Tag Archives: New Zealand

Genes, intelligence, Chinese CRISPR (clustered regularly interspaced short palindromic repeats) babies, and other children

This started out as an update and now it’s something else. What follows is a brief introduction to the Chinese CRISPR twins; a brief examination of parents, children, and competitiveness; and, finally, a suggestion that genes may not be what we thought. I also include a discussion about how some think scientists should respond when they know beforehand that one of their kin is crossing an ethical line. Basically, this is a complex topic and I am attempting to interweave a number of competing lines of query into one narrative about human nature and the latest genetics obsession.

Introduction to the Chinese CRISPR twins

Back in November 2018 I covered the story about the Chinese scientist, He Jiankui , who had used CRISPR technology to edit genes in embryos that were subsequently implanted in a waiting mother (apparently there could be as many as eight mothers) with the babies being brought to term despite an international agreement (of sorts) not to do that kind of work. At this time, we know of the twins, Lulu and Nana but, by now, there may be more babies. (I have much more detail about the initial controversies in my November 28, 2018 posting.)

It seems the drama has yet to finish unfolding. There may be another consequence of He’s genetic tinkering.

Could the CRISPR babies, Lulu and Nana, have enhanced cognitive abilities?

Yes, according to Antonio Regalado’s February 21, 2019 article (behind a paywall) for MIT’s (Massachusetts Institute of Technology) Technology Review, those engineered babies may have enhanced abilities for learning and remembering.

For those of us who can’t get beyond the paywall, others have been successful. Josh Gabbatiss in his February 22, 2019 article for independent.co.uk provides some detail,

The world’s first gene edited babies may have had their brains unintentionally altered – and perhaps cognitively enhanced – as a result of the controversial treatment undertaken by a team of Chinese scientists.

Dr He Jiankui and his team allegedly deleted a gene from a number of human embryos before implanting them in their mothers, a move greeted with horror by the global scientific community. The only known successful birth so far is the case of twin girls Nana and Lulu.

The now disgraced scientist claimed that he removed a gene called CCR5 [emphasis mine] from their embroyos in an effort to make the twins resistant to infection by HIV.

But another twist in the saga has now emerged after a new paper provided more evidence that the impact of CCR5 deletion reaches far beyond protection against dangerous viruses – people who naturally lack this gene appear to recover more quickly from strokes, and even go further in school. [emphasis mine]

Dr Alcino Silva, a neurobiologist at the University of California, Los Angeles, who helped identify this role for CCR5 said the work undertaken by Dr Jiankui likely did change the girls’ brains.

“The simplest interpretation is that those mutations will probably have an impact on cognitive function in the twins,” he told the MIT Technology Review.

The connection immediately raised concerns that the gene was targeted due to its known links with intelligence, which Dr Silva said was his immediate response when he heard the news.

… there is no evidence that this was Dr Jiankui’s goal and at a press conference organised after the initial news broke, he said he was aware of the work but was “against using genome editing for enhancement”.

..

Claire Maldarelli’s February 22, 2019 article for Popular Science provides more information about the CCR5 gene/protein (Note: Links have been removed),

CCR5 is a protein that sits on the surface of white blood cells, a major component of the human immune system. There, it allows HIV to enter and infect a cell. A chunk of the human population naturally carries a mutation that makes CCR5 nonfunctional (one study found that 10 percent of Europeans have this mutation), which often results in a smaller protein size and one that isn’t located on the outside of the cell, preventing HIV from ever entering and infecting the human immune system.

The goal of the Chinese researchers’ work, led by He Jiankui of the Southern University of Science and Technology located in Shenzhen, was to tweak the embryos’ genome to lack CCR5, ensuring the babies would be immune to HIV.

But genetics is rarely that simple.

In recent years, the CCR5 gene has been a target of ongoing research, and not just for its relationship to HIV. In an attempt to understand what influences memory formation and learning in the brain, a group of researchers at UCLA found that lowering the levels of CCR5 production enhanced both learning and memory formation. This connection led those researchers to think that CCR5 could be a good drug target for helping stroke victims recover: Relearning how to move, walk, and talk is a key component to stroke rehabilitation.

… promising research, but it begs the question: What does that mean for the babies who had their CCR5 genes edited via CRISPR prior to their birth? Researchers speculate that the alternation will have effects on the children’s cognitive functioning. …

John Loeffler’s February 22, 2019 article for interestingengineering.com notes that there are still many questions about He’s (scientist’s name) research including, did he (pronoun) do what he claimed? (Note: Links have been removed),

Considering that no one knows for sure whether He has actually done as he and his team claim, the swiftness of the condemnation of his work—unproven as it is—shows the sensitivity around this issue.

Whether He did in fact edit Lulu and Nana’s genes, it appears he didn’t intend to impact their cognitive capacities. According to MIT Technology Review, not a single researcher studying CCR5’s role in intelligence was contacted by He, even as other doctors and scientists were sought out for advice about his project.

This further adds to the alarm as there is every expectation that He should have known about the connection between CCR5 and cognition.

At a gathering of gene-editing researchers in Hong Kong two days after the birth of the potentially genetically-altered twins was announced, He was asked about the potential impact of erasing CCR5 from the twins DNA on their mental capacity.

He responded that he knew about the potential cognitive link shown in Silva’s 2016 research. “I saw that paper, it needs more independent verification,” He said, before adding that “I am against using genome editing for enhancement.”

The problem, as Silva sees it, is that He may be blazing the trail for exactly that outcome, whether He intends to or not. Silva says that after his 2016 research was published, he received an uncomfortable amount of attention from some unnamed, elite Silicon Valley leaders who seem to be expressing serious interest in using CRISPR to give their children’s brains a boost through gene editing. [emphasis mine]

As such, Silva can be forgiven for not quite believing He’s claims that he wasn’t intending to alter the human genome for enhancement. …

The idea of designer babies isn’t new. As far back as Plato, the thought of using science to “engineer” a better human has been tossed about, but other than selective breeding, there really hasn’t been a path forward.

In the late 1800s, early 1900s, Eugenics made a real push to accomplish something along these lines, and the results were horrifying, even before Nazism. After eugenics mid-wifed the Holocaust in World War II, the concept of designer children has largely been left as fodder for science fiction since few reputable scientists would openly declare their intention to dabble in something once championed and pioneered by the greatest monsters of the 20th century.

Memories have faded though, and CRISPR significantly changes this decades-old calculus. CRISPR makes it easier than ever to target specific traits in order to add or subtract them from an embryos genetic code. Embryonic research is also a diverse enough field that some scientist could see pioneering designer babies as a way to establish their star power in academia while getting their names in the history books, [emphasis mine] all while working in relative isolation. They only need to reveal their results after the fact and there is little the scientific community can do to stop them, unfortunately.

When He revealed his research and data two days after announcing the births of Lulu and Nana, the gene-scientists at the Hong Kong conference were not all that impressed with the quality of He’s work. He has not provided access for fellow researchers to either his data on Lulu, Nana, and their family’s genetic data so that others can verify that Lulu and Nana’s CCR5 genes were in fact eliminated.

This almost rudimentary verification and validation would normally accompany a major announcement such as this. Neither has He’s work undergone a peer-review process and it hasn’t been formally published in any scientific journal—possibly for good reason.

Researchers such as Eric Topol, a geneticist at the Scripps Research Institute, have been finding several troubling signs in what little data He has released. Topol says that the editing itself was not precise and show “all kinds of glitches.”

Gaetan Burgio, a geneticist at the Australian National University, is likewise unimpressed with the quality of He’s work. Speaking of the slides He showed at the conference to support his claim, Burgio calls it amateurish, “I can believe that he did it because it’s so bad.”

Worse of all, its entirely possible that He actually succeeded in editing Lulu and Nana’s genetic code in an ad hoc, unethical, and medically substandard way. Sadly, there is no shortage of families with means who would be willing to spend a lot of money to design their idea of a perfect child, so there is certainly demand for such a “service.”

It’s nice to know (sarcasm icon) that the ‘Silicon Valley elite’ are willing to volunteer their babies for scientific experimentation in a bid to enhance intelligence.

The ethics of not saying anything

Natalie Kofler, a molecular biologist, wrote a February 26, 2019 Nature opinion piece and call to action on the subject of why scientists who were ‘in the know’ remained silent about He’s work prior to his announcements,

Millions [?] were shocked to learn of the birth of gene-edited babies last year, but apparently several scientists were already in the know. Chinese researcher He Jiankui had spoken with them about his plans to genetically modify human embryos intended for pregnancy. His work was done before adequate animal studies and in direct violation of the international scientific consensus that CRISPR–Cas9 gene-editing technology is not ready or appropriate for making changes to humans that could be passed on through generations.

Scholars who have spoken publicly about their discussions with He described feeling unease. They have defended their silence by pointing to uncertainty over He’s intentions (or reassurance that he had been dissuaded), a sense of obligation to preserve confidentiality and, perhaps most consistently, the absence of a global oversight body. Others who have not come forward probably had similar rationales. But He’s experiments put human health at risk; anyone with enough knowledge and concern could have posted to blogs or reached out to their deans, the US National Institutes of Health or relevant scientific societies, such as the Association for Responsible Research and Innovation in Genome Editing (see page 440). Unfortunately, I think that few highly established scientists would have recognized an obligation to speak up.

I am convinced that this silence is a symptom of a broader scientific cultural crisis: a growing divide between the values upheld by the scientific community and the mission of science itself.

A fundamental goal of the scientific endeavour is to advance society through knowledge and innovation. As scientists, we strive to cure disease, improve environmental health and understand our place in the Universe. And yet the dominant values ingrained in scientists centre on the virtues of independence, ambition and objectivity. That is a grossly inadequate set of skills with which to support a mission of advancing society.

Editing the genes of embryos could change our species’ evolutionary trajectory. Perhaps one day, the technology will eliminate heritable diseases such as sickle-cell anaemia and cystic fibrosis. But it might also eliminate deafness or even brown eyes. In this quest to improve the human race, the strengths of our diversity could be lost, and the rights of already vulnerable populations could be jeopardized.

Decisions about how and whether this technology should be used will require an expanded set of scientific virtues: compassion to ensure its applications are designed to be just, humility to ensure its risks are heeded and altruism to ensure its benefits are equitably distributed.

Calls for improved global oversight and robust ethical frameworks are being heeded. Some researchers who apparently knew of He’s experiments are under review by their universities. Chinese investigators have said He skirted regulations and will be punished. But punishment is an imperfect motivator. We must foster researchers’ sense of societal values.

Fortunately, initiatives popping up throughout the scientific community are cultivating a scientific culture informed by a broader set of values and considerations. The Scientific Citizenship Initiative at Harvard University in Cambridge, Massachusetts, trains scientists to align their research with societal needs. The Summer Internship for Indigenous Peoples in Genomics offers genomics training that also focuses on integrating indigenous cultural perspectives into gene studies. The AI Now Institute at New York University has initiated a holistic approach to artificial-intelligence research that incorporates inclusion, bias and justice. And Editing Nature, a programme that I founded, provides platforms that integrate scientific knowledge with diverse cultural world views to foster the responsible development of environmental genetic technologies.

Initiatives such as these are proof [emphasis mine] that science is becoming more socially aware, equitable and just. …

I’m glad to see there’s work being done on introducing a broader set of values into the scientific endeavour. That said, these programmes seem to be voluntary, i.e., people self-select, and those most likely to participate in these programmes are the ones who might be inclined to integrate social values into their work in the first place.

