rumi, by spinning on the spot and creating mesmerising patterns with their long skirts. A YouTube video of the Whirling Dervishes in action can be viewed here: https://www.youtube.com/watch?v=L_Cf-ZxDfZA.

Co-author of the study James Hanna, from Virginia Polytechnic Institute and State University, said: “The dancers don’t do much but spin around at a fixed speed, but their skirts show these very striking, long-lived patterns with sharp cusp-like features which seem rather counterintuitive.”

Hanna, along with Jemal Guven at the Universidad Nacional Autónoma de México and Martin Michael Müller at Université de Lorraine, found that it was the presence of a Coriolis force that was essential in the formation of the different patterns.

The Coriolis effect accounts for the deflection of objects on a rotating surface and is most commonly encountered when looking at the Earth’s rotations and its effect on the atmosphere around it. The rotation of the Earth creates the Coriolis force which causes winds to be deflected clockwise in the Northern Hemisphere and anti-clockwise in the Southern Hemisphere – it is this effect which is responsible for the rotation of cyclones.

“Because the sheet is conically symmetric, material can flow along its surface without stretching or deforming. You can think of the rotating Earth, for example, with the air of the atmosphere free to flow around it.

“The flow of a sheet of material is much more restrictive than the flow of the atmosphere, but nonetheless it results in Coriolis forces. What we found was that this flow, and the associated Coriolis forces, plays a crucial role in forming the dervish-like patterns,” Hanna continued.

By providing a basic mathematical description of the spinning skirts of the Dervishes, the researchers hope their future research will discern how different patterns are selected, how stable these patterns are and if gravity or any other effects make a qualitative difference.

The news release notes,

The equations, which have been published today, 27 November,[2013], in the Institute of Physics and German Physical Society’s New Journal of Physics, were able to reproduce the sharp peaks and gentle troughs that appear along the flowing surface of the Dervishes’ skirts and showed a significant resemblance to real-life images.

Here’s a link to and a citation for the paper,

Whirling skirts and rotating cones by Jemal Guven, J A Hanna, and Martin Michael Müller. New Journal of Physics Volume 15 November 2013 doi:10.1088/1367-2630/15/11/113055  Published 26 November 2013

© IOP Publishing and Deutsche Physikalische Gesellschaft

This paper is open access.

While the Whirling Dervishes and the fabric in their clothing provide insights into aspects of physics, ballet dancers are providing valuable information to neuroscientists and geriatric specialists with pirouettes, according to a Sept. 26, 2013 news item on ScienceDaily,

Scientists have discovered differences in the brain structure of ballet dancers that may help them avoid feeling dizzy when they perform pirouettes.

The research suggests that years of training can enable dancers to suppress signals from the balance organs in the inner ear.

The findings, published in the journal Cerebral Cortex, could help to improve treatment for patients with chronic dizziness. Around one in four people experience this condition at some time in their lives.

The Imperial College of London (ICL) Sept. 26, 2013 news release on EurekAlert (also on the ICL website but dated Sept. 27, 2013), which originated the news item, describes dizziness, this research, and ballet dancers’ unique brains in more detail,

Normally, the feeling of dizziness stems from the vestibular organs in the inner ear. These fluid-filled chambers sense rotation of the head through tiny hairs that sense the fluid moving. After turning around rapidly, the fluid continues to move, which can make you feel like you’re still spinning.

Ballet dancers can perform multiple pirouettes with little or no feeling of dizziness. The findings show that this feat isn’t just down to spotting, a technique dancers use that involves rapidly moving the head to fix their gaze on the same spot as much as possible.

Researchers at Imperial College London recruited 29 female ballet dancers and, as a comparison group, 20 female rowers whose age and fitness levels matched the dancers’.

The volunteers were spun around in a chair in a dark room. They were asked to turn a handle in time with how quickly they felt like they were still spinning after they had stopped. The researchers also measured eye reflexes triggered by input from the vestibular organs. Later, they examined the participants’ brain structure with MRI scans.

In dancers, both the eye reflexes and their perception of spinning lasted a shorter time than in the rowers.

