Tag Archives: New Scientist

‘Girly’ girls aren’t motivated to study science by ‘girly’ scientists

Liz Else in a June 22, 2012 article for New Scientist discusses, in light of the recent  ‘Science: It’s a Girl Thing’ campaign video/debacle (mentioned in my July 6, 2012 posting), some recent research which suggests that ‘girly’ or ‘feminine’ scientist role models are demotivating (Note: I have removed links),

But the team really should have done some background before launching the teaser video for the initiative (above). If they had, they would have probably come across some recent research by University of Michigan psychologists Diana Betz and Denise Sekaquaptewa that would have stopped them dead in their tracks.

Betz and Sekaquaptewa recruited 142 girls aged 11 to 13 and showed them mocked-up magazine articles about three female university students who were either described as doing well in science, engineering, technology or mathematics (STEM), or as rising stars in unspecified fields. The three also either displayed overtly feminine characteristics or gender-neutral traits.

Oddly, the researchers found that girls who read about the feminine science students decreased their self-rated interest in maths ability and short-term expectations of success. [emphasis mine]

Else’s article describes other related outcomes and provides a link to the research article (which is behind a paywall).

This research contrasts with the response from the Australian teen science bloggers (in my July 6, 2012 posting) who were very enthusiastic about this more girly approach.

In conjunction with the material in my previous posting on this topic,  it seems this whole incident has sparked an extraordinary conversation taking place internationally and across various social media. For those on Twitter, I recommend the #ScienceGirlThing discussion. Locally (Vancouver, British Columbia, Canada), I believe the Society for Canadian Women in Science and Technology (SCWIST) is considering an event focused on the ‘Science: It’s a Girl Thing’. I’ll let you know more as this evolves.

Thanks to @CarlsonEngineer for the link to article by Else.

Blood, memristors, cyborgs plus brain-controlled computers, prosthetics, and art

The memristor, a circuit element that quite interests me [April 7, 2010 posting], seems to be moving from being a purely electrical engineering term to one that’s used metaphorically to describe biological processes in a way that is transforming my understanding of machine/human (and other animal) interfaces from a science fiction concept to reality.

March 2, 2011 Kate McAlpine wrote an article for the New Scientist which suggested that skin has memristive properties while noting that the same has been said of the brain. From Sweat ducts make skin a memristor,

Synapses, junctions between neurons in the brain, display electrical behaviour that depends on past activity and are said to behave like memristors. This has raised the prospect of using memristors as the basis of an artificial brain.

Now, by re-examining data from the early 1980s on the electrical conductivity of human skin in response to various voltages, Gorm Johnsen and his colleagues at the University of Oslo in Norway have uncovered a more prosaic example of memristive behaviour in nature.

They found that when a negative electrical potential is applied to skin on various parts of the arm, creating a current, that stretch of skin exhibits a low resistance to a subsequent current flowing through the skin. But if the first potential is positive relative to the skin, then a subsequent potential produces a current that meets with a much higher resistance. In other words, the skin has a memory of previous currents. The finding is due to be published in Physical Review E.
The researchers attribute skin’s memristor behaviour to sweat pores.

More recently, there’s been some excitement about a research team in India that’s working with blood so they can eventually create a ‘liquid memristor’. Rachel Courtland wrote a brief item on the ‘blood memristor’ on April 1, 2011 for the IEEE Tech Talk blog,

S.P. Kosta of the Education Campus Changa in Gujarat, India and colleagues have published a paper in the International Journal of Medical Engineering and Informatics showing that human blood changes its electrical resistance depending on how much voltage is applied. It also seems to retain memory of this resistance for at least five minutes.

The team says that makes human blood a memristor: the fourth in the family of fundamental circuit elements that includes the resistor, the capacitor, and the inductor. Proposed in 1971, the memristor’s existence wasn’t proven until 2008, when HP senior fellow Stanley Williams and colleagues demonstrated a memristor device made of doped titanium dioxide.