This doesn’t address the issue of how to deal with unscrupulous governments pressuring scientists to create designer babies along with hypercompetitive and possibly unscrupulous individuals such as the members of the ‘Silicon Valley insiders mentioned in Loeffler’s article, teaming up with scientists who will stop at nothing to get their place in the history books.

Like Kofler, I’m encouraged to see these programmes but I’m a little less convinced that they will be enough. What form it might take I don’t know but I think something a little more punitive is also called for.

CCR5 and freedom from HIV

I’ve added this piece about the Berlin and London patients because, back in November 2018, I failed to realize how compelling the idea of eradicating susceptibility to AIDS/HIV might be. Reading about some real life remissions helped me to understand some of He’s stated motivations a bit better. Unfortunately, there’s a major drawback described here in a March 5, 2019 news item on CBC (Canadian Broadcasting Corporation) online news attributed to Reuters,

An HIV-positive man in Britain has become the second known adult worldwide to be cleared of the virus that causes AIDS after he received a bone marrow transplant from an HIV-resistant donor, his doctors said.

The therapy had an early success with a man known as “the Berlin patient,” Timothy Ray Brown, a U.S. man treated in Germany who is 12 years post-transplant and still free of HIV. Until now, Brown was the only person thought to have been cured of infection with HIV, the virus that causes AIDS.

Such transplants are dangerous and have failed in other patients. They’re also impractical to try to cure the millions already infected.

In the latest case, the man known as “the London patient” has no trace of HIV infection, almost three years after he received bone marrow stem cells from a donor with a rare genetic mutation that resists HIV infection — and more than 18 months after he came off antiretroviral drugs.

“There is no virus there that we can measure. We can’t detect anything,” said Ravindra Gupta, a professor and HIV biologist who co-led a team of doctors treating the man.

Gupta described his patient as “functionally cured” and “in remission,” but cautioned: “It’s too early to say he’s cured.”

Gupta, now at Cambridge University, treated the London patient when he was working at University College London. The man, who has asked to remain anonymous, had contracted HIV in 2003, Gupta said, and in 2012 was also diagnosed with a type of blood cancer called Hodgkin’s lymphoma.

In 2016, when he was very sick with cancer, doctors decided to seek a transplant match for him.

“This was really his last chance of survival,” Gupta told Reuters.

Doctors found a donor with a gene mutation known as CCR5 delta 32, which confers resistance to HIV. About one per cent of people descended from northern Europeans have inherited the mutation from both parents and are immune to most HIV. The donor had this double copy of the mutation.

That was “an improbable event,” Gupta said. “That’s why this has not been observed more frequently.”

Most experts say it is inconceivable such treatments could be a way of curing all patients. The procedure is expensive, complex and risky. To do this in others, exact match donors would have to be found in the tiny proportion of people who have the CCR5 mutation.

Specialists said it is also not yet clear whether the CCR5 resistance is the only key [emphasis mine] — or whether the graft-versus-host disease may have been just as important. Both the Berlin and London patients had this complication, which may have played a role in the loss of HIV-infected cells, Gupta said.

Not only is there some question as to what role the CCR5 gene plays, there’s also a question as to whether or not we know what role genes play.

A big question: are genes what we thought?

Ken Richardson’s January 3, 2019 article for Nautilus (I stumbled across it on May 14, 2019 so I’m late to the party) makes and supports a startling statement, It’s the End of the Gene As We Know It We are not nearly as determined by our genes as once thought (Note: A link has been removed),

We’ve all seen the stark headlines: “Being Rich and Successful Is in Your DNA” (Guardian, July 12); “A New Genetic Test Could Help Determine Children’s Success” (Newsweek, July 10); “Our Fortunetelling Genes” make us (Wall Street Journal, Nov. 16); and so on.

The problem is, many of these headlines are not discussing real genes at all, but a crude statistical model of them, involving dozens of unlikely assumptions. Now, slowly but surely, that whole conceptual model of the gene is being challenged.

We have reached peak gene, and passed it.

The preferred dogma started to appear in different versions in the 1920s. It was aptly summarized by renowned physicist Erwin Schrödinger in a famous lecture in Dublin in 1943. He told his audience that chromosomes “contain, in some kind of code-script, the entire pattern of the individual’s future development and of its functioning in the mature state.”

Around that image of the code a whole world order of rank and privilege soon became reinforced. These genes, we were told, come in different “strengths,” different permutations forming ranks that determine the worth of different “races” and of different classes in a class-structured society. A whole intelligence testing movement was built around that preconception, with the tests constructed accordingly.

The image fostered the eugenics and Nazi movements of the 1930s, with tragic consequences. Governments followed a famous 1938 United Kingdom education commission in decreeing that, “The facts of genetic inequality are something that we cannot escape,” and that, “different children … require types of education varying in certain important respects.”

Today, 1930s-style policy implications are being drawn once again. Proposals include gene-testing at birth for educational intervention, embryo selection for desired traits, identifying which classes or “races” are fitter than others, and so on. And clever marketizing now sees millions of people scampering to learn their genetic horoscopes in DNA self-testing kits.[emphasis mine]

So the hype now pouring out of the mass media is popularizing what has been lurking in the science all along: a gene-god as an entity with almost supernatural powers. Today it’s the gene that, in the words of the Anglican hymn, “makes us high and lowly and orders our estate.”

… at the same time, a counter-narrative is building, not from the media but from inside science itself.

So it has been dawning on us is that there is no prior plan or blueprint for development: Instructions are created on the hoof, far more intelligently than is possible from dumb DNA. That is why today’s molecular biologists are reporting “cognitive resources” in cells; “bio-information intelligence”; “cell intelligence”; “metabolic memory”; and “cell knowledge”—all terms appearing in recent literature.1,2 “Do cells think?” is the title of a 2007 paper in the journal Cellular and Molecular Life Sciences.3 On the other hand the assumed developmental “program” coded in a genotype has never been described.


It is such discoveries that are turning our ideas of genetic causation inside out. We have traditionally thought of cell contents as servants to the DNA instructions. But, as the British biologist Denis Noble insists in an interview with the writer Suzan Mazur,1 “The modern synthesis has got causality in biology wrong … DNA on its own does absolutely nothing [ emphasis mine] until activated by the rest of the system … DNA is not a cause in an active sense. I think it is better described as a passive data base which is used by the organism to enable it to make the proteins that it requires.”

I highly recommend reading Richardson’s article in its entirety. As well, you may want to read his book, ” Genes, Brains and Human Potential: The Science and Ideology of Intelligence .”

As for “DNA on its own doing absolutely nothing,” that might be a bit of a eye-opener for the Silicon Valley elite types investigating cognitive advantages attributed to the lack of a CCR5 gene. Meanwhile, there are scientists inserting a human gene associated with brain development into monkeys,

Transgenic monkeys and human intelligence

An April 2, 2019 news item on chinadaily.com describes research into transgenic monkeys,

Researchers from China and the United States have created transgenic monkeys carrying a human gene that is important for brain development, and the monkeys showed human-like brain development.

Scientists have identified several genes that are linked to primate brain size. MCPH1 is a gene that is expressed during fetal brain development. Mutations in MCPH1 can lead to microcephaly, a developmental disorder characterized by a small brain.

In the study published in the Beijing-based National Science Review, researchers from the Kunming Institute of Zoology, Chinese Academy of Sciences, the University of North Carolina in the United States and other research institutions reported that they successfully created 11 transgenic rhesus monkeys (eight first-generation and three second-generation) carrying human copies of MCPH1.

According to the research article, brain imaging and tissue section analysis showed an altered pattern of neuron differentiation and a delayed maturation of the neural system, which is similar to the developmental delay (neoteny) in humans.

Neoteny in humans is the retention of juvenile features into adulthood. One key difference between humans and nonhuman primates is that humans require a much longer time to shape their neuro-networks during development, greatly elongating childhood, which is the so-called “neoteny.”

Here’s a link to and a citation for the paper,

Transgenic rhesus monkeys carrying the human MCPH1 gene copies show human-like neoteny of brain development by Lei Shi, Xin Luo, Jin Jiang, Yongchang Chen, Cirong Liu, Ting Hu, Min Li, Qiang Lin, Yanjiao Li, Jun Huang Hong Wang, Yuyu Niu, Yundi Shi, Martin Styner, Jianhong Wang, Yi Lu, Xuejin Sun, Hualin Yu, Weizhi Ji, Bing Su. National Science Review, nwz043, https://doi.org/10.1093/nsr/nwz043 Published: 27 March 2019

This appears to be an open access paper,

Transgenic monkeys and an ethical uproar

Predictably, this research set off alarms as Sharon Kirkey’s April 12, 2019 article for the National Post describes in detail (Note: A link has been removed)l,

Their brains may not be bigger than normal, but monkeys created with human brain genes are exhibiting cognitive changes that suggest they might be smarter — and the experiments have ethicists shuddering.

In the wake of the genetically modified human babies scandal, Chinese scientists [as a scientist from the US] are drawing fresh condemnation from philosophers and ethicists, this time over the announcement they’ve created transgenic monkeys with elements of a human brain.

Six of the monkeys died, however the five survivors “exhibited better short-term memory and shorter reaction time” compared to their wild-type controls, the researchers report in the journa.

According to the researchers, the experiments represent the first attempt to study the genetic basis of human brain origin using transgenic monkeys. The findings, they insist, “have the potential to provide important — and potentially unique — insights into basic questions of what actually makes humans unique.”

For others, the work provokes a profoundly moral and visceral uneasiness. Even one of the collaborators — University of North Carolina computer scientist Martin Styner — told MIT Technology Review he considered removing his name from the paper, which he said was unable to find a publisher in the West.

“Now we have created this animal which is different than it is supposed to be,” Styner said. “When we do experiments, we have to have a good understanding of what we are trying to learn, to help society, and that is not the case here.” l

In an email to the National Post, Styner said he has an expertise in medical image analysis and was approached by the researchers back in 2011. He said he had no input on the science in the project, beyond how to best do the analysis of their MRI data. “At the time, I did not think deeply enough about the ethical consideration.”

….

When it comes to the scientific use of nonhuman primates, ethicists say the moral compass is skewed in cases like this.

Given the kind of beings monkeys are, “I certainly would have thought you would have had to have a reasonable expectation of high benefit to human beings to justify the harms that you are going to have for intensely social, cognitively complex, emotional animals like monkeys,” said Letitia Meynell, an associate professor in the department of philosophy at Dalhousie University in Halifax.

“It’s not clear that this kind of research has any reasonable expectation of having any useful application for human beings,” she said.

The science itself is also highly dubious and fundamentally flawed in its logic, she said.
“If you took Einstein as a baby and you raised him in the lab he wouldn’t turn out to be Einstein,” Meynell said. “If you’re actually interested in studying the cognitive complexity of these animals, you’re not going to get a good representation of that by raising them in labs, because they can’t develop the kind of cognitive and social skills they would in their normal environment.”

The Chinese said the MCPH1 gene is one of the strongest candidates for human brain evolution. But looking at a single gene is just bad genetics, Meynell said. Multiple genes and their interactions affect the vast majority of traits.

My point is that there’s a lot of research focused on intelligence and genes when we don’t really know what role genes actually play and when there doesn’t seem to be any serious oversight.

Global plea for moratorium on heritable genome editing

A March 13, 2019 University of Otago (New Zealand) press release (also on EurekAlert) describes a global plea for a moratorium,

A University of Otago bioethicist has added his voice to a global plea for a moratorium on heritable genome editing from a group of international scientists and ethicists in the wake of the recent Chinese experiment aiming to produce HIV immune children.