Dr Barry Seemungal, from the Department of Medicine at Imperial, said: “Dizziness, which is the feeling that we are moving when in fact we are still, is a common problem. I see a lot of patients who have suffered from dizziness for a long time. Ballet dancers seem to be able to train themselves not to get dizzy, so we wondered whether we could use the same principles to help our patients.”

The brain scans revealed differences between the groups in two parts of the brain: an area in the cerebellum where sensory input from the vestibular organs is processed and in the cerebral cortex, which is responsible for the perception of dizziness.

The area in the cerebellum was smaller in dancers. Dr Seemungal thinks this is because dancers would be better off not using their vestibular systems, relying instead on highly co-ordinated pre-programmed movements.

“It’s not useful for a ballet dancer to feel dizzy or off balance. Their brains adapt over years of training to suppress that input. Consequently, the signal going to the brain areas responsible for perception of dizziness in the cerebral cortex is reduced, making dancers resistant to feeling dizzy. If we can target that same brain area or monitor it in patients with chronic dizziness, we can begin to understand how to treat them better.”

Another finding in the study may be important for how chronic dizzy patients are tested in the clinic. In the control group, the perception of spinning closely matched the eye reflexes triggered by vestibular signals, but in dancers, the two were uncoupled.

“This shows that the sensation of spinning is separate from the reflexes that make your eyes move back and forth,” Dr Seemungal said. “In many clinics, it’s common to only measure the reflexes, meaning that when these tests come back normal the patient is told that there is nothing wrong. But that’s only half the story. You need to look at tests that assess both reflex and sensation.”

For the curious, here’s a link to and a citation for the paper,

The Neuroanatomical Correlates of Training-Related Perceptuo-Reflex Uncoupling in Dancers by Yuliya Nigmatullina, Peter J. Hellyer, Parashkev Nachev, David J. Sharp, and Barry M. Seemungal. Cereb. Cortex (2013) doi: 10.1093/cercor/bht266 First published online: September 26, 2013

Delightfully, this article too is open access.

I love these kinds of stories where two very different branches of science find information of interest in something as ordinary as spinning around.

Courtesy: Imperial College of London (downloaded from: http://www3.imperial.ac.uk/newsandeventspggrp/imperialcollege/newssummary/news_26-9-2013-17-43-4]

Courtesy: Imperial College of London (downloaded from: http://www3.imperial.ac.uk/newsandeventspggrp/imperialcollege/newssummary/news_26-9-2013-17-43-4]

Here are some Whirling Dervishes,

Istanbul - Monestir Mevlevi - Dervixos dansaires Credit: Josep Renalias [downloaded from: http://en.wikipedia.org/wiki/File:Istanbul_-_Monestir_Mevlevi_-_Dervixos_dansaires.JPG]

Istanbul – Monestir Mevlevi – Dervixos dansaires Credit: Josep Renalias [downloaded from: http://en.wikipedia.org/wiki/File:Istanbul_-_Monestir_Mevlevi_-_Dervixos_dansaires.JPG]

ETA Nov. 28, 2013: I was most diverted by the Nov. 27, 2013 Virginia Tech news release (also on EurekAlert) which describes how two physicists and an engineer came to study Whirling Dervishes,

James Hanna likes to have fun with his engineering views of physics.

So when he and his colleague Jemal Guven visited their friend Martin Michael Müller in France on a rainy, dreary day, the three intellects decided to stay in. Guven, absent-mindedly switching between channels on the television, stumbled upon a documentary on whirling dervishes, best described as a Sufi religious order, who commemorate the teachings of 13th century Persian mystic and poet Rumi through spinning at a fixed speed in their floor length skirts.

“Their skirts showed these very striking, long-lived patterns,” Hanna, the engineer, recalled.

The film caused physicists Guven and Müller to think about structures with conical symmetry, or those shapes that can be defined as a series of straight lines emanating from a single point. By contrast, Hanna, the engineer with a physicist’s background, thought about rotating flexible structures, namely strings or sheets.