There was also a March 30, 2011 news item about the Indian research titled, Blood simple circuitry for cyborgs, on Nanowerk, which provided this information,

They [the research team] constructed the laboratory-based biological memristor using a 10 ml test tube filled with human blood held at 37 Celsius into which two electrodes are inserted; appropriate measuring instrumentation was attached. The experimental memristor shows that resistance varies with applied voltage polarity and magnitude and this memory effect is sustained for at least five minutes in the device.

Having demonstrated memristor behavior in blood, the next step was to test that the same behavior would be observed in a device through which blood is flowing. This step was also successful. The next stage will be to develop a micro-channel version of the flow memristor device and to integrate several to carry out particular logic functions. This research is still a long way from an electronic to biological interface, but bodes well for the development of such devices in the future.

Kit Eaton in an April 4, 2011 article (Electronics Made from Human Blood Cells Suggest Cyborg Interfaces, Spark Nightmares) on the Fast Company website gives more details about possible future applications,

Ultimately, the fact that a biological system could be used to interact with a hard semiconductor system could revolutionize biomechanics. That’s because wiring devices like cochlear implants, nerve-triggered artificial limbs and artificial eyeballs into the body at the moment involves a terribly difficult integration of metal wiring–with all the associated risk of infection and rejection. Plus it’s really a very promising first step toward making a cyborg. Countdown to military interest in this tech in 5…4…3…

It should be noted that the team in India is working towards applications in neuroprosthetics. As for the Norwegian team with their ‘sweat duct/skin memristor’, the article did not specify what types of applications, if any, their work might lead to.

As evidenced by the research covered in these news items, the memristor seems to be drifting or, more accurately, developing a second identity/ghost identity as the term is applied to biological processes.

The body as a machine is a notion that’s been around for a while as has the notion of combining the two. The first notion is a metaphor while the second is a staple in science fiction which, in a minor way, has found a home in the real life practice of body hacking where someone implants a magnetic or computer chip into their body (my May 27, 2010 posting). So the memristor becoming a metaphor for certain biological processes doesn’t seem something new but rather the next step in a process that’s well on its way.

Two students at Ryerson University (Toronto, Canada) recently announced that they had developed a brain-controlled prosthetic. From the March 30, 2011 news item on Nanowerk,

Two Ryerson University undergraduate biomedical engineering students are changing the world of medical prosthetics with a newly developed prosthetic arm that is controlled by brain signals. The Artificial Muscle-Operated (AMO) Arm not only enables amputees more range of movement as compared to other prosthetic arms but it allows amputees to avoid invasive surgeries and could potentially save hundreds of thousands of dollars. The AMO Arm is controlled by the user’s brain signals and is powered by ‘artificial muscles’ – simple pneumatic pumps and valves – to create movements. In contrast, traditional prosthetic limbs – which typically offer more limited movements – rely on intricate and expensive electrical and mechanical components.

Developed by third-year student Thiago Caires and second-year student Michal Prywata, the AMO Arm is controlled by the brain and uses compressed air as the main source of power. The digital device makes use of signals in the brain that continue to fire even after a limb is amputated. Users wear a head-set that senses a signal – for example, the thought “up” – and sends it wirelessly to a miniature computer in the arm. The computer then compares the signal to others in a database. The resulting information is sent to the pneumatic system, which in turn, activates the arm to create the correct movement. Simulating the expansion and contraction of real muscles, the system makes use of compressed air from a small, refillable tank in the user’s pocket.

I think what they mean is that the components are not traditionally electrical and mechanical but in fact informed by emerging technologies and the science that supports them. After all, the computer must run on some kind of electricity and brain activity (wireless signals from the brain will be controlling the prosthetic) is often described as electrical. The result is that the human and the machine are effectively made one since the prosthetic arm is controlled as if it were ‘biological’ arm.