In an article in the latest issue of international scientific journal Nature, Professor Jing-Bao Nie together with another 16 [17] academics from seven countries, call for a global moratorium on all clinical uses of human germline editing to make genetically modified children.

They would like an international governance framework – in which nations voluntarily commit to not approve any use of clinical germline editing unless certain conditions are met – to be created potentially for a five-year period.

Professor Nie says the scientific scandal of the experiment that led to the world’s first genetically modified babies raises many intriguing ethical, social and transcultural/transglobal issues. His main personal concerns include what he describes as the “inadequacy” of the Chinese and international responses to the experiment.

“The Chinese authorities have conducted a preliminary investigation into the scientist’s genetic misadventure and issued a draft new regulation on the related biotechnologies. These are welcome moves. Yet, by putting blame completely on the rogue scientist individually, the institutional failings are overlooked,” Professor Nie explains.

“In the international discourse, partly due to the mentality of dichotomising China and the West, a tendency exists to characterise the scandal as just a Chinese problem. As a result, the global context of the experiment and Chinese science schemes have been far from sufficiently examined.”

The group of 17 [18] scientists and bioethicists say it is imperative that extensive public discussions about the technical, scientific, medical, societal, ethical and moral issues must be considered before germline editing is permitted. A moratorium would provide time to establish broad societal consensus and an international framework.

“For germline editing to even be considered for a clinical application, its safety and efficacy must be sufficient – taking into account the unmet medical need, the risks and potential benefits and the existence of alternative approaches,” the opinion article states.

Although techniques have improved in recent years, germline editing is not yet safe or effective enough to justify any use in the clinic with the risk of failing to make the desired change or of introducing unintended mutations still unacceptably high, the scientists and ethicists say.

“No clinical application of germline editing should be considered unless its long-term biological consequences are sufficiently understood – both for individuals and for the human species.”

The proposed moratorium does not however, apply to germline editing for research uses or in human somatic (non-reproductive) cells to treat diseases.

Professor Nie considers it significant that current presidents of the UK Royal Society, the US National Academy of Medicine and the Director and Associate Director of the US National Institute of Health have expressed their strong support for such a proposed global moratorium in two correspondences published in the same issue of Nature. The editorial in the issue also argues that the right decision can be reached “only through engaging more communities in the debate”.

“The most challenging questions are whether international organisations and different countries will adopt a moratorium and if yes, whether it will be effective at all,” Professor Nie says.

A March 14, 2019 news item on phys.org provides a précis of the Comment in Nature. Or, you ,can access the Comment with this link

Adopt a moratorium on heritable genome editing; Eric Lander, Françoise Baylis, Feng Zhang, Emmanuelle Charpentier, Paul Berg and specialists from seven countries call for an international governance framework.signed by: Eric S. Lander, Françoise Baylis, Feng Zhang, Emmanuelle Charpentier, Paul Berg, Catherine Bourgain, Bärbel Friedrich, J. Keith Joung, Jinsong Li, David Liu, Luigi Naldini, Jing-Bao Nie, Renzong Qiu, Bettina Schoene-Seifert, Feng Shao, Sharon Terry, Wensheng Wei, & Ernst-Ludwig Winnacker. Nature 567, 165-168 (2019) doi: 10.1038/d41586-019-00726-5

This Comment in Nature is open access.

World Health Organization (WHO) chimes in

Better late than never, eh? The World Health Organization has called heritable gene editing of humans ‘irresponsible’ and made recommendations. From a March 19, 2019 news item on the Canadian Broadcasting Corporation’s Online news webpage,

A panel convened by the World Health Organization said it would be “irresponsible” for scientists to use gene editing for reproductive purposes, but stopped short of calling for a ban.

The experts also called for the U.N. health agency to create a database of scientists working on gene editing. The recommendation was announced Tuesday after a two-day meeting in Geneva to examine the scientific, ethical, social and legal challenges of such research.

“At this time, it is irresponsible for anyone to proceed” with making gene-edited babies since DNA changes could be passed down to future generations, the experts said in a statement.

Germline editing has been on my radar since 2015 (see my May 14, 2015 posting) and the probability that someone would experiment with viable embryos and bring them to term shouldn’t be that much of a surprise.

Slow science from Canada

Canada has banned germline editing but there is pressure to lift that ban. (I touched on the specifics of the campaign in an April 26, 2019 posting.) This March 17, 2019 essay on The Conversation by Landon J Getz and Graham Dellaire, both of Dalhousie University (Nova Scotia, Canada) elucidates some of the discussion about whether research into germline editing should be slowed down.

Naughty (or Haughty, if you prefer) scientists

There was scoffing from some, if not all, members of the scientific community about the potential for ‘designer babies’ that can be seen in an excerpt from an article by Ed Yong for The Atlantic (originally published in my ,August 15, 2017 posting titled: CRISPR and editing the germline in the US (part 2 of 3): ‘designer babies’?),

Ed Yong in an Aug. 2, 2017 article for The Atlantic offered a comprehensive overview of the research and its implications (unusually for Yong, there seems to be mildly condescending note but it’s worth ignoring for the wealth of information in the article; Note: Links have been removed),

” … the full details of the experiment, which are released today, show that the study is scientifically important but much less of a social inflection point than has been suggested. “This has been widely reported as the dawn of the era of the designer baby, making it probably the fifth or sixth time people have reported that dawn,” says Alta Charo, an expert on law and bioethics at the University of Wisconsin-Madison. “And it’s not.”

Then about 15 months later, the possibility seemed to be realized.

Interesting that scientists scoffed at the public’s concerns (you can find similar arguments about robots and artificial intelligence not being a potentially catastrophic problem), yes? Often, nonscientists’ concerns are dismissed as being founded in science fiction.

To be fair, there are times when concerns are overblown, the difficulty is that it seems the scientific community’s default position is to uniformly dismiss concerns rather than approaching them in a nuanced fashion. If the scoffers had taken the time to think about it, germline editing on viable embryos seems like an obvious and inevitable next step (as I’ve noted previously).

At this point, no one seems to know if He actually succeeded at removing CCR5 from Lulu’s and Nana’s genomes. In November 2018, scientists were guessing that at least one of the twins was a ‘mosaic’. In other words, some of her cells did not include CCR5 while others did.

Parents, children, competition

A recent college admissions scandal in the US has highlighted the intense competition to get into high profile educational institutions. (This scandal brought to mind the Silicon Valey elite who wanted to know more about gene editing that might result in improved cognitive skills.)

Since it can be easy to point the finger at people in other countries, I’d like to note that there was a Canadian parent among these wealthy US parents attempting to give their children advantages by any means, legal or not. (Note: These are alleged illegalities.) From a March 12, 2019 news article by Scott Brown, Kevin Griffin, and Keith Fraser for the Vancouver Sun,

Vancouver businessman and former CFL [Canadian Football League] player David Sidoo has been charged with conspiracy to commit mail and wire fraud in connection with a far-reaching FBI investigation into a criminal conspiracy that sought to help privileged kids with middling grades gain admission to elite U.S. universities.

In a 12-page indictment filed March 5 [2019] in the U.S. District Court of Massachusetts, Sidoo is accused of making two separate US$100,000 payments to have others take college entrance exams in place of his two sons.

Sidoo is also accused of providing documents for the purpose of creating falsified identification cards for the people taking the tests.

In what is being called the biggest college-admissions scam ever prosecuted by the U.S. Justice Department, Sidoo has been charged with nearly 50 other people. Nine athletic coaches and 33 parents including Hollywood actresses Felicity Huffman and Lori Loughlin. are among those charged in the investigation, dubbed Operation Varsity Blues.

According to the indictment, an unidentified person flew from Tampa, Fla., to Vancouver in 2011 to take the Scholastic Aptitude Test (SAT) in place of Sidoo’s older son and was directed not to obtain too high a score since the older son had previously taken the exam, obtaining a score of 1460 out of a possible 2400.

A copy of the resulting SAT score — 1670 out of 2400 — was mailed to Chapman University, a private university in Orange, Calif., on behalf of the older son, who was admitted to and ultimately enrolled in the university in January 2012, according to the indictment.

It’s also alleged that Sidoo arranged to have someone secretly take the older boy’s Canadian high school graduation exam, with the person posing as the boy taking the exam in June 2012.

The Vancouver businessman is also alleged to have paid another $100,000 to have someone take the SAT in place of his younger son.

Sidoo, an investment banker currently serving as CEO of Advantage Lithium, was awarded the Order of B.C. in 2016 for his philanthropic efforts.

He is a former star with the UBC [University of British Columbia] Thunderbirds football team and helped the school win its first Vanier Cup in 1982. He went on to play five seasons in the CFL with the Saskatchewan Roughriders and B.C. Lions.

Sidoo is a prominent donor to UBC and is credited with spearheading an alumni fundraising campaign, 13th Man Foundation, that resuscitated the school’s once struggling football team. He reportedly donated $2 million of his own money to support the program.

Sidoo Field at UBC’s Thunderbird Stadium is named in his honour.

In 2016, he received the B.C. [British Columbia] Sports Hall of Fame’s W.A.C. Bennett Award for his contributions to the sporting life of the province.

The question of whether or not these people like the ‘Silicon Valley elite’ (mentioned in John Loeffler’s February 22, 2019 article) would choose to tinker with their children’s genome if it gave them an advantage, is still hypothetical but it’s easy to believe that at least some might seriously consider the possibility especially if the researcher or doctor didn’t fully explain just how little is known about the impact of tinkering with the genome. For example, there’s a big question about whether those parents in China fully understood what they signed up for.

By the way, cheating scandals aren’t new (see Vanity Fair’s Schools For Scandal; The Inside Dramas at 16 of America’s Most Elite Campuses—Plus Oxford! Edited by Graydon Carter, published in August 2018 and covering 25 years of the magazine’s reporting). On a similar line, there’s this March13, 2019 essay which picks apart some of the hierarchical and power issues at play in the US higher educational system which led to this latest (but likely not last) scandal.

Scientists under pressure

While Kofler’s February 26, 2019 Nature opinion piece and call to action seems to address the concerns regarding germline editing by advocating that scientists become more conscious of how their choices impact society, as I noted earlier, the ideas expressed seem a little ungrounded in harsh realities. Perhaps it’s time to give some recognition to the various pressures put on scientists from their own governments and from an academic environment that fosters ‘success’ at any cost to peer pressure, etc. (For more about the costs of a science culture focused on success, read this March 2, 2019 blog posting by Jon Tennant on digital-science.com for a breakdown.)

One other thing I should mention, for some scientists getting into the history books, winning Nobel prizes, etc. is a very important goal. Scientists are people too.

Some thoughts

There seems to be a great disjunction between what Richardson presents as an alternative narrative to the ‘gene-god’ and how genetic research is being performed and reported on. What is clear to me is that no one really understands genetics and this business of inserting and deleting genes is essentially research designed to satisfy curiosity and/or allay fears about being left behind in a great scientific race to a an unknown destination.

I’d like to see some better reporting and a more agile response by the scientific community, the various governments, and international agencies. What shape or form a more agile response might take, I don’t know but I’d like to see some efforts.

Back to the regular programme

There’s a lot about CRISPR here on this blog. A simple search of ‘CRISPR ‘in the blog’s search engine should get you more than enough information about the technology and the various issues ranging from intellectual property to risks and more.

The three part series (CRISPR and editing the germline in the US …), mentioned previously, was occasioned by the publication of a study on germline editing research with nonviable embryos in the US. The 2017 research was done at the Oregon Health and Science University by Shoukhrat Mitalipov following similar research published by Chinese scientists in 2015. The series gives relatively complete coverage of the issues along with an introduction to CRISPR and embedded video describing the technique. Here’s part 1 to get you started..