A new science magazine edited and peer-reviewed by children: Frontiers for Young Minds

November 15, 2013 article by Alice Truong about Frontiers for Young Minds (for Fast Company), profiles a new journal meant to be read by children and edited and peer-reviewed by children. Let’s start with an excerpt from the Truong article as an introduction to the Frontiers for Young Minds journal (Note: Links have been removed),

Frontiers for Young Minds is made up of editors ages 8 to 18 who learn the ropes of peer review from working scientists. With 18 young minds and 38 adult authors and associate editors lending their expertise, the journal–an offshoot of the academic research network Frontiers …

With a mission to engage a budding generation of scientists, UC [University of California at] Berkeley professor Robert Knight created the kid-friendly version of Frontiers and serves as its editor-in-chief. The young editors review and approve submissions, which are written so kids can understand them–“clearly, concisely and with enthusiasm!” the guidelines suggest. Many of the scientists who provide guidance are academics, hailing from Harvard to Rio de Janeiro’s D’Or Institute for Research and Education. The pieces are peer reviewed by one of the young editors, but to protect their identities only their first names are published along with the authors’ names.

Great idea and bravo to all involved in the project! Here’s an excerpt from the Frontiers for Young Minds About webpage,

Areas in Development now include:

  • The Brain and Friends (social neuroscience)
  • The Brain and Fun (emotion)
  • The Brain and Magic (perception, sensation)
  • The Brain and Allowances (neuroeconomics)
  • The Brain and School (attention, decision making)
  • The Brain and Sports (motor control, action)
  • The Brain and Life (memory)
  • The Brain and Talking/Texting (language)
  • The Brain and Growing (neurodevelopment)
  • The Brain and Math (neural organization of math, computational neuroscience)
  • The Brain and Health (neurology, psychiatry)
  • The Brain and Robots (brain machine interface)
  • The Brain and Music (music!)
  • The Brain and Light (optogenetics)
  • The Brain and Gaming (Fun, Action, Learning)
  • The Brain and Reading
  • The Brain and Pain
  • The Brain and Tools (basis of brain measurements)
  • The Brain and History (the story of brain research)
  • The Brain and Drugs (drugs)
  • The Brain and Sleep

I believe the unofficial title for this online journal is Frontiers (in Neuroscience) for Young Minds. I guess they were trying to make the title less cumbersome which, unfortunately, results in a bit of confusion.

At any rate, there’s a quite a range of young minds at work as editors and reviewers, from the Editorial Team’s webpage,

Sacha
14 years old
Amsterdam, Netherlands

When I was just a few weeks old, we moved to Bennekom, a small town close to Arnhem (“a bridge too far”). I am now 14 and follow the bilingual stream in secondary school, receiving lessons in English and Dutch. I hope to do the International Bacquelaurate before I leave school. In my spare time, I like to play football and hang out with my mates. Doing this editing interested me for three reasons: I really wanted to understand more about my dad’s work; I like the idea of this journal that helps us understand what our parents do; and I also like the idea of being an editor!

Abby
11 years old
Israel

I currently live in Israel, but I lived in NYC and I loved it. I like wall climbing, dancing, watching TV, scuba diving, and I love learning new things about how our world works. Oh, I also love the Weird-but-True books. You should try reading them too.

Caleb
14 years old
Canada

I enjoy reading and thinking about life. I have a flair for the dramatic. Woe betide the contributor who falls under my editorial pen. I am in several theatrical productions and I like to go camping in the Canadian wilds. My comment on brains: I wish I had one.

Darius
10 years old
Lafayette, CA, USA

I am in fifth grade. In my free time I enjoy reading and computer programming. As a hobby, I make useful objects and experiment with devices. I am very interested in the environment and was one of the founders of my school’s green committee. I enjoy reading about science, particularly chemistry, biology, and neuroscience.

Marin
8 years old
Cambridge, MA, USA

3rd grader who plays the piano and loves to sing and dance. She participates in Science Club for Girls and she and her Mom will be performing in their second opera this year.

Eleanor
8 years old
Champaign, IL, USA

I like reading and drawing. My favorite colors are blue, silver, pink, and purple. My favorite food is creamed spinach. I like to go shopping with my Mom.

