Tag Archives: NIOSH

An app for nanomaterial risks (NanoRisk)

It seems past time for someone to have developed an app for nanomaterial risks. A Nov. 12, 2015 news item on Nanowerk makes the announcement (Note: A link has been removed),

The NanoRisk App is a guide to help the researcher in the risk assessment of nanomaterials. This evaluation is determined based on the physicochemical characteristics and the activities to be carried out by staff in research laboratories.

The NanoRisk App was developed at the University of Los Andes or Universidad de los Andes in Colombia (there also seems to be one in Chile). From the Nano Risk App homepage,

The NanoRisk App application was developed at the University of Los Andes by the Department of Chemical Engineering and the Department of Electrical and Electronic Engineering, Faculty of Engineering and implemented in cooperation with the Department of Occupational Health at the University of Los Andes. This application focuses on the use of manufactured nanomaterials.


Homero Fernando Pastrana Rendón MD, MsC, PhD Candidate. Alba Graciela Ávila, Associate Professor, Department of Electrical and Electronic Engineering. Felipe Muñoz Giraldo, Professor Associate Professor, Department of Chemical Engineering, University of Los Andes.

Acknowledgements to Diego Angulo and Diana Fernandez, from the Imagine group, for all the support in the development of this application.

About the App

The app is a guide to help the researcher in the risk assessment of nanomaterials. This evaluation is determined based on the physicochemical characteristics and the activities to be carried out by staff in research laboratories. This is based on nano risk management strategies from various institutions such as the National Institute for Occupational Safety and Health, U.S. (NIOSH), the New Development Organization of Japan Energy and Industrial Technology (NEDO), the European Commission (Nanosafe Program) and the work developed by the Lawrence Livermore National Laboratory (California, USA) in conjunction with the Safety Science Group at the University of Delft in the Netherlands.


The app will estimates the risk at four levels (low, medium, high and very high) for the hazard of the nanomaterial and the probability to be exposed to the material. Then it will recommend measures to contain the risk by applying engineering measures (controlled ventilation system, biosafety cabinet and glovebox).

They have a copyright notice on the page, as well as, instructions on how to access the App and the information.

New US platform for nanocellulose and occupational health and safety research

There’ve been quite a few (more than two) news items about nanocellulose in the last weeks. This latest one from the US National Institute for Occupational Safety and Health (NIOSH) concerns a memorandum of understanding (MOU) on a new research platform, from a May 28, 2015 news item on Nanowerk,

The National Institute for Occupational Safety and Health (NIOSH) has signed a memorandum of understanding (MOU) with the Partnership to Advance Research and Guidance for Occupational Safety and Health in Nanotechnology (P3NANO). The partnership between NIOSH and P3NANO will serve as a platform for occupational safety and health research as well as educational and business initiatives leading to the development of new risk management guidance, recommendations, and findings relating to the potential human health impacts of exposure to nanoscale cellulose materials.

I found more information about P3NANO in a Sept. 27, 2014 post by Michael Goergen for the Forest Business Network blog,

The U.S. Endowment for Forestry and Communities (Endowment) today announced the selection of nine scientific proposals designed to advance the commercialization of Cellulosic Nanomaterials (CN). The projects are being funded through P3Nano – a public-private partnership founded by the Endowment and the USDA Forest Service (USFS) with federal matching funds being provided by the Forest Service’s State and Private Forestry and Research and Develop branches and work coordinated with the USFS Forest Products Laboratory. The initial projects total more than $3 million in partnership funding.

Through a review process that included experts in business, government, and academia with extensive experience in CN, proposals were selected from 65 submissions requesting more than $20 million.

Carlton Owen, Chair of the P3Nano Steering Committee and President of the Endowment stated, “Our partnership is committed to finding new high-value products that build on the renewability of the nation’s forests. Cellulosic nanomaterials offer the promise of not only advanced green products for a more sustainable future but they do so while putting Americans to work in family-wage jobs at the same time that we advance the health and vitality of forests.”

P3Nano had previously awarded its foundational grant focusing on the environmental health and safety of cellulosic nanomaterials ensuring that priority one is the understanding of the environmental impacts and public safety.

The P3Nano (P3NANO) partnership does not seem to have its own website but there is this webpage on the US Endowment for Forestry & Communities, Inc.

One final comment, I’m surprised this initiative didn’t make the list published by the US White House of its new initiatives to commercialize nanotechnology (see my May 27, 2015 post for a full list).