My name is Steve and I’m a sub auroral ion drift

Photo: The Aurora Named STEVE Couresty: NASA Goddard

That stunning image is one of a series, many of which were taken by amateur photographers as noted in a March 14, 2018 US National Aeronautics and Space Agency (NASA)/Goddard Space Flight Center news release (also on EurekAlert) by Kasha Patel about how STEVE was discovered,

Notanee Bourassa knew that what he was seeing in the night sky was not normal. Bourassa, an IT technician in Regina, Canada, trekked outside of his home on July 25, 2016, around midnight with his two younger children to show them a beautiful moving light display in the sky — an aurora borealis. He often sky gazes until the early hours of the morning to photograph the aurora with his Nikon camera, but this was his first expedition with his children. When a thin purple ribbon of light appeared and starting glowing, Bourassa immediately snapped pictures until the light particles disappeared 20 minutes later. Having watched the northern lights for almost 30 years since he was a teenager, he knew this wasn’t an aurora. It was something else.

From 2015 to 2016, citizen scientists — people like Bourassa who are excited about a science field but don’t necessarily have a formal educational background — shared 30 reports of these mysterious lights in online forums and with a team of scientists that run a project called Aurorasaurus. The citizen science project, funded by NASA and the National Science Foundation, tracks the aurora borealis through user-submitted reports and tweets.

The Aurorasaurus team, led by Liz MacDonald, a space scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, conferred to determine the identity of this mysterious phenomenon. MacDonald and her colleague Eric Donovan at the University of Calgary in Canada talked with the main contributors of these images, amateur photographers in a Facebook group called Alberta Aurora Chasers, which included Bourassa and lead administrator Chris Ratzlaff. Ratzlaff gave the phenomenon a fun, new name, Steve, and it stuck.

But people still didn’t know what it was.

Scientists’ understanding of Steve changed that night Bourassa snapped his pictures. Bourassa wasn’t the only one observing Steve. Ground-based cameras called all-sky cameras, run by the University of Calgary and University of California, Berkeley, took pictures of large areas of the sky and captured Steve and the auroral display far to the north. From space, ESA’s (the European Space Agency) Swarm satellite just happened to be passing over the exact area at the same time and documented Steve.

For the first time, scientists had ground and satellite views of Steve. Scientists have now learned, despite its ordinary name, that Steve may be an extraordinary puzzle piece in painting a better picture of how Earth’s magnetic fields function and interact with charged particles in space. The findings are published in a study released today in Science Advances.

“This is a light display that we can observe over thousands of kilometers from the ground,” said MacDonald. “It corresponds to something happening way out in space. Gathering more data points on STEVE will help us understand more about its behavior and its influence on space weather.”

The study highlights one key quality of Steve: Steve is not a normal aurora. Auroras occur globally in an oval shape, last hours and appear primarily in greens, blues and reds. Citizen science reports showed Steve is purple with a green picket fence structure that waves. It is a line with a beginning and end. People have observed Steve for 20 minutes to 1 hour before it disappears.

If anything, auroras and Steve are different flavors of an ice cream, said MacDonald. They are both created in generally the same way: Charged particles from the Sun interact with Earth’s magnetic field lines.

The uniqueness of Steve is in the details. While Steve goes through the same large-scale creation process as an aurora, it travels along different magnetic field lines than the aurora. All-sky cameras showed that Steve appears at much lower latitudes. That means the charged particles that create Steve connect to magnetic field lines that are closer to Earth’s equator, hence why Steve is often seen in southern Canada.

Perhaps the biggest surprise about Steve appeared in the satellite data. The data showed that Steve comprises a fast moving stream of extremely hot particles called a sub auroral ion drift, or SAID. Scientists have studied SAIDs since the 1970s but never knew there was an accompanying visual effect. The Swarm satellite recorded information on the charged particles’ speeds and temperatures, but does not have an imager aboard.

“People have studied a lot of SAIDs, but we never knew it had a visible light. Now our cameras are sensitive enough to pick it up and people’s eyes and intellect were critical in noticing its importance,” said Donovan, a co-author of the study. Donovan led the all-sky camera network and his Calgary colleagues lead the electric field instruments on the Swarm satellite.

Steve is an important discovery because of its location in the sub auroral zone, an area of lower latitude than where most auroras appear that is not well researched. For one, with this discovery, scientists now know there are unknown chemical processes taking place in the sub auroral zone that can lead to this light emission.

Second, Steve consistently appears in the presence of auroras, which usually occur at a higher latitude area called the auroral zone. That means there is something happening in near-Earth space that leads to both an aurora and Steve. Steve might be the only visual clue that exists to show a chemical or physical connection between the higher latitude auroral zone and lower latitude sub auroral zone, said MacDonald.

“Steve can help us understand how the chemical and physical processes in Earth’s upper atmosphere can sometimes have local noticeable effects in lower parts of Earth’s atmosphere,” said MacDonald. “This provides good insight on how Earth’s system works as a whole.”

The team can learn a lot about Steve with additional ground and satellite reports, but recording Steve from the ground and space simultaneously is a rare occurrence. Each Swarm satellite orbits Earth every 90 minutes and Steve only lasts up to an hour in a specific area. If the satellite misses Steve as it circles Earth, Steve will probably be gone by the time that same satellite crosses the spot again.

In the end, capturing Steve becomes a game of perseverance and probability.

“It is my hope that with our timely reporting of sightings, researchers can study the data so we can together unravel the mystery of Steve’s origin, creation, physics and sporadic nature,” said Bourassa. “This is exciting because the more I learn about it, the more questions I have.”

As for the name “Steve” given by the citizen scientists? The team is keeping it as an homage to its initial name and discoverers. But now it is STEVE, short for Strong Thermal Emission Velocity Enhancement.

Other collaborators on this work are: the University of Calgary, New Mexico Consortium, Boston University, Lancaster University, Athabasca University, Los Alamos National Laboratory and the Alberta Aurora Chasers Facebook group.

If you live in an area where you may see STEVE or an aurora, submit your pictures and reports to Aurorasaurus through aurorasaurus.org or the free iOS and Android mobile apps. To learn how to spot STEVE, click here.

There is a video with MacDonald describing the work and featuring more images,

Katherine Kornei’s March 14, 2018 article for sciencemag.org adds more detail about the work,

Citizen scientists first began posting about Steve on social media several years ago. Across New Zealand, Canada, the United States, and the United Kingdom, they reported an unusual sight in the night sky: a purplish line that arced across the heavens for about an hour at a time, visible at lower latitudes than classical aurorae, mostly in the spring and fall. … “It’s similar to a contrail but doesn’t disperse,” says Notanee Bourassa, an aurora photographer in Saskatchewan province in Canada [Regina as mentioned in the news release is the capital of the province of Saskatchewan].

Traditional aurorae are often green, because oxygen atoms present in Earth’s atmosphere emit that color light when they’re bombarded by charged particles trapped in Earth’s magnetic field. They also appear as a diffuse glow—rather than a distinct line—on the northern or southern horizon. Without a scientific theory to explain the new sight, a group of citizen scientists led by aurora enthusiast Chris Ratzlaff of Canada’s Alberta province [usually referred to as Canada’s province of Alberta or simply, the province of Alberta] playfully dubbed it Steve, after a line in the 2006 children’s movie Over the Hedge.

Aurorae have been studied for decades, but people may have missed Steve because their cameras weren’t sensitive enough, says Elizabeth MacDonald, a space physicist at NASA Goddard Space Flight Center in Greenbelt, Maryland, and leader of the new research. MacDonald and her team have used data from a European satellite called Swarm-A to study Steve in its native environment, about 200 kilometers up in the atmosphere. Swarm-A’s instruments revealed that the charged particles in Steve had a temperature of about 6000°C, “impressively hot” compared with the nearby atmosphere, MacDonald says. And those ions were flowing from east to west at nearly 6 kilometers per second, …

Here’s a link to and a citation for the paper,

New science in plain sight: Citizen scientists lead to the discovery of optical structure in the upper atmosphere by Elizabeth A. MacDonald, Eric Donovan, Yukitoshi Nishimura, Nathan A. Case, D. Megan Gillies, Bea Gallardo-Lacourt, William E. Archer, Emma L. Spanswick, Notanee Bourassa, Martin Connors, Matthew Heavner, Brian Jackel, Burcu Kosar, David J. Knudsen, Chris Ratzlaff, and Ian Schofield. Science Advances 14 Mar 2018:
Vol. 4, no. 3, eaaq0030 DOI: 10.1126/sciadv.aaq0030

This paper is open access. You’ll note that Notanee Bourassa is listed as an author. For more about Bourassa, there’s his Twitter feed (@DJHardwired) and his YouTube Channel. BTW, his Twitter bio notes that he’s “Recently heartbroken,” as well as, “Seasoned human male. Expert storm chaser, aurora photographer, drone flyer and on-air FM radio DJ.” Make of that what you will.

Nanofibrous fish skins for wrinkle-free skin (New Zealand’s biggest seafood company moves into skincare)

I am utterly enchanted by this venture employing fish skins and nanotechnology-based processes for a new line of skin care products and, they hope, medical applications,


For those who like text (from a May 21, 2018 Sanford media advisory),

Nanofibre magic turns fish skins into wrinkle busting skin care

Sanford partners with kiwi nanotech experts to help develop a wrinkle-busting skincare product made from Hoki skins.

New Zealand’s biggest and oldest seafood company is moving into the future of skincare and medicine by becoming supporting partner to West Auckland nanofibre producer Revolution Fibres, which is launching a potentially game-changing nanotech face mask.

The actiVLayr face masks use collagen extracted from fish skins as a base ingredient which is then combined with elements such as fruit extracts and hyaluronic acid to make a 100 percent natural and sustainably sourced product.

They have achieved stunning results in third party tests which show that the nanofiber masks can reduce wrinkles by up to 31.5%.*

Revolution Fibres CEO Iain Hosie says it is no exaggeration to say the masks could be revolutionary.

“The wayactiVLayr is produced, and the unique application method of placing it onto wet skin like a mask, means ingredients are absorbed quickly and efficiently into the skin to maximise the repair and protection of the skin.”

Sanford is delighted to support the work that Revolution Fibres is doing by supplying hoki fish skins. Hoki is a sustainably caught fish and its skin has some unique properties.

Sanford’s General Manager of Innovation, Andrew Stanley, says these properties make it ideal for the actiVLayr technology. “Hoki skins are rich in collagen, which is an essential part of our bodies. But their marine collagen is unique – it has a very low melt point, so when placed on the skin, it can dissolve completely and be absorbed in a way that collagen f rom other animals cannot.”

Sanford’s Chief Customer Officer, Andre Gargiulo, says working with the team at Revolution Fibres is a natural fit, because both company’s think about innovation and sustainability in the same way.

“We hope actiVLayr gets the global attention it deserves, and we’re delighted that our sustainably caught Hoki is part of this fantastic New Zealand product. It’s exactly what we’re all about at Sanford – making the most of the precious resources from the sea, working in a sustainable way and getting the most value out of the goodness we harvest from nature.”

Sanford’s Business Development Manager Adrian Grey says the focus on sustainability and value creation are so important for the seafood company.

“Previously we have been making use of these hoki skins, which is great, but they were being used only for fish meal or pet food products. Being able to supply and support a high tech company that is going to earn increased export revenue for New Zealand is just fantastic. And the product created is completely natural, harvested from a globally certified sustainable fishery.”