….

At age 8, I would have been less Marin and more Eleanor. I hated opera; my father made us listen every Sunday afternoon during the winters.

Here’s something from an article about brain-machine interfaces for the final excerpt from the website (from the articles webpage),

[downloaded from http://kids.frontiersin.org/articles/brain-machine_interfaces/7/]

[downloaded from http://kids.frontiersin.org/articles/brain-machine_interfaces/7/]

Brain-Machine Interfaces (BMI), or brain-computer interfaces (BCI), is an exciting multidisciplinary field that has grown tremendously during the last decade. In a nutshell, BMI is about transforming thought into action and sensation into perception. In a BMI system, neural signals recorded from the brain are fed into a decoding algorithm that translates these signals into motor output. This includes controlling a computer cursor, steering a wheelchair, or driving a robotic arm. A closed control loop is typically established by providing the subject with visual feedback of the prosthetic device. BMIs have tremendous potential to greatly improve the quality of life of millions of people suffering from spinal cord injury, stroke, amyotrophic lateral sclerosis, and other severely disabling conditions.6

I think this piece written by Jose M. Carmena and José del R. Millán and reviewed by Bhargavi, 13 years old, is a good beginner’s piece for any adults who might be interested, as well as,, the journal’s target audience. This illustration the scientists have provided is very helpful to anyone who, for whatever reason, isn’t that knowledgeable about this area of research,

Figure 1 - Your brain in action: the different components of a BMI include the recording system, the decoding algorithm, device to be controlled, and the feedback delivered to the user (modified from Heliot and Carmena, 2010).

Figure 1 – Your brain in action:
the different components of a BMI include the recording system, the decoding algorithm, device to be controlled, and the feedback delivered to the user (modified from Heliot and Carmena, 2010).

As for getting information about basic details, here’s some of what I unearthed. The parent organization, ‘Frontiers in’ is based in Switzerland and describes itself this way on its About page,

Frontiers is a community-oriented open-access academic publisher and research network.

Our grand vision is to build an Open Science platform that empowers researchers in their daily work and where everybody has equal opportunity to seek, share and generate knowledge.

Frontiers is at the forefront of building the ultimate Open Science platform. We are driving innovations and new technologies around peer-review, article and author impact metrics, social networking for researchers, and a whole ecosystem of open science tools. We are the first – and only – platform that combines open-access publishing with research networking, with the goal to increase the reach of publications and ultimately the impact of articles and their authors.

Frontiers was launched as a grassroots initiative in 2007 by scientists from the Swiss Federal Institute of Technology in Lausanne, Switzerland, out of the collective desire to improve the publishing options and provide better tools and services to researchers in the Internet age. Since then, Frontiers has become the fastest-growing open-access scholarly publisher, with a rapidly growing number of community-driven journals, more than 25,000 of high-impact researchers across a wide range of academic fields serving on the editorial boards and more than 4 million monthly page views.

As of a Feb. 27, 2013 news release, Frontiers has partnered with the Nature Publishing Group (NPG), Note: Links have been removed,

Emerging publisher Frontiers is joining Nature Publishing Group (NPG) in a strategic alliance to advance the global open science movement.

NPG, publisher of Nature, today announces a majority investment in the Swiss-based open access (OA) publisher Frontiers.

NPG and Frontiers will work together to empower researchers to change the way science is communicated, through open access publication and open science tools. Frontiers, led by CEO and neuroscientist Kamila Markram, will continue to operate with its own platform, brands, and policies.

Founded by scientists from École Polytechnique Fédérale de Lausanne (EPFL) in 2007, Frontiers is one of the fastest growing open access publishers, more than doubling articles published year on year. Frontiers now has a portfolio of open access journals in 14 fields of science and medicine, and published over 5,000 OA articles in 2012.

Working with NPG, the journal series “Frontiers in” will significantly expand in 2013-2014. Currently, sixty-three journals published by NPG offer open access options or are open access and NPG published over 2000 open access articles in 2012. Bilateral links between nature.com and frontiersin.org will ensure that open access papers are visible on both sites.