US White House establishes new initiatives to commercialize nanotechnology

As I’ve noted several times, there’s a strong push in the US to commercialize nanotechnology and May 20, 2015 was a banner day for the efforts. The US White House announced a series of new initiatives to speed commercialization efforts in a May 20, 2015 posting by Lloyd Whitman, Tom Kalil, and JJ Raynor,

Today, May 20 [2015], the National Economic Council and the Office of Science and Technology Policy held a forum at the White House to discuss opportunities to accelerate the commercialization of nanotechnology.

In recognition of the importance of nanotechnology R&D, representatives from companies, government agencies, colleges and universities, and non-profits are announcing a series of new and expanded public and private initiatives that complement the Administration’s efforts to accelerate the commercialization of nanotechnology and expand the nanotechnology workforce:

  • The Colleges of Nanoscale Science and Engineering at SUNY Polytechnic Institute in Albany, NY and the National Institute for Occupational Safety and Health are launching the Nano Health & Safety Consortium to advance research and guidance for occupational safety and health in the nanoelectronics and other nanomanufacturing industry settings.
  • Raytheon has brought together a group of representatives from the defense industry and the Department of Defense to identify collaborative opportunities to advance nanotechnology product development, manufacturing, and supply-chain support with a goal of helping the U.S. optimize development, foster innovation, and take more rapid advantage of new commercial nanotechnologies.
  • BASF Corporation is taking a new approach to finding solutions to nanomanufacturing challenges. In March, BASF launched a prize-based “NanoChallenge” designed to drive new levels of collaborative innovation in nanotechnology while connecting with potential partners to co-create solutions that address industry challenges.
  • OCSiAl is expanding the eligibility of its “iNanoComm” matching grant program that provides low-cost, single-walled carbon nanotubes to include more exploratory research proposals, especially proposals for projects that could result in the creation of startups and technology transfers.
  • The NanoBusiness Commercialization Association (NanoBCA) is partnering with Venture for America and working with the National Science Foundation (NSF) to promote entrepreneurship in nanotechnology.  Three companies (PEN, NanoMech, and SouthWest NanoTechnologies), are offering to support NSF’s Innovation Corps (I-Corps) program with mentorship for entrepreneurs-in-training and, along with three other companies (NanoViricides, mPhase Technologies, and Eikos), will partner with Venture for America to hire recent graduates into nanotechnology jobs, thereby strengthening new nanotech businesses while providing needed experience for future entrepreneurs.
  • TechConnect is establishing a Nano and Emerging Technologies Student Leaders Conference to bring together the leaders of nanotechnology student groups from across the country. The conference will highlight undergraduate research and connect students with venture capitalists, entrepreneurs, and industry leaders.  Five universities have already committed to participating, led by the University of Virginia Nano and Emerging Technologies Club.
  • Brewer Science, through its Global Intern Program, is providing more than 30 students from high schools, colleges, and graduate schools across the country with hands-on experience in a wide range of functions within the company.  Brewer Science plans to increase the number of its science and engineering interns by 50% next year and has committed to sharing best practices with other nanotechnology businesses interested in how internship programs can contribute to a small company’s success.
  • The National Institute of Standards and Technology’s Center for Nanoscale Science and Technology is expanding its partnership with the National Science Foundation to provide hands-on experience for students in NSF’s Advanced Technology Education program. The partnership will now run year-round and will include opportunities for students at Hudson Valley Community College and the University of the District of Columbia Community College.
  • Federal agencies participating in the NNI [US National Nanotechnology Initiative], supported by the National Nanotechnology Coordination Office [NNCO], are launching multiple new activities aimed at educating students and the public about nanotechnology, including image and video contests highlighting student research, a new webinar series focused on providing nanotechnology information for K-12 teachers, and a searchable web portal on nano.gov of nanoscale science and engineering resources for teachers and professors.

Interestingly, May 20, 2015 is also the day the NNCO held its second webinar for small- and medium-size businesses in the nanotechnology community. You can find out more about that webinar and future ones by following the links in my May 13, 2015 posting.