Sanford provides the hoki skins and then turns these skins into pure collagen using the science and skills of the team at Plant and Food in Nelson [New Zealand for those of us who associate Nelson with British Columbia]. Revolution Fibres transforms the Sanford product into nanofibre using a technique called electrospinning of which Revolution Fibres are the New Zealand pioneers.

During the electrospinning process natural ingredients known as “bioactives” (such as kiwifruit and grapes) and hyaluronic acid (an ingredient to help the skin retain moisture) are bonded to the nanofibres to create sheets of actiVLayr. When it is exposed to wet skin the nanofibres dissolve rapidly and release the bioactives deep into the skin.

The product is being launched at the China Beauty Fair in Shanghai on May 22 [2018] and will go on sale in China this month followed by Hong Kong and New Zealand later in the year.   Revolution Fibres CEO Iain Hosie says there is big demand for unique delivery systems of natural skin and beauty products such as actiVLayr in Asia, which was the key reason to launch the product in China. But his view of the future is even bigger.

“There are endless uses for actiVLayr and the one we’re most proud of is in the medical area with the ability for drug compounds or medicines to be added to the actiVLayr formula. It will enable a controlled dose to be delivered to a patient with skin lesions, burns or acne.”

Revolution Fibres is presenting at Techweek NZ as part of The Fourth Revolution event on May 25 [2018] in Christchurch which introduces high tech engineers who are building a better place.

*Testing conducted by Easy Care using VISIA Complexion Analysis

The media advisory also includes some ‘fascinating ‘facts’,

1kg of hoki skin produces 400 square meters of nanofibre material

Nanofibres are 1/500th the width of a human hair

Revolution Fibres is the only nanofibre producer in the world to meet aerospace industry standards with its AS9100d quality assurance certification

The marine collagen found in hoki skins is unique because of its relatively low melt point, meaning it can dissolve at a lower temperature which makes it perfect for human use

Revolution Fibres is based in West Auckland and employs 12 people, of which 4 have P hDs in science related to nanotechnology. There are also a number of employees with strong engineering backgrounds to complement the company’s Research & Development expertise

Sanford is New Zealand’s oldest and biggest seafood company. It was founded by Albert Sanford in Auckland in 1904

New Zealand’s hoki fishery is certified as sustainable by the London-based Marine Stewardship Council, which audits fisheries all over the world

You can find Sanford here and Revolution Fibres here.

For some perspective on the business side of things, there’s a May 21, 2018 article by Nikki Mandow for newsroom.co.nz,

Revolution Fibres first started talking about the possibility of a collagen nanofibre made from hoki almost a decade ago, as part of a project with Plant & Food’s Seafood Research Centre in Nelson, Hosie [Revolution Fibres CEO Iain Hosie] said, and the company got serious about making a product in 2013.

Previously, the hoki waste skins were used for fish meal and pet food, said Sanford business development manager Adrian Grey.

“Being able to supply and support a high tech company that is going to earn increased export revenue for New Zealand is just fantastic.”

Revolution Fibres also manufactures nanofibres for a number of other uses. These include anti-dust mite pillow coverings, anti-pollution protective face masks, filters for pumps for HRV’s home ventilation systems, and reinforcing material for carbon fibre for fishing rods. The latter product is made from recycled fishing nets collected from South America.

He [Revolution Fibres CEO Iain Hosie] said the company could be profitable, but instead has chosen to continue to invest heavily in research and development.

About 75 percent of revenue comes from selling proprietary products, but increasingly Hosie said the company is working on “co-innovation” projects, where Revolution Fibres manufactures bespoke materials for outside companies.

Revolution Fibres completed its first external funding round last year, raising $1.5 million from the US, and it has just completed another round worth approximately $1million. Hosie, one of the founders, still holds around 20 percent of the company.

He said he hopes to keep the intellectual property in New Zealand, although manufacturing of some products is likely to move closer to their markets – China and the US potentially. However, he said actiVLayr manufacture will remain in New Zealand, because that’s where the raw hoki comes from.

I wonder if we’ll see this product in Canada.

One other thing,  I was curious about this ” … the nanofiber masks can reduce wrinkles by up to 31.5%”  and Visia Complexion Analysis, which is a product from Canfield Scientific, a company specializing in imaging.  Here’s some of what Visia can do (from the Visia product page),

Percentile Scores

Percentile Scores

VISIA’s patented comparison to norms analysis uses the world’s largest skin feature database to grade your patient’s skin relative to others of the same age and skin type. Measure spots, wrinkles, texture, pores, UV spots, brown spots, red areas, and porphyrins.

Meaningful Comparisons

Meaningful Comparisons

Compare results side by side for any combination of views, features or time points, including graphs and numerical data. Zoom and pan images in tandem for clear and easy comparisons.

And, there’s my personal favourite (although it has nothing to do with the topic of this posting0,

Eyelash Analysis

Eyelash Analysis

Evaluates the results of lash improvement treatments with numerical assessments and graphic visualizations.

For anyone who wondered about why the press release has both ‘nanofibre’ and ‘nanofiber’, It’s the difference between US and UK spelling. Perhaps the complexion analysis information came from a US company or one that uses US spellings.

May 16, 2018: UNESCO’s (United Nations Educational, Scientific and Cultural Organization) First International Day of Light

Courtesy: UNESCO

From a May 11, 2018 United Nations Educational, Scientific and Cultural Organization (UNESCO) press release (received via email),

UNESCO will welcome leading scientists on 16 May 2018 for the 1st edition of the International Day of Light (02:30-08:00 pm) to celebrate the role light plays in our daily lives. Researchers and intellectuals will examine how light-based technologies can contribute to meet pressing challenges in diverse areas, such as medicine, education, agriculture and energy.

            UNESCO Director-General Audrey Azoulay will open this event, which will count with the participation of renowned scientists, including:

  • Kip Thorne, 2017 Nobel Prize in Physics, California Institute of Technology (United States of America).
  • Claude Cohen-Tannoudji, 1997 Nobel Prize in Physics, Collège de France.
  • Khaled Toukan, Director of the Synchrotron-light for Experimental Science and Applications in the Middle East (SESAME) based in Allan, Jordan.

The programme of keynotes and roundtables will address many key issues including science policy, our perception of the universe, and international cooperation, through contributions from experts and scientists from around the world.

The programme also includes cultural events, an illumination of UNESCO Headquarters, a photonics science show and an exhibit on the advances of light-based technologies and art.

            The debates that flourished in 2015, in the framework of the International Year of Light, highlighted the importance of light sciences and light-based technologies in achieving the United Nations Sustainable Development Goals. Several thousand events were held in 147 countries during the Year placed under the auspices of UNESCO.  

The proclamation of 16 May as the International Day of Light was supported by UNESCO’s Executive Board following a proposal by Ghana, Mexico, New Zealand and the Russian Federation, and approved by the UNESCO General Conference in November 2017.

More information:

I have taken a look at the programme which is pretty interesting. Unfortunately, I can’t excerpt parts of it for inclusion here as very odd things happen when I attempt to ‘copy and paste’. On the plus side. there’s a bit more information about this ‘new day’ on its event page,

Light plays a central role in our lives. On the most fundamental level, through photosynthesis, light is at the origin of life itself. The study of light has led to promising alternative energy sources, lifesaving medical advances in diagnostics technology and treatments, light-speed internet and many other discoveries that have revolutionized society and shaped our understanding of the universe. These technologies were developed through centuries of fundamental research on the properties of light – starting with Ibn Al-Haytham’s seminal work, Kitab al-Manazir (Book of Optics), published in 1015 and including Einstein’s work at the beginning of the 20th century, which changed the way we think about time and light.

The International Day of Light celebrates the role light plays in science, culture and art, education, and sustainable development, and in fields as diverse as medicine, communications, and energy. The will allow many different sectors of society worldwide to participate in activities that demonstrates how science, technology, art and culture can help achieve the goals of UNESCO – building the foundation for peaceful societies.

The International Day of Light is celebrated on 16 May each year, the anniversary of the first successful operation of the laser in 1960 by physicist and engineer, Theodore Maiman. This day is a call to strengthen scientific cooperation and harness its potential to foster peace and sustainable development.

Happy International Day of Light on Wednesday, May 16, 2018!

A transatlantic report highlighting the risks and opportunities associated with synthetic biology and bioengineering

I love e-Life, the open access journal where its editors noted that a submitted synthetic biology and bioengineering report was replete with US and UK experts (along with a European or two) but no expert input from other parts of the world. In response the authors added ‘transatlantic’ to the title. It was a good decision since it was too late to add any new experts if the authors planned to have their paper published in the foreseeable future.

I’ve commented many times here when panels of experts include only Canadian, US, UK, and, sometimes, European or Commonwealth (Australia/New Zealand) experts that we need to broaden our perspectives and now I can add: or at least acknowledge (e.g. transatlantic) that the perspectives taken are reflective of a rather narrow range of countries.

Now getting to the report, here’s more from a November 21, 2017 University of Cambridge press release,

Human genome editing, 3D-printed replacement organs and artificial photosynthesis – the field of bioengineering offers great promise for tackling the major challenges that face our society. But as a new article out today highlights, these developments provide both opportunities and risks in the short and long term.

Rapid developments in the field of synthetic biology and its associated tools and methods, including more widely available gene editing techniques, have substantially increased our capabilities for bioengineering – the application of principles and techniques from engineering to biological systems, often with the goal of addressing ‘real-world’ problems.

In a feature article published in the open access journal eLife, an international team of experts led by Dr Bonnie Wintle and Dr Christian R. Boehm from the Centre for the Study of Existential Risk at the University of Cambridge, capture perspectives of industry, innovators, scholars, and the security community in the UK and US on what they view as the major emerging issues in the field.

Dr Wintle says: “The growth of the bio-based economy offers the promise of addressing global environmental and societal challenges, but as our paper shows, it can also present new kinds of challenges and risks. The sector needs to proceed with caution to ensure we can reap the benefits safely and securely.”

The report is intended as a summary and launching point for policy makers across a range of sectors to further explore those issues that may be relevant to them.

Among the issues highlighted by the report as being most relevant over the next five years are:

Artificial photosynthesis and carbon capture for producing biofuels

If technical hurdles can be overcome, such developments might contribute to the future adoption of carbon capture systems, and provide sustainable sources of commodity chemicals and fuel.

Enhanced photosynthesis for agricultural productivity

Synthetic biology may hold the key to increasing yields on currently farmed land – and hence helping address food security – by enhancing photosynthesis and reducing pre-harvest losses, as well as reducing post-harvest and post-consumer waste.

Synthetic gene drives

Gene drives promote the inheritance of preferred genetic traits throughout a species, for example to prevent malaria-transmitting mosquitoes from breeding. However, this technology raises questions about whether it may alter ecosystems [emphasis mine], potentially even creating niches where a new disease-carrying species or new disease organism may take hold.

Human genome editing

Genome engineering technologies such as CRISPR/Cas9 offer the possibility to improve human lifespans and health. However, their implementation poses major ethical dilemmas. It is feasible that individuals or states with the financial and technological means may elect to provide strategic advantages to future generations.

Defence agency research in biological engineering

The areas of synthetic biology in which some defence agencies invest raise the risk of ‘dual-use’. For example, one programme intends to use insects to disseminate engineered plant viruses that confer traits to the target plants they feed on, with the aim of protecting crops from potential plant pathogens – but such technologies could plausibly also be used by others to harm targets.

In the next five to ten years, the authors identified areas of interest including:

Regenerative medicine: 3D printing body parts and tissue engineering

While this technology will undoubtedly ease suffering caused by traumatic injuries and a myriad of illnesses, reversing the decay associated with age is still fraught with ethical, social and economic concerns. Healthcare systems would rapidly become overburdened by the cost of replenishing body parts of citizens as they age and could lead new socioeconomic classes, as only those who can pay for such care themselves can extend their healthy years.