Frontiers and NPG will also be working together on innovations in open science tools, networking, and publication processes.

Frontiers is based at EPFL in Switzerland, and works out of Innovation Square, a technology park supporting science start-ups, and hosting R&D divisions of large companies such as Logitech & Nestlé.

As for this new venture, Frontiers for Young Minds, this appears to have been launched on Nov. 11, 2013. At least, that’s what I understand from this notice on Frontier’s Facebook page (Note: Links have been removed,

Frontiers
November 11 [2013?]
Great news for kids, parents, teachers and neuroscientists! We have just launched the first Frontiers for Young Minds!

Frontiers in #Neuroscience for Young Minds is an #openaccess scientific journal that involves young people in the review of articles.

This has the double benefit of bringing kids into the world of science and offering scientists a platform for reaching out to the broadest of all audiences.

Frontiers for Young Minds is science edited for kids, by kids. Learn more and spread the word! http://bit.ly/1dijipy #sfn13

I am glad to see this effort and I wish all the parties involved the best of luck.

The brain and poetry; congratulations to Alice Munro on her 2013 Nobel prize

There’s an intriguing piece of research from the University of Exeter (UK) about poetry and the brain. From an Oct. 9, 2013 University of Exeter news release (also on EurekAlert),

New brain imaging technology is helping researchers to bridge the gap between art and science by mapping the different ways in which the brain responds to poetry and prose.

Scientists at the University of Exeter used state-of-the-art functional magnetic resonance imaging (fMRI) technology, which allows them to visualise which parts of the brain are activated to process various activities. No one had previously looked specifically at the differing responses in the brain to poetry and prose.

In research published in the Journal of Consciousness Studies, the team found activity in a “reading network” of brain areas which was activated in response to any written material. But they also found that more emotionally charged writing aroused several of the regions in the brain which respond to music. These areas, predominantly on the right side of the brain, had previously been shown as to give rise to the “shivers down the spine” caused by an emotional reaction to music. .

When volunteers read one of their favourite passages of poetry, the team found that areas of the brain associated with memory were stimulated more strongly than ‘reading areas’, indicating that reading a favourite passage is a kind of recollection.

In a specific comparison between poetry and prose, the team found evidence that poetry activates brain areas, such as the posterior cingulate cortex and medial temporal lobes, which have been linked to introspection.

I did find the Journal of Consciousness Studies in two places (here [current issues] and here [archived issues]) but can’t find the article in my admittedly speedy searches on the website and via Google. Unfortunately the university news release did not include a citation (as so many of them now do); presumably the research will be published soon.

I’d like to point out a couple of things about the research, the sample was small (13) and not randomized (faculty and students from the English department). From the news release,

Professor Adam Zeman, a cognitive neurologist from the University of Exeter Medical School, worked with colleagues across Psychology and English to carry out the study on 13 volunteers, all faculty members and senior graduate students in English. Their brain activity was scanned and compared when reading literal prose such as an extract from a heating installation manual, evocative passages from novels, easy and difficult sonnets, as well as their favourite poetry.

Professor Zeman said: “Some people say it is impossible to reconcile science and art, but new brain imaging technology means we are now seeing a growing body of evidence about how the brain responds to the experience of art. This was a preliminary study, but it is all part of work that is helping us to make psychological, biological, anatomical sense of art.”

Arguably, people who’ve spent significant chunks of their lives studying and reading poetry and prose might have developed capacities the rest of us have not. For a case in point, there’s a Sept. 26, 2013 news item on ScienceDaily about research on ballet dancers’ brains and their learned ability to suppress dizziness,

The research suggests that years of training can enable dancers to suppress signals from the balance organs in the inner ear.

Normally, the feeling of dizziness stems from the vestibular organs in the inner ear. These fluid-filled chambers sense rotation of the head through tiny hairs that sense the fluid moving. After turning around rapidly, the fluid continues to move, which can make you feel like you’re still spinning.