Since the US White House announcement, OCSiAl has issued a May 26, 2015 news release which provides a brief history and more details about its newly expanded NanoComm program,

OCSiAl launched the iNanoComm, which stands for the Integrated Nanotube Commercialization Award, program in February 2015 to help researchers lower the cost of their most promising R&D projects dedicated to SWCNT [single-walled carbon nanotube] applications. The first round received 33 applications from 28 university groups, including The Smalley-Curl Center for Nanoscale Science and Technology at Rice University and the Concordia Center for Composites at Concordia University [Canada] among others. [emphasis mine] The aim of iNanoComm is to stimulate universities and research organizations to develop innovative market products based on nano-augmented materials, also known as clean materials.

Now the program’s criteria are being broadened to enable greater private sector engagement in potential projects and the creation of partnerships in commercializing nanotechnology. The program will now support early stage commercialization efforts connected to university research in the form of start-ups, technology transfers, new businesses and university spinoffs to support the mass commercialization of SWCNT products and technologies.

The announcement of the program’s expansion took place at the 2015 Roundtable of the US NanoBusiness Commercialization Association (NanoBCA), the world’s first non-profit association focused on the commercialization of nanotechnologies. NanoBCA is dedicated to creating an environment that nurtures research and innovation in nanotechnology, promotes tech-transfer of nanotechnology from academia to industry, encourages private capital investments in nanotechnology companies, and helps its corporate members bring innovative nanotechnology products to market.

“Enhancing iNanoComm as a ‘start-up incubator’ is a concrete step in promoting single-wall carbon nanotube applications in the commercial world,” said Max Atanassov, CEO of OCSiAl USA. “It was the logical thing for us to do, now that high quality carbon nanotubes have become broadly available and are affordably priced to be used on a mass industrial scale.”

Vince Caprio, Executive Director of NanoBCA, added that “iNanoComm will make an important contribution to translating fundamental nanotechnology research into commercial products. By facilitating the formation of more start-ups, it will encourage more scientists to pursue their dreams and develop their ideas into commercially successful businesses.”

For more information on the program expansion and how it can reduce the cost of early stage research connected to university projects, visit the iNanoComm website at www.inanocomm.org or contact info@inanocomm.org.

h/t Azonano May 27, 2015 news item

Quantum dots, televisions, and a counter-intuitive approach to environmental issues

There’s a very interesting Jan. 8, 2015 essay by Dr. Andrew Maynard, being hosted on Nanowerk, about the effects that quantum dot televisions could have on the environment (Note: A link has been removed),

Earlier this week, The Conversation reported that, “The future is bright, the future is … quantum dot televisions”. And judging by the buzz coming from this week’s annual Consumer Electronics Show (CES) that’s right – the technology is providing manufacturers with a cheap and efficient way of producing the next generation of brilliant, high-definition TV screens.

But the quantum dots in these displays also use materials and technologies – including engineered nanoparticles and the heavy metal cadmium – that have been a magnet for health and environmental concerns. Will the dazzling pictures this technology allow blind us to new health and environmental challenges, or do their benefits outweigh the potential risks?

If I understand things rightly, cadmium is toxic at both the macroscale and the nanoscale and Andrew goes on to describe quantum dots (cadmium at the nanoscale) and the problem they could present in his Jan. 7, 2015 essay on The Conversation,also hosted by Nanowerk, (Note: Link have been removed),

Quantum dots are a product of the emerging field of nanotechnology. They are made of nanometer-sized particles of a semiconducting material – often cadmium selenide. About 2,000 to 20,000 times smaller than the width of a single human hair, they’re designed to absorb light of one color and emit it as another color – to fluoresce. This property makes them particularly well-suited for use in products like tablets and TVs that need bright, white, uniform backlights.

… What is unique about quantum dots is that the color of the emitted light can be modified by simply changing the size of the quantum dot particles. And because this color-shifting is a physical phenomenon, quantum dots far outperform their chemical counterparts in brightness, color and durability.

Unfortunately, the heavy metal cadmium used in the production of many quantum dots is a health and environmental hazard.

On top of this, the potential health and environmental impacts of engineered nanoparticles like quantum dots have been raising concerns with toxicologists and regulators for over a decade now. Research has shown that the size, shape and surface properties of some particles influence the harm they are capable of causing in humans and the environment; smaller particles are often more toxic than their larger counterparts. That said, this is an area where scientific understanding is still developing.

Together, these factors would suggest caution is warranted in adopting quantum dot technologies. Yet taken in isolation they are misleading.