On another part of the spectrum, Iraqui artist Wafaa Bilal made headlines recently when he had a camera implanted into the back of his head creating a third eye. Designed to be a one year project, the artist had to remove the camera when he developed an infection at the site of one of the metal posts used to anchor the camera to his head. From the Feb. 11, 2011 BBC news item,

An artist who had a camera implanted into the back of his head has been forced to remove it after his body rejected part of the device.

Iraqi-born Wafaa Bilal had surgery last week to remove one of three posts holding the camera in place as it posed a risk of infection.

The camera had been taking a photo every minute as part of a year-long project.

Wafaa Bilal and camera (image downloaded from BBC website)

(The artist would like to try it again but, in the meantime, has slung the camera around his neck as a substitute.)

In Bilal’s case, the body is being significantly altered as the machine (camera) is implanted in a place (back of head) where no animal has them located.

What I’m getting at with all of this is that at the same time we seem to be expanding the memristor’s meaning from a term used to describe a concept in electrical engineering to include biological processes, we are exploring new ways of integrating machinery into our bodies. In effect our relationships to our bodies and machines are changing and that change can be traced in the language we use to describe ourselves.
 

Democracy, participation, and science culture

Should citizens have any input into how science research is funded? Dan Hind in his Dec. 14, 2010 article, Time to democratise science, for New Scientist argues yes persuasively (from the article),

THE natural and social sciences exert a huge influence on the ways our societies develop. At present most of the funding for scientific research is controlled by the state and the private economy. Perhaps it is time to look at their track record and consider an alternative.

Science is not, and can never be, disinterested insofar as its objectives are concerned. Decisions to fund this research instead of that research can never be purely technical. Assessments of what is likely to produce interesting or useful knowledge are inevitably alloyed with the desires of those who control the money to develop particular forms of knowledge and with them new resources of power.

Given the mixed track record of the patrons of science it is surely time to consider an alternative. If we are serious about science as a public good, we should give the public control over the ways in which some – and I stress “some” – of its money is spent.

At the end of the article there is this note about the author,

Dan Hind is author of The Return of the Public (Verso), which argues for a new kind of participatory politics

There does seem to be seem sort of trend towards more participatory science as per citizen science or crowdsourced science projects such as Foldit (my Aug. 6, 2010 posting) and Phylo (my Dec. 3, 2010 posting).I’m not sure how much traction participatory science research funding is going to find. That said, there was a UK project run by EPSRC (Engineering and Physical Sciences Research) where members of the public were allowed to ‘vote’ on particular projects. You can read more about the project in the May 25, 2009 news item on Nanowerk describing the grants that were chosen. From the news item,

Ten research grants to help solve some of the biggest health problems facing the UK have been awarded by the Engineering and Physical Sciences Research Council (EPSRC)

The projects focus on developing new techniques for screening and treating major public health issues such as cancer, stroke, AIDS, influenza, MRSA and dementia.

The grants, worth £16.5m, have been given by the EPSRC, acting as the lead Research Council in a cross Research Council Programme called “Nanoscience through Engineering to Application.”

Segue: As for participatory politics (as per Dan Hind), I’ve noticed a local (Vancouver, Canada) backlash response to the notion of public consultations (city government officials want to increase population densities). Oddly enough, when people take the time to participate in a ‘consultation’ they expect that at least some of their comments will have an impact on the decisions that are being made. I gather some experts find this irksome and a challenge to their professional authority.

Back to the main topic: My impression is that the UK enjoys a science culture that is not to be found in Canada—not yet, anyway. There is discussion about public dialogue and engagement in science not just in the UK but elsewhere too that simply doesn’t exist in Canada. Yes, there are a few fragile attempts at creating a science culture here. I’m thinking of the Café Scientifique groups, Canada’s National Science and Technology Week, and the open houses put on by the universities but there really isn’t much.