Microbiome-based therapies

The human microbiome is implicated in a large number of human disorders, from Parkinson’s to colon cancer, as well as metabolic conditions such as obesity and type 2 diabetes. Synthetic biology approaches could greatly accelerate the development of more effective microbiota-based therapeutics. However, there is a risk that DNA from genetically engineered microbes may spread to other microbiota in the human microbiome or into the wider environment.

Intersection of information security and bio-automation

Advancements in automation technology combined with faster and more reliable engineering techniques have resulted in the emergence of robotic ‘cloud labs’ where digital information is transformed into DNA then expressed in some target organisms. This opens the possibility of new kinds of information security threats, which could include tampering with digital DNA sequences leading to the production of harmful organisms, and sabotaging vaccine and drug production through attacks on critical DNA sequence databases or equipment.

Over the longer term, issues identified include:

New makers disrupt pharmaceutical markets

Community bio-labs and entrepreneurial startups are customizing and sharing methods and tools for biological experiments and engineering. Combined with open business models and open source technologies, this could herald opportunities for manufacturing therapies tailored to regional diseases that multinational pharmaceutical companies might not find profitable. But this raises concerns around the potential disruption of existing manufacturing markets and raw material supply chains as well as fears about inadequate regulation, less rigorous product quality control and misuse.

Platform technologies to address emerging disease pandemics

Emerging infectious diseases—such as recent Ebola and Zika virus disease outbreaks—and potential biological weapons attacks require scalable, flexible diagnosis and treatment. New technologies could enable the rapid identification and development of vaccine candidates, and plant-based antibody production systems.

Shifting ownership models in biotechnology

The rise of off-patent, generic tools and the lowering of technical barriers for engineering biology has the potential to help those in low-resource settings, benefit from developing a sustainable bioeconomy based on local needs and priorities, particularly where new advances are made open for others to build on.

Dr Jenny Molloy comments: “One theme that emerged repeatedly was that of inequality of access to the technology and its benefits. The rise of open source, off-patent tools could enable widespread sharing of knowledge within the biological engineering field and increase access to benefits for those in developing countries.”

Professor Johnathan Napier from Rothamsted Research adds: “The challenges embodied in the Sustainable Development Goals will require all manner of ideas and innovations to deliver significant outcomes. In agriculture, we are on the cusp of new paradigms for how and what we grow, and where. Demonstrating the fairness and usefulness of such approaches is crucial to ensure public acceptance and also to delivering impact in a meaningful way.”

Dr Christian R. Boehm concludes: “As these technologies emerge and develop, we must ensure public trust and acceptance. People may be willing to accept some of the benefits, such as the shift in ownership away from big business and towards more open science, and the ability to address problems that disproportionately affect the developing world, such as food security and disease. But proceeding without the appropriate safety precautions and societal consensus—whatever the public health benefits—could damage the field for many years to come.”

The research was made possible by the Centre for the Study of Existential Risk, the Synthetic Biology Strategic Research Initiative (both at the University of Cambridge), and the Future of Humanity Institute (University of Oxford). It was based on a workshop co-funded by the Templeton World Charity Foundation and the European Research Council under the European Union’s Horizon 2020 research and innovation programme.

Here’s a link to and a citation for the paper,

A transatlantic perspective on 20 emerging issues in biological engineering by Bonnie C Wintle, Christian R Boehm, Catherine Rhodes, Jennifer C Molloy, Piers Millett, Laura Adam, Rainer Breitling, Rob Carlson, Rocco Casagrande, Malcolm Dando, Robert Doubleday, Eric Drexler, Brett Edwards, Tom Ellis, Nicholas G Evans, Richard Hammond, Jim Haseloff, Linda Kahl, Todd Kuiken, Benjamin R Lichman, Colette A Matthewman, Johnathan A Napier, Seán S ÓhÉigeartaigh, Nicola J Patron, Edward Perello, Philip Shapira, Joyce Tait, Eriko Takano, William J Sutherland. eLife; 14 Nov 2017; DOI: 10.7554/eLife.30247

This paper is open access and the editors have included their notes to the authors and the authors’ response.

You may have noticed that I highlighted a portion of the text concerning synthetic gene drives. Coincidentally I ran across a November 16, 2017 article by Ed Yong for The Atlantic where the topic is discussed within the context of a project in New Zealand, ‘Predator Free 2050’ (Note: A link has been removed),

Until the 13th century, the only land mammals in New Zealand were bats. In this furless world, local birds evolved a docile temperament. Many of them, like the iconic kiwi and the giant kakapo parrot, lost their powers of flight. Gentle and grounded, they were easy prey for the rats, dogs, cats, stoats, weasels, and possums that were later introduced by humans. Between them, these predators devour more than 26 million chicks and eggs every year. They have already driven a quarter of the nation’s unique birds to extinction.

Many species now persist only in offshore islands where rats and their ilk have been successfully eradicated, or in small mainland sites like Zealandia where they are encircled by predator-proof fences. The songs in those sanctuaries are echoes of the New Zealand that was.

But perhaps, they also represent the New Zealand that could be.

In recent years, many of the country’s conservationists and residents have rallied behind Predator-Free 2050, an extraordinarily ambitious plan to save the country’s birds by eradicating its invasive predators. Native birds of prey will be unharmed, but Predator-Free 2050’s research strategy, which is released today, spells doom for rats, possums, and stoats (a large weasel). They are to die, every last one of them. No country, anywhere in the world, has managed such a task in an area that big. The largest island ever cleared of rats, Australia’s Macquarie Island, is just 50 square miles in size. New Zealand is 2,000 times bigger. But, the country has committed to fulfilling its ecological moonshot within three decades.

In 2014, Kevin Esvelt, a biologist at MIT, drew a Venn diagram that troubles him to this day. In it, he and his colleagues laid out several possible uses for gene drives—a nascent technology for spreading designer genes through groups of wild animals. Typically, a given gene has a 50-50 chance of being passed to the next generation. But gene drives turn that coin toss into a guarantee, allowing traits to zoom through populations in just a few generations. There are a few natural examples, but with CRISPR, scientists can deliberately engineer such drives.

Suppose you have a population of rats, roughly half of which are brown, and the other half white. Now, imagine there is a gene that affects each rat’s color. It comes in two forms, one leading to brown fur, and the other leading to white fur. A male with two brown copies mates with a female with two white copies, and all their offspring inherit one of each. Those offspring breed themselves, and the brown and white genes continue cascading through the generations in a 50-50 split. This is the usual story of inheritance. But you can subvert it with CRISPR, by programming the brown gene to cut its counterpart and replace it with another copy of itself. Now, the rats’ children are all brown-furred, as are their grandchildren, and soon the whole population is brown.

Forget fur. The same technique could spread an antimalarial gene through a mosquito population, or drought-resistance through crop plants. The applications are vast, but so are the risks. In theory, gene drives spread so quickly and relentlessly that they could rewrite an entire wild population, and once released, they would be hard to contain. If the concept of modifying the genes of organisms is already distasteful to some, gene drives magnify that distaste across national, continental, and perhaps even global scales.

These excerpts don’t do justice to this thought-provoking article. If you have time, I recommend reading it in its entirety  as it provides some insight into gene drives and, with some imagination on the reader’s part, the potential for the other technologies discussed in the report.

One last comment, I notice that Eric Drexler is cited as on the report’s authors. He’s familiar to me as K. Eric Drexler, the author of the book that popularized nanotechnology in the US and other countries, Engines of Creation (1986) .

“Innovation and its enemies” and “Science in Wonderland”: a commentary on two books and a few thoughts about fish (1 of 2)

There’s more than one way to approach the introduction of emerging technologies and sciences to ‘the public’. Calestous Juma in his 2016 book, ”Innovation and Its Enemies; Why People Resist New Technologies” takes a direct approach, as can be seen from the title while Melanie Keene’s 2015 book, “Science in Wonderland; The Scientific Fairy Tales of Victorian Britain” presents a more fantastical one. The fish in the headline tie together, thematically and tenuously, both books with a real life situation.

Innovation and Its Enemies

Calestous Juma, the author of “Innovation and Its Enemies” has impressive credentials,

  • Professor of the Practice of International Development,
  • Director of the Science, Technology, and Globalization Project at Harvard Kennedy School’s Better Science and International Affairs,
  • Founding Director of the African Centre for Technology Studies in Nairobi (Kenya),
  • Fellow of the Royal Society of London, and
  • Foreign Associate of the US National Academy of Sciences.

Even better, Juma is an excellent storyteller perhaps too much so for a book which presents a series of science and technology adoption case histories. (Given the range of historical time periods, geography, and the innovations themselves, he always has to stop short.)  The breadth is breathtaking and Juma manages with aplomb. For example, the innovations covered include: coffee, electricity, mechanical refrigeration, margarine, recorded sound, farm mechanization, and the printing press. He also covers two recently emerging technologies/innovations: transgenic crops and AquAdvantage salmon (more about the salmon later).

Juma provides an analysis of the various ways in which the public and institutions panic over innovation and goes on to offer solutions. He also injects a subtle note of humour from time to time. Here’s how Juma describes various countries’ response to risks and benefits,

In the United States products are safe until proven risky.

In France products are risky until proven safe.

In the United Kingdom products are risky even when proven safe.

In India products are safe when proven risky.

In Canada products are neither safe nor risky.

In Japan products are either safe or risky.

In Brazil products are both safe and risky.

In sub-Saharan Africa products are risky even if they do not exist. (pp. 4-5)

To Calestous Juma, thank you for mentioning Canada and for so aptly describing the quintessentially Canadian approach to not just products and innovation but to life itself, ‘we just don’t know; it could be this or it could be that or it could be something entirely different; we just don’t know and probably will never know.’.

One of the aspects that I most appreciated in this book was the broadening of the geographical perspective on innovation and emerging technologies to include the Middle East, China, and other regions/countries. As I’ve  noted in past postings, much of the discussion here in Canada is Eurocentric and/or UScentric. For example, the Council of Canadian Academies which conducts assessments of various science questions at the request of Canadian and regional governments routinely fills the ‘international’ slot(s) for their expert panels with academics from Europe (mostly Great Britain) and/or the US (or sometimes from Australia and/or New Zealand).

A good example of Juma’s expanded perspective on emerging technology is offered in Art Carden’s July 7, 2017 book review for Forbes.com (Note: A link has been removed),

In the chapter on coffee, Juma discusses how Middle Eastern and European societies resisted the beverage and, in particular, worked to shut down coffeehouses. Islamic jurists debated whether the kick from coffee is the same as intoxication and therefore something to be prohibited. Appealing to “the principle of original permissibility — al-ibaha, al-asliya — under which products were considered acceptable until expressly outlawed,” the fifteenth-century jurist Muhamad al-Dhabani issued several fatwas in support of keeping coffee legal.

This wasn’t the last word on coffee, which was banned and permitted and banned and permitted and banned and permitted in various places over time. Some rulers were skeptical of coffee because it was brewed and consumed in public coffeehouses — places where people could indulge in vices like gambling and tobacco use or perhaps exchange unorthodox ideas that were a threat to their power. It seems absurd in retrospect, but political control of all things coffee is no laughing matter.