The essay describes the risk factors for various sectors (Note: A link has been removed),

The quantum dots currently being used in TVs are firmly embedded in the screens – usually enclosed behind multiple layers of glass and plastic. As a result, the chances of users being exposed to them during normal operation are pretty much nil.

The situation is potentially different during manufacturing, when there is a chance that someone could be inadvertently exposed to these nanoscopic particles. Scenarios like this have led to agencies like the US National Institute for Occupational Safety and Health taking a close look at safety when working with nanoparticles. While the potential risks are not negligible, good working practices are effective at reducing or eliminating potentially harmful exposures.

End-of-life disposal raises additional concerns. While the nanoparticles are likely to remain firmly embedded within a trashed TV’s screen, the toxic materials they contain, including cadmium, could well be released into the environment. Cadmium is certainly a health and environmental issue with poorly regulated e-waste disposal and recycling. However, when appropriate procedures are used, exposures should be negligible.

It seems quantum dot televisions impose a smaller burden than their cousins on the environment,

Although it seems counter-intuitive, analysis by the company that was made available to the EPA [US Environmental Protection Agency] showed QD Vision’s products lead to a net decrease in environmental cadmium releases compared to conventional TVs. Cadmium is one of the pollutants emitted from coal-fired electrical power plants. Because TVs using the company’s quantum dots use substantially less power than their non-quantum counterparts, the combined cadmium in QD Vision TVs and the power plant emissions associated with their use is actually lower than that associated with conventional flat screen TVs. In other words, using cadmium in quantum dots for production of more energy-efficient displays can actually results in a net reduction in cadmium emissions.

Not the conclusion one might have drawn at the outset, eh? You can read the essay in its entirety on either Nanowerk (Jan. 8, 2015 essay) or The Conversation (Jan. 7, 2015 essay). (Same essay just different publication dates.) Andrew has also posted his essay on the University of Michigan Risk Science Center website, Are quantum dot TVs – and their toxic ingredients – actually better for the environment? Note: Andrew Maynard is the center’s director.

A review of the nanotechnology in green technology

Michael Berger has written a Nov. 18, 2014 Nanowerk Spotlight article focusing on the ‘green’ in nanotechnology (Note: A link has been removed),

There is a general perception that nanotechnologies will have a significant impact on developing ‘green’ and ‘clean’ technologies with considerable environmental benefits. The associated concept of green nanotechnology aims to exploit nanotech-enabled innovations in materials science and engineering to generate products and processes that are energy efficient as well as economically and environmentally sustainable. These applications are expected to impact a large range of economic sectors, such as energy production and storage, clean up-technologies, as well as construction and related infrastructure industries.

A recent review article in Environmental Health (“Opportunities and challenges of nanotechnology in the green economy”) examines opportunities and practical challenges that nanotechnology applications pose in addressing the guiding principles for a green economy.

Here’s a link to and citation for the review article cited by Berger. It is more focused on occupational health and safety then the title suggests but not surprising when you realize all of the authors are employed by the US National Institute of Occupational Safety and Health (NIOSH),,

Opportunities and challenges of nanotechnology in the green economy by Ivo Iavicoli, Veruscka Leso, Walter Ricciard, Laura L Hodson, and Mark D Hoover. Environmental Health 2014, 13:78 doi:10.1186/1476-069X-13-78 Published:    7 October 2014

© 2014 Iavicoli et al.; licensee BioMed Central Ltd.

This is an open access article.

Here’s the background to the work (from the article; Note: Links have been removed),

The “green economy” concept has been driven into the mainstream of policy debate by global economic crisis, expected increase in global demand for energy by more than one third between 2010 to 2035, rising commodity prices as well as the urgent need for addressing global challenges in domains such as energy, environment and health [1-3].

The term “green economy”, chiefly relating to the principles of sustainable development, was first coined in a pioneering 1989 report for the Government of the United Kingdom by a group of leading environmental economists [1]. The most widely used and reliable definition of “green economy” comes from the United Nations Environment Programme which states that “a green economy is one that results in improved human well-being and social equity, while significantly reducing environmental risks and ecological scarcities. It is low carbon, resource efficient, and socially inclusive” [4].

The green economy concept can indeed play a very useful role in changing the way that society manages the interaction of the environmental and economic domains. In this context, nanotechnology, which is the manipulation of matter in the dimension of 1 to 100 nm, offers the opportunity to produce new structures, materials and devices with unique physico-chemical properties (i.e. small size, large surface area to mass ratio) to be employed in energy efficient as well as economically and environmentally sustainable green innovations [8-12].