The Year of Science (a science culture project) was declared in the province of British Columbia (BC) in the fall of 2010. From my Oct. 14, 2010 posting,

To inspire young minds across the province and foster a culture of research and innovation Premier Gordon Campbell today proclaimed the 2010-2011 school year as the Year of Science in B.C.

It’s good to see these kinds of initiatives, unfortunately this particular one is undercut by news such as this (from the Dec. 2, 2010 article, Teacher blasts cuts to Vancouver school science budgets; School science budgets slashed by 56 per cent compared to last year, by Naiobh O’Connor for the Vancouver Courier),

School science budgets were slashed by 56 per cent compared to last year and the district now allots only $4.61 per student each year to cover expenses—far below what Mike Hengeveld, Templeton secondary’s science department head and teacher, argues is adequate.

Limited budgets mean it’s difficult to replace equipment like broken beakers or to buy new equipment. Hengeveld even worries about buying a dozen eggs for a relatively cheap egg drop experiment or what’s needed to grow crystals for chemistry class.

“If I went and bought iodized salt or de-iodized salt and [students] make a solution by heating stuff in a beaker—which I hope doesn’t break—if I spend 15 bucks on salt at the store, I’ve blown three or four students’ worth of budget for them to learn how to grow crystals. It’s neat, but I can’t do that in a science class every day. I would just completely and totally run out of money and that’s just on cheap stuff,” he said.

I’m not trying to fault the Year of Science initiative just pointing out that the initiative is problematic when the science education budget for schools cannot support even simple research projects.

This is a larger issue that I can adequately cover in this posting but I did want to draw attention to some of the fragilities of the Canadian situation (and our own situation in BC) vis à vis creating a science culture and/or democratizing science.

Meanwhile, I read with some envy a report titled, International Comparison of Public Dialogue on Science and Technology,  from a UK organization, Sciencewise-ERC – the UK’s national centre for public dialogue in policy making involving science and technology issues. Canada is not mentioned and I imagine that’s due to the fact that we don’t have any public dialogue to speak of.

ETA Mar.3.11: I made some minor changes for clarity (added Segue: and Back to the main topic: and removed an extra space.

Neuro Cover for latest New Scientist issue

I don’t know if you caught it but there was a bit of noise earlier this week about ‘neuromarketing’ and the cover for the latest issue of New Scientist. From the article by Addy Dugdale at Fast Company,

In these quiet months of summer, when news is scarcer than an English-born ex-CEO of an oil firm [good dig at BP Oil’s Tony Hayward], New Scientist decided to make some for itself (using nothing but 19 right-handed Englishmen, an electroencephalograph machine, a trio of potential covers, the expertise of a Berkeley-based firm called NeuroFocus, and a man-sized petri dish). Could EEG, as it is known, give the editorial team a better handle on what sort of cover design would make a future issue fly off the shelves? Being scientists (or, at least, people who write about science and its ’tists) they were skeptical. Following the experiment, held in the obligatory darkened room, they were less so.

The design that scored highest on the brainometer was the central image at the top of this page. It did so for several reasons, one of which–the red lettering–is already known to magazine bods, the others being less easily decipherable: who would have known that the word fabric is attractive to one’s brain?

Here’s the trio of choices,

The cover in the middle was the final choice.

You can see a larger version of the cover choices at the Fast Company site. Personally and based on design and colour alone, I preferred the least favourite of the covers (it’s the one to the far right).

There’s been an awful lot of noise over the years about marketers being able to penetrate the psyche/the brain/the emotions or whatever else they may be targeting this week in an effort to persuade and/or manipulate. It does seem to work but only to  a point. (My story in yeserday’s August 12, 2010 posting about Edward Bernays and Stuart Ewen’s book, PR! A Social History of Spin, being a case in point. If Bernays, had been thoroughly successful, Ewen would be known internationally for his book.)

In fact, history is filled with stories of people attempting to coerce/force/manipulate large sectors of the population. Empires fall or fade away, dictatorships are overthrown, democratic governments are thrown out of office, and so it goes.