The bans extended to Europe, where coffee threatened beverages like tea, wine, and beer. Predictably, and all in the name of public safety (of course!), European governments with the counsel of experts like brewers, vintners, and the British East India Tea Company regulated coffee importation and consumption. The list of affected interest groups is long, as is the list of meddlesome governments. Charles II of England would issue A Proclamation for the Suppression of Coffee Houses in 1675. Sweden prohibited coffee imports on five separate occasions between 1756 and 1817. In the late seventeenth century, France required that all coffee be imported through Marseilles so that it could be more easily monopolized and taxed.

Carden who teaches economics at Stanford University (California, US) focuses on issues of individual liberty and the rule of law with regards to innovation. I can appreciate the need to focus tightly when you have a limited word count but Carden could have a spared a few words to do more justice to Juma’s comprehensive and focused work.

At the risk of being accused of the fault I’ve attributed to Carden, I must mention the printing press chapter. While it was good to see a history of the printing press and attendant social upheavals noting its impact and discovery in regions other than Europe; it was shocking to someone educated in Canada to find Marshall McLuhan entirely ignored. Even now, I believe it’s virtually impossible to discuss the printing press as a technology, in Canada anyway, without mentioning our ‘communications god’ Marshall McLuhan and his 1962 book, The Gutenberg Galaxy.

Getting back to Juma’s book, his breadth and depth of knowledge, history, and geography is packaged in a relatively succinct 316 pp. As a writer, I admire his ability to distill the salient points and to devote chapters on two emerging technologies. It’s notoriously difficult to write about a currently emerging technology and Juma even managed to include a reference published only months (in early 2016) before “Innovation and its enemires” was published in July 2016.

Irrespective of Marshall McLuhan, I feel there are a few flaws. The book is intended for policy makers and industry (lobbyists, anyone?), he reaffirms (in academia, industry, government) a tendency toward a top-down approach to eliminating resistance. From Juma’s perspective, there needs to be better science education because no one who is properly informed should have any objections to an emerging/new technology. Juma never considers the possibility that resistance to a new technology might be a reasonable response. As well, while there was some mention of corporate resistance to new technologies which might threaten profits and revenue, Juma didn’t spare any comments about how corporate sovereignty and/or intellectual property issues are used to stifle innovation and quite successfully, by the way.

My concerns aside, testimony to the book’s worth is Carden’s review almost a year after publication. As well, Sir Peter Gluckman, Chief Science Advisor to the federal government of New Zealand, mentions Juma’s book in his January 16, 2017 talk, Science Advice in a Troubled World, for the Canadian Science Policy Centre.

Science in Wonderland

Melanie Keene’s 2015 book, “Science in Wonderland; The scientific fairy tales of Victorian Britain” provides an overview of the fashion for writing and reading scientific and mathematical fairy tales and, inadvertently, provides an overview of a public education programme,

A fairy queen (Victoria) sat on the throne of Victoria’s Britain, and she presided over a fairy tale age. The nineteenth century witnessed an unprecedented interest in fairies and in their tales, as they were used as an enchanted mirror in which to reflection question, and distort contemporary society.30  …  Fairies could be found disporting themselves thought the century on stage and page, in picture and print, from local haunts to global transports. There were myriad ways in which authors, painters, illustrators, advertisers, pantomime performers, singers, and more, capture this contemporary enthusiasm and engaged with fairyland and folklore; books, exhibitions, and images for children were one of the most significant. (p. 13)

… Anthropologists even made fairies the subject of scientific analysis, as ‘fairyology’ determined whether fairies should be part of natural history or part of supernatural lore; just on aspect of the revival of interest in folklore. Was there a tribe of fairy creatures somewhere out thee waiting to be discovered, across the globe of in the fossil record? Were fairies some kind of folks memory of any extinct race? (p. 14)

Scientific engagements with fairyland was widespread, and not just as an attractive means of packaging new facts for Victorian children.42 … The fairy tales of science had an important role to play in conceiving of new scientific disciplines; in celebrating new discoveries; in criticizing lofty ambitions; in inculcating habits of mind and body; in inspiring wonder; in positing future directions; and in the consideration of what the sciences were, and should be. A close reading of these tales provides a more sophisticated understanding of the content and status of the Victorian sciences; they give insights into what these new scientific disciplines were trying to do; how they were trying to cement a certain place in the world; and how they hoped to recruit and train new participants. (p. 18)

Segue: Should you be inclined to believe that society has moved on from fairies; it is possible to become a certified fairyologist (check out the fairyologist.com website).

“Science in Wonderland,” the title being a reference to Lewis Carroll’s Alice, was marketed quite differently than “innovation and its enemies”. There is no description of the author, as is the protocol in academic tomes, so here’s more from her webpage on the University of Cambridge (Homerton College) website,

Role:
Fellow, Graduate Tutor, Director of Studies for History and Philosophy of Science

Getting back to Keene’s book, she makes the point that the fairy tales were based on science and integrated scientific terminology in imaginative ways although some books with more success than other others. Topics ranged from paleontology, botany, and astronomy to microscopy and more.

This book provides a contrast to Juma’s direct focus on policy makers with its overview of the fairy narratives. Keene is primarily interested in children but her book casts a wider net  “… they give insights into what these new scientific disciplines were trying to do; how they were trying to cement a certain place in the world; and how they hoped to recruit and train new participants.”

In a sense both authors are describing how technologies are introduced and integrated into society. Keene provides a view that must seem almost halcyon for many contemporary innovation enthusiasts. As her topic area is children’s literature any resistance she notes is primarily literary invoking a debate about whether or not science was killing imagination and whimsy.

It would probably help if you’d taken a course in children’s literature of the 19th century before reading Keene’s book is written . Even if you haven’t taken a course, it’s still quite accessible, although I was left wondering about ‘Alice in Wonderland’ and its relationship to mathematics (see Melanie Bayley’s December 16, 2009 story for the New Scientist for a detailed rundown).

As an added bonus, fairy tale illustrations are included throughout the book along with a section of higher quality reproductions.

One of the unexpected delights of Keene’s book was the section on L. Frank Baum and his electricity fairy tale, “The Master Key.” She stretches to include “The Wizard of Oz,” which doesn’t really fit but I can’t see how she could avoid mentioning Baum’s most famous creation. There’s also a surprising (to me) focus on water, which when it’s paired with the interest in microscopy makes sense. Keene isn’t the only one who has to stretch to make things fit into her narrative and so from water I move onto fish bringing me back to one of Juma’s emerging technologies

Part 2: Fish and final comments

Science Alive! is everywhere; #AskACurator is Sept. 13, 2017; and more

Researching a piece sometimes leads you to unexpected corners on the internet. This started with an announcement about #AskACurator on Twitter and Instagram in the August 30, 2017 issue (received via email) of What’s Up @ The Museums (from Ingenium or what was known as the Canada Science and Technology Museums Corporation).

Science Alive!

In trying to pad out the one announcement that might be of interest to people who don’t live near one of Canada’s science and technology museums, i.e., anyone who lives outside of Ottawa, Ontario, I checked out their fairly new (the first video in the series was posted in February 2016) science podcast series, Science Alive!

Despite reservations (I have very little interest in space exploration and even less in the Canadarm), I found the first video in the series quite engaging,

Of course, I had more questions but that’s the point o what is intended to be both an information and promotional video designed to attract visitors.

But, this is not the only Science Alive. Simon Fraser University (SFU) has a student-run, not-for-profit organization known as Science AL!VE, which runs summer camps and weekend clubs in British Columbia. (This SFU organization is part of Actua, “Canada’s largest STEM [science, technology, engineering, and mathematics] outreach organization. They have annual reports stretching back to 2010/11.)

There’s also a Science Alive with Living Things in Michigan, US and a science alive! in New Zealand, which “is a not-for-profit trust promoting science and technology worldwide.”

I had to stop there but there are more ‘science alive’ programmes out there.

#AskACurator

Here’s the announcement that started my Science Alive! adventure, from the August 30, 2017 issue (received via email) of What’s Up @ The Museums,

#AskACurator
September 13, 2017
September is more than back to school time – it’s Ask a Curator Time! Our Museums are excited to once again be among more than 1200 museums from 52 countries participating in #AskACurator Day on Wednesday September 13, 2017! Have a question for our curators?

Send your questions to @SciTechMuseum, @avspacemuseum or @AgMuseum!

#AskACurator is being organized by someone called Mar Dixon. Her website‘s About Me page (from the homepage, click on About Me)  lists current and past projects only. I can certainly appreciate why she might have done that. (IMO) Describing your education, past employers, achievements, etc., i.e., standard biographical information can get boring but the projects you’re working on or have worked on and are passionate about? Well, for some us it’s all about the work.

Here’s more about the Sept. 13, 2017 #AskACurator day on Twitter and Instagram,

This is the list of all museums who signed up so far. It is in alphabetical order by country. I’m updating this page every few days. If your museum isn’t on listed, use the sign up form.  If you are listed and can NOT take part in 2017 please contact me at mar@mardixon.com or @MarDixon on Twitter.

Please note:  @AskACurator is also on Instagram AND Twitter so feel free to use the tag on there!

How to take Part: Participants  Want to know how to Take Part? There’s an article for that! (Please note the date has changed!)

How to take Part: Museums  You might want to tell your followers the time your curator will be available.  Some museums write it on their events page, others leave it open to see what questions they receive.  However, to get your name out there – it helps to jump in to general questions and not just wait to be asked a specific question.  Some people will use the hashtag to ask questions such as how to know what to collect, what skills are needed, what are the unknowns of being a curator etc.  We also have a few #Askacurator people who have questions like ‘do you have a teddy bear in your collection’ or ‘what’s the funniest thing you heard in your museum’ etc.

Last updated August 29 2017
Museums taking part: 1421

Countries: 54

For anyone who’s never dealt with a curator, you might find this video where curator David Pantalony discusses a giant globe and what they did and didn’t include on the globe from Ingenium’s Science Alive! series informative,

Beakerhead Sept. 13 – 17, 2017 in Calgary

Here’s more about this year’s iteration of the event (from the Beakerhead attend page),

Mark your calendars for September 13 – 17, 2017 when Beakerhead takes over Calgary with a smash up of art, science and engineering both indoors and out! From citywide, pop-up engineered art galleries and flame-spitting, larger-than-life public art encounters to the entertaining science of … everything, there’s something for everyone!

With over 60 events and programs to choose from, Beakerhead has something for everyone – whether you define yourself as “creative” or “technical” in nature. In 2016 over 130,000 people took part, including a few actual astronauts!

In 2017, Beakerhead celebrates the ups and downs of experimentation and invention!
A special Canada 150 version of Beakerhead will see Calgary’s downtown core become a canvas for a larger-than-life interactive experience where participants will navigate to and from Beakerhead encounters å la Snakes and Ladders while we celebrate the ups and downs that mark the wild and bumpy ride of invention and creativity.

Events, experiments and programs that make up the five day spectacle include:

  • Snakes and Ladders: An interactive experience that encourages exploration of the city (and human ingenuity) through delightfully engineered public art installations.
  • Workshops and talks: explore the science of scent, play with your food, immerse yourself in the laboratory of life!
  • Four to Six: A street party on Stephen Avenue where science gets social.
  • Ticketed events: Command to be entertained by world famous (and soon-to-be-famous) inventors, scientists, performers (and maybe even an animal or two!)
  • Ingenuity challenges: In that past, Beakerhead has pit catapult teams against each other – this year expect a new high-reaching competition!
  • Community programs: Beakerhead becomes a stage for over 100 collaborating organizations, both large and small, to show off their discoveries and creativity through events and programs of their own. Learn how you can take part, too!
  • School tours, talks, and challenges: Beakerhead engages 25,000 students each year.