Although expected to exert a great impact on a large range of industrial and economic sectors, the sustainability of green nano-solutions is currently not completely clear, and it should be carefully faced. In fact, the benefits of incorporating nanomaterials (NMs) in processes and products that contribute to outcomes of sustainability, might bring with them environmental, health and safety risks, ethical and social issues, market and consumer acceptance uncertainty as well as a strong competition with traditional technologies [13].

The present review examines opportunities and practical challenges that nano-applications pose in addressing the guiding principles for a green economy. Examples are provided of the potential for nano-applications to address social and environmental challenges, particularly in energy production and storage thus reducing pressure on raw materials, clean-up technologies as well as in fostering sustainable manufactured products. Moreover, the review aims to critically assess the impact that green nanotechnology may have on the health and safety of workers involved in this innovative sector and proposes action strategies for the management of emerging occupational risks.

The potential nanotechnology impact on green innovations

Green nanotechnology is expected to play a fundamental role in bringing a key functionality across the whole value chain of a product, both through the beneficial properties of NMs included as a small percentage in a final device, as well as through nano-enabled processes and applications without final products containing any NMs [13,14]. However, most of the potential green nano-solutions are still in the lab/start-up phase and very few products have reached the market to date. Further studies are necessary to assess the applicability, efficiency and sustainability of nanotechnologies under more realistic conditions, as well as to validate NM enabled systems in comparison to existing technologies. The following paragraphs will describe the potential fields of application for green nanotechnology innovations.

Intriguingly, there’s no mention (that I could find) of soil remediation (clean-up) although there is reference to water remediation.  As for occupational health and safety and nanotechnology, the authors have this to say (Note: Links have been removed),

In this context according to the proposed principles for green economy, it is important that society, scientific community and industry take advantage of opportunities of nanotechnology while overcoming its practical challenges. However, not all revolutionary changes are sustainable per se and a cautious assessment of the benefits addressing economic, social and environmental implications, as well as the occupational health and safety impact is essential [95,96]. This latter aspect, in particular, should be carefully addressed, in consideration of the expected widespread use of nanotechnology and the consequent increasing likelihood of NM exposure in both living and occupational environments. Moreover, difficulties in nano-manufacturing and handling; uncertainty concerning stability of nano-innovations under aggressive or long-term operation (i.e. in the case of supercapacitors with nano-structured electrode materials or nano-enabled construction products); the lack of information regarding the release and fate of NMs in the environment (i.e. NMs released from water and wastewater treatment devices) as well as the limited knowledge concerning the NM toxicological profile, even further support the need for a careful consideration of the health and safety risks derived from NM exposure.Importantly, as shown in Figure 1, a number of potentially hazardous exposure conditions can be expected for workers involved in nanotechnology activities. In fact, NMs may have significant, still unknown, hazards that can pose risks for a wide range of workers: researchers, laboratory technicians, cleaners, production workers, transportation, storage and retail workers, employees in disposal and waste facilities and potentially, emergency responders who deal with spills and disasters of NMs who may be differently exposed to these potential, innovative xenobiotics.

The review article is quite interesting, albeit its precaution-heavy approach, but if you don’t have time, Berger summarizes the article. He also provides links to related articles he has written on the subjects of energy storage, evaluating ‘green’ nanotechnology in a full life cycle assessment, and more.

Lung injury, carbon nanotubes, and aluminum oxide

It’s pretty much undisputed that long, multi-walled carbon nanotubes (MWCNTs) are likely to present a serious health hazard given their resemblance to asbestos fibres. It’s a matter of some concern that has resulted in a US National Institute of Occupational Safety and Health (NIOSH) recommendation for workplace exposure to all carbon nanotubes that is stringent. (My April 26, 2013 posting features the recommendation.)

Some recent research from North Carolina State University (NCSU) suggests that there may be a way to make long, multi-walled carbon nanotubes safer. From an Oct. 3, 2014 news item on Nanowerk,

A new study from North Carolina State University and the National Institute of Environmental Health Sciences (NIEHS) finds that coating multiwalled carbon nanotubes (CNTs) with aluminum oxide reduces the risk of lung scarring, or pulmonary fibrosis, in mice.