Ballet dancers can perform multiple pirouettes with little or no feeling of dizziness. The findings show that this feat isn’t just down to spotting, a technique dancers use that involves rapidly moving the head to fix their gaze on the same spot as much as possible.

Researchers at Imperial College London recruited 29 female ballet dancers and, as a comparison group, 20 female rowers whose age and fitness levels matched the dancers’.

The volunteers were spun around in a chair in a dark room. They were asked to turn a handle in time with how quickly they felt like they were still spinning after they had stopped. The researchers also measured eye reflexes triggered by input from the vestibular organs. Later, they examined the participants’ brain structure with MRI scans.

In dancers, both the eye reflexes and their perception of spinning lasted a shorter time than in the rowers.

Yes, they too have a small sample. Happily, you can find a citation and a link to the research at the end of the ScienceDaily news item.

ETA Oct. 10, 2013 at 1:10 pm PDT: The ballet dancer research was not randomized but  that’s understandable as researchers were trying to discover why these dancers don’t experience dizziness. It should be noted the researchers did test the ballet dancers against a control group. By contrast, the researchers at the University of Exeter seemed to be generalizing results from a specialized sample to a larger population.

Alice Munro news

It was announced today (Thursday, Oct. 10, 2013) that Canada’s Alice Munro has been awarded the 2013 Nobel Prize for Literature. Here’s more from an Oct. 10, 2013 news item on the Canadian Broadcasting Corporation (CBC) news website,

Alice Munro wins the 2013 Nobel Prize in Literature, becoming the first Canadian woman to take the award since its launch in 1901.

Munro, 82, only the 13th woman given the award, was lauded by the Swedish Academy during the Nobel announcement in Stockholm as the “master of the contemporary short story.”

“We’re not saying just that she can say a lot in just 20 pages — more than an average novel writer can — but also that she can cover ground. She can have a single short story that covers decades, and it works,” said Peter Englund, permanent secretary of the Swedish Academy.

Reached in British Columbia by CBC News on Thursday morning, Munro said she always viewed her chances of winning the Nobel as “one of those pipe dreams” that “might happen, but it probably wouldn’t.”

Congratulations Ms. Munro! For the curious, there’s a lot more about Alice Munro and about her work in the CBC news item.

DARPA (US Defense Advanced Research Projects Agency) wants to crowdsource cheap brain-computer interfaces

The US Defense Advanced Research Projects Agency wants the DIY (or Maker community) to develop inexpensive brain-computer interfaces according to a Sept. 27, 2013 news item by John Hewitt on phys.org,

This past Saturday [Sept. 21, 2013], at the Maker Faire in New York, a new low-cost EEG recording front end was debuted at DARPA’s booth. Known as OpenBCI, the device can process eight channels of high quality EEG data, and interface it to popular platforms like Arduino. …

DARPA program manager William Casebeer said that his goal was to return next year to the Maker meeting with a device that costs under $30.

Adrianne Jeffries’ Sept. 22, 2013 article for The Verge provides more information (Note: Links have been removed),

A working prototype of a low-cost electroencephalography device funded by the US Defense Advanced Research Projects Agency (DARPA) made its debut in New York this weekend [Sept. 21 – 22, 2013], the first step in the agency’s effort to jumpstart a do-it-yourself revolution in neuroscience.
There are some products like those in the Neurosky lineup, which range from $99 to $130. But most neural monitoring tools are relatively expensive and proprietary, the OpenBCI [OpenBCI, an open source device built to capture signals from eight electrodes at a time] team explained, which makes it tough for the casual scientist, hacker, or artist to play with EEG. If neural monitoring were cheap and open, we’d start to see more science experiments, art projects, mind-controlled video games, and even serious research using brainwaves. You could use an at-home EEG to create a brain-powered keyboard, for example, Dr. Allen [Lindsey Allen, engineer for Creare;  OpenBCI was built by Creare and biofeedback scientist Joel Murphy, and the prototype was finished only two weeks ago] said, and learn how to type with your mind.

I have written about various brain-computer interfaces previously, the most recent being a Dec. 5, 2012 posting about Muse, a $199 brainwave computer controller.