The Beakerhead events page is overwhelming and I suggest the unitiated scrol down to the Highlights section where you can find out more about the organization, find a programme announcement which allows you to orient yourself (somewhat), and more.

European Science Open Forum (ESOF) 2018

This science shindig comes along every two years. The last one was in Manchester, UK in 2016 and now it’s time to gear up for Toulouse, France in 2018 (from the ESOF July 2017 newsletter received via email),

ESOF 2018 in Toulouse.
Save the date! One year to go.

The next EuroScience Open Forum, ESOF 2018 will be held in Toulouse, France, 9-14 July 2018 in just one year from now!
Save the dates and plan your visit to the European City of Science 2018, with the ESOF 2018 motto: « Sharing Science: towards new horizons! »

With more than 300 sessions proposed in the first call for scientific sessions on 10 themes and 4 cross-cutting domains covering all sciences, the programme promises to be attractive and a major crossroad of debates on the future of science and how to share it.

Keep an eye on ongoing and future calls: www.esof.eu

Key dates:
Call for Scientific sessions: February -June 2017
Call for Science in the City Festival initiatives: June – September 2017
Call for Careers & Science to Business sessions: July – October 2017
Call for posters and interactive presentations: October 2017 – January 2018

Consider that
– ESOF is the largest interdisciplinary science event in Europe.
– ESOF is a cross-road for exchange between scientists, students, policy makers, innovators, industry managers and science media.
– 2018 is a key year for the preparation of the next framework programme [major seven-year European Union science funding programme; the current such programme is Horizon 2020, which stated in 2013] for research and innovation of the European Union and key discussions will occur at ESOF 2018.

And that
– Toulouse, the Capital of Occitania, in Southern France and the Capital of aeronautics and space research will surprise you with the many facets of its culture and scientific domains.
– And is both a historical and modern lively City, home of 120 000 students!

We are eager to share this event with you and are sure you will make it a wonderful success!

Dr Anne Cambon-Thomsen
ESOF 2018 Champion

You can find out more about ESOF on the website’s About page,

ESOF (EuroScience Open Forum) is the largest interdisciplinary science meeting in Europe. It is dedicated to scientific research and innovation and offers a unique framework for interaction and debate for scientists, innovators, policy makers, business people and the general public.

Created in 2004 by EuroScience, this biennial European forum brings together over 4 000 researchers, educators, business actors, policy makers and journalists from all over the world to discuss breakthroughs in science. More than 40% of the participants are students and young researchers.

The 8th edition of ESOF will take place in Toulouse, France, from 9 till 14 July 2018.

ESOF figures

4000+ delegates from 80+ countries
400+ journalists and science communicators
150+ conferences, workshops and scientific sessions
200+ events open to the general public, attended by more than 35 000 participants

What to expect at ESOF?

Taking part in ESOF is a unique opportunity to:

  • further knowledge on the challenges and breakthroughs in research, innovation and their relation to society;
  • create links, exchange and debate with leaders of the scientific community worldwide in an interdisciplinary context;
  • communicate the latest news on scientific research and innovation to an international audience;
  • develop a network in view of building a research career.

Find out more about ESOF and EuroScience: www.euroscience.org

I can’t find an overarching theme for the event or any promotional videos but there is this: Robots and humans : How do they cooperate ? 5Th preparatory meeting ESOF 2018 video (running time: 1 hour and 41 mins.) The title is if nothing else an intriguing hint of what ESOF 2018 may hold.

I also checked out the Science in the City Festival (formerly City of Science) and found information for this previously mentioned call,

Parallel to the EuroScience Open Forum, the Science in the City Festival will invest the city and its surroundings.

As a free event, Science in the City Festival is aimed at people of all ages who are curious about science and innovation.

If you wish to be part of the Science in the City programme, please send your proposals for our call for initiatives by filling this online form.

Deadline: 30th September 2017

Call for initiatives for the Science in the City Festival(PDF)

The online form lists a set of ESOF 2018 themes or stems or topics,

If it helps, Toulouse is known as ‘la Ville Rose’ or Pink City.

That’s it for this roundup of ‘sciencish’ bits.

Canadian Science Policy Conference inaugurates Lecture Series: Science Advice in a Troubled World

The Canadian Science Policy Centre (CSPC) launched a lecture series on Monday, Jan. 16, 2017 with Sir Peter Gluckman as the first speaker in a talk titled, Science Advice in a Troubled World. From a Jan. 18, 2017 CSPC announcement (received via email),

The inaugural session of the Canadian Science Policy Lecture Series was hosted by ISSP [University of Ottawa’s Institute for Science Society and Policy (ISSP)] on Monday January 16th [2017] at the University of Ottawa. Sir Peter Gluckman, Chief Science Advisor to the Prime Minister of New Zealand gave a presentation titled “Science Advise [sic] in a troubled world”. For a summary of the event, video and pictures please visit the event page.  

The session started with speeches by Monica Gattiner, Director, Institute for Science, Society and Policy, Jacques Frémont, President of the University of Ottawa as well as Mehrdad Hariri, CEO and President of the Canadian Science Policy Centre (CSPC).

The talk itself is about 50 mins. but there are lengthy introductions, including a rather unexpected (by me) reference to the recent US election from the president of the University of Ottawa, Jacques Frémont (formerly the head of Québec’s Human Rights Commission, where the talk was held. There was also a number of questions after the talk. So, the running time for the video 1 hr. 12 mins.

Here’s a bit more information about Sir Peter, from the Science Advice in a Troubled World event page on the CSPC website,

Sir Peter Gluckman ONZ FRS is the first Chief Science Advisor to the Prime Minister of New Zealand, having been appointed in 2009. He is also science envoy and advisor to the Ministry of Foreign Affairs and Trade. He is chair of the International Network of Government Science Advice (INGSA), which operates under the aegis of the international Council of Science (ICSU). He chairs the APEC Chief Science Advisors and Equivalents group and is the coordinator of the secretariat of Small Advanced Economies Initiative.  In 2016 he received the AAAS award in Science Diplomacy. He trained as a pediatric and biomedical scientist and holds a Distinguished University Professorship at the Liggins Institute of the University of Auckland. He has published over 700 scientific papers and several technical and popular science books. He has received the highest scientific (Rutherford medal) and civilian (Order of New Zealand, limited to 20 living persons) honours in NZ and numerous international scientific awards. He is a Fellow of the Royal Society of London, a member of the National Academy of Medicine (USA) and a fellow of the Academy of Medical Sciences (UK).

I listened to the entire video and Gluckman presented a thoughtful, nuanced lecture in which he also mentioned Calestous Juma and his 2016 book, Innovation and Its Enemies (btw, I will be writing a commentary about Juma’s extraordinary effort). He also referenced the concepts of post-truth and post-trust, and made an argument for viewing evidence-based science as part of the larger policymaking process rather than the dominant or only factor. From the Science Advice in a Troubled World event page,

Lecture Introduction

The world is facing many challenges from environmental degradation and climate change to global health issues, and many more.  Societal relationships are changing; sources of information, reliable and otherwise, and their transmission are affecting the nature of public policy.

Within this context the question arises; how can scientific advice to governments help address these emerging issues in a more unstable and uncertain world?
The relationship between science and politics is complex and the challenges at their interface are growing. What does scientific advice mean within this context?
How can science better inform policy where decision making is increasingly made against a background of post-truth polemic?

I’m not in perfect agreement with Gluckman with regard to post-truth as I have been influenced by an essay of Steve Fuller’s suggesting that science too can be post-truth. (Fuller’s essay was highlighted in my Jan. 6, 2017 posting.)

Gluckman seems to be wielding a fair amount of influence on the Canadian scene. This is his second CSPC visit in the last few months. He was an invited speaker at the Eighth Annual CSPC conference in November 2016 and, while he’s here in Jan. 2017, he’s chairing the Canadian Institutes of Health Research (CIHR) International Panel on Peer Review. (The CIHR is one of Canada’s three major government funding agencies for the sciences.)

In other places too, he’s going to be a member of a panel at the University of Oxford Martin School in later January 2017. From the “Is a post-truth world a post-expert world?” event page on the Oxford Martin webspace,

Winston Churchill advised that “experts should be on tap but never on top”. In 2017, is a post-truth world a post-expert world? What does this mean for future debates on difficult policy issues? And what place can researchers usefully occupy in an academic landscape that emphasises policy impact but a political landscape that has become wary of experts? Join us for a lively discussion on academia and the provision of policy advice, examining the role of evidence and experts and exploring how gaps with the public and politicians might be bridged.

This event will be chaired by Achim Steiner, Director of the Oxford Martin School and former Executive Director of the United Nations Environment Programme, with panellists including Oxford Martin Visiting Fellow Professor Sir Peter Gluckman, Chief Science Advisor to the Prime Minister of New Zealand and Chair of the International Network for Government Science Advice; Dr Gemma Harper, Deputy Director for Marine Policy and Evidence and Chief Social Scientist in the Department for Environment, Food and Rural Affairs (Defra), and Professor Stefan Dercon, Chief Economist of the Department for International Development (DFID) and Professor of Economic Policy at the Blavatnik School of Government.

This discussion will be followed by a drinks reception, all welcome.

Here are the logistics should you be lucky enough to be able to attend (from the event page),

25 January 2017 17:00 – 18:15

Lecture Theatre, Oxford Martin School

34 Broad Street (corner of Holywell and Catte Streets)
Oxford
OX1 3BD

Registration ((right hand column) is free.

Finally, Gluckman has published a paper on the digital economy as of Nov. 2016, which can be found here (PDF).

FrogHeart presents: Steep (1) A digital poetry of gold nanoparticles on Nov. 17, 2016 in Vancouver (Canada)

For anyone who has wanted to hear about the videopoem or poetryfilm, Steep (1): A digital poetry of gold nanoparticles, that I presented at the 2015 International Symposium on Electronic Arts (ISEA) in Vancouver, your wait is over. From the Canadian Academy of Independent Scholars Nov. 7, 2016 announcement (received via email),

Date:  Thursday, November 17th, 2016
Time:  7:30 pm
Place:  Simon Fraser University, Vancouver, BC Campus, 515 West Hastings Street (between Seymour and Richards Streets) in the Diamond Lounge
Speaker:  Maryse de la Giroday
Topic:  A digital poetry of gold nanoparticles: a Steep art/science project

Outline:

An object of desire, the stuff of myth and legend, and a cross-cultural icon, gold is now being perceived in a whole new way at the nanoscale where its properties and colour undergo a change. Increasingly used as a component in biomedical applications, gold nanoparticles are entering the environment (air, soil, and water).  ‘Steep (1): A digital poetry of gold nanoparticles’ is a short videopoem exploring the good and the bad about gold at the macroscale and at the nanoscale.

Presented at the 2015 International Symposium on Electronic Arts, the Steep (1) videopoem is an art/sci collaboration between Maryse de la Giroday (science writer and poet) from Canada and Raewyn Turner (video artist) from New Zealand. In addition to a look at the video, the presentation offers an inside perspective on incorporating science, poetry, and video in an art/sci piece. As well, there’ll be some discussion regarding one or more of Maryse’s and Raewyn’s current art/sci projects.

Brief Biography:
Maryse de la Giroday writes and publishes the largest, independent, science blog in Canada. Her main focus is nanotechnology (the Canadian kind when she can find it). She has also written several pieces for local visual arts magazine, Preview. Maryse holds an undergraduate Communications (honours) degree from Simon Fraser University and a Master’s degree (Creative Writing and New Media) from De Montfort University (UK). (Unfortunately, Raewyn will either be in New Zealand or on the US East Coast and unable to attend.)

You can preview the video here at steep.nz or here on Vimeo.