“This could be an important finding in the larger field of work that aims to predict and prevent future diseases associated with engineered nanomaterials,” says James Bonner, a professor of environmental and molecular toxicology at NC State …

An Oct. 3, 2014 NCSU news release, which originated the news item, describes the research in a little more detail,

Multiwalled CNTs have a wide array of applications, ranging from sporting goods to electronic devices. And while these materials have not been associated with adverse health effects in humans, research has found that multi-walled CNTs can cause pulmonary fibrosis and lung inflammation in animal models.

“Because multiwalled CNTs are increasingly used in a wide variety of products, it seems likely that humans will be exposed to them at some point,” Bonner says. “That means it’s important for us to understand these materials and the potential risk they pose to human health. The more we know, the better we’ll be able to engineer safer materials.”

For this study, the researchers used atomic layer deposition to coat multiwalled CNTs with a thin film of aluminum oxide and exposed mice to a single dose of the CNTs, via inhalation.

The researchers found that CNTs coated with aluminum oxide were significantly less likely to cause pulmonary fibrosis in mice. However, the coating of aluminum oxide did not prevent lung inflammation.

“The aluminum oxide coating doesn’t eliminate health risks related to multi-walled CNTs,” Bonner says, “but it does lower them.”

Here’s a link to and a citation for the paper,

Atomic Layer Deposition Coating of Carbon Nanotubes with Aluminum Oxide Alters Pro-Fibrogenic Cytokine Expression by Human Mononuclear Phagocytes In Vitro and Reduces Lung Fibrosis in Mice In Vivo by Alexia J. Taylor, Christina D. McClure, Kelly A. Shipkowski, Elizabeth A. Thompson, Salik Hussain, Stavros Garantziotis, Gregory N. Parsons, and James C. Bonner. Published: September 12, 2014 DOI: 10.1371/journal.pone.0106870

This is an open access article.

The researchers offered this conclusion (part of the paper’s abstract),

These findings indicate that ALD [atomic layer deposition] thin film coating of MWCNTs with Al2O3 reduces fibrosis in mice and that in vitro phagocyte expression of IL-6, TNF-α, and OPN, but not IL-1β, predict MWCNT-induced fibrosis in the lungs of mice in vivo.

However, what I found most striking was this from the paper’s Discussion (section),

While the Al2O3 coating on MWCNTs appears to be the major factor that alters cytokine production in THP-1 and PBMCs in vitro, nanotube length is still likely an important determinant of the inflammatory and fibroproliferative effects of MWCNTs in the lung in vivo. In general, long asbestos fibers or rigid MWCNTs (i.e., >20 µm) remain in the lung and are much more persistent than shorter fibers or nanotubes [20]. Therefore, the nanotube fragments resulting from breakage of A-MWCNTs coated with 50 or 100 ALD cycles of Al2O3 would likely be cleared from the lungs more rapidly than uncoated long MWCNTs or those coated with only 10 ALD cycles of Al2O3. We observed that the fracturing of A-MWCNTs occurred only after sonication prior to administration to cells in vitro or mice in vivo. However, unsonicated A-MWCNTs could be more likely to fracture over time in tissues as compared to U-MWCNTs [uncoated]. We did not address the issue of A-MWCNT clearance before or after fracturing in the present study, but future work should focus the relative clearance rates from the lungs of mice exposed to A-MWCNTs in comparison to U-MWCNTs. Another potentially important consideration is whether or not ALD coating with Al2O3 alters the formation of a protein corona around MWCNTs. It is possible that differences in cytokine levels in the supernatants from cells treated with U- or A-MWCNTs could be due to differences in protein corona formation around functionalized MWCNTs that could modify the adsorptive capacity of the nanomaterial. Characterization of the protein corona and the adsorptive capacity for cytokines after ALD modification of MWCNTs should be another important focus for future work. [emphases mine]

In other words, researchers think coating long, MWCNTs with a certain type of aluminum might be safer due to its effect on various proteins and because coated MWCNTs are likely to fracture into smaller pieces and we know that short MWCNTs don’t seem to present a problem when inhaled.

Of course, there’s the research from Duke University (my Oct. 3, 2014 post) which suggests CNTs could present a different set of problems over time as they accumulate in the environment.

US National Insitute for Occupational Health and Safety issues report on strategies for handling nanomaterials

A Dec. 19, 2013 news item on Nanowerk announces the release of a recent publication about the safe handling of nanomaterials from the US National Institute of Occupational Health and Safety (NIOSH), Note: A link has been removed,

Occupational health risks associated with manufacturing and using nanomaterials are not yet clearly understood. However, initial toxicological data indicate that there is reason for caution. NIOSH is committed to promoting the responsible development and advancement of nanotechnology through its research and communication efforts to protect workers. NIOSH has taken a leading role in conducting research and making recommendations for nanotechnology safety in work settings. See the nanotechnology topic page for a list of documents and resources.

Recently, NIOSH has released a document titled, Current Strategies for Engineering Controls in Nanomaterial Production and Downstream Handling Processes, which provides information on how to control exposures for many of the most common processes seen in facilities that use or produce nanomaterials or nano-enabled products.

A Nov.8, 2013 NIOSH news release provides some additional insight into NIOSH’s strategy,,

Engineering controls are favored over administrative controls and personal protective equipment for lowering worker exposures, because they are designed to remove the hazard at the source, before it comes into contact with the worker. However, evidence showing the effectiveness of controls during the manufacture and downstream use of engineered nanomaterials in specific applications has been scarce.

The NIOSH recommendations fill a gap for science-based guidance that employers and workers can apply now, as research continues for better understanding of nanomaterial characteristics, and ways in which workers may be exposed, that may pose the risk of adverse health effects.

The consumer products market currently has more than 1,000 nanomaterial-containing products including makeup, sunscreen, food storage products, appliances, clothing, electronics, computers, sporting goods, and coatings. As more nanomaterials are introduced into the workplace and nano-enabled products enter the market, it is essential that producers and users of engineered nanomaterials ensure a safe and healthy work environment, the new document states.

Processes discussed in the document and for which controls are recommended and described include reactor operations and cleanout processes, small-scale weighing and handling of nanopowders, intermediate and finishing processes, and maintenance tasks. The document also includes recommendations for evaluating the performance of control technologies and control systems.

There’s a Dec. 9, 2013 NIOSH blog posting written by Jennifer L. Topmiller and Kevin H. Dunn which provides more detail about workers’ exposure to nanomaterials,,

Engineered nanomaterials are materials that are intentionally produced and have at least one primary dimension less than 100 nanometers (nm). Nanomaterials have properties different from those of larger particles of the same material, making them unique and desirable for specific product applications.  The consumer products market currently has more than 1,000 nanomaterial-containing products including makeup, sunscreen, food storage products, appliances, clothing, electronics, computers, sporting goods, and coatings [WWICS 2011].

It is difficult to estimate how many workers are involved in this field. By one estimate, there are 400,000 workers worldwide in the field of nanotechnology, with an estimated 150,000 of those in the United States [Roco et al. 2010]. The National Science Foundation has estimated that approximately 6 million workers will be employed in nanotechnology industries worldwide by 2020.

Occupational health risks associated with manufacturing and using nanomaterials are not yet clearly understood.  However, initial toxicological data indicate that there is reason for caution. NIOSH is committed to promoting the responsible development and advancement of nanotechnology through its research and communication efforts to protect workers. NIOSH has taken a leading role in conducting research and making recommendations for nanotechnology safety in work settings. …

The greatest exposures to raw nanomaterials are likely to occur in the workplace during production, handling, secondary processing, and packaging. In a review of exposure assessments conducted at nanotechnology plants and laboratories, Dr. Derk Brouwer determined that activities which resulted in exposures included harvesting (e.g., scraping materials out of reactors), bagging, packaging, and reactor cleaning [Brouwer 2010]. Downstream activities that may release nanomaterials include bag dumping, manual transfer between processes, mixing or compounding, powder sifting, and machining of parts that contain nanomaterials.  Similar to controlling hazards in traditional macro-scale manufacturing, engineering controls are recommended to reduce exposures to nanomaterials.

… Because little has been published on exposure controls in the production and use of nanomaterials, this document focuses on applications that have relevance to the field of nanotechnology and on engineering control technologies currently used, and known to be effective, in other industries.

Assessing how well the exposure control works is also essential for verifying that the exposure goals of the facility have been successfully met. This document covers a range of control evaluation tools including airflow visualization and measurement and containment test methods, such as tracer gas testing. Additional methods, such as video exposure monitoring, also provide information on critical task-based exposures and helps identify high-exposure activities and help provide the basis for interventions.

intriguingly, there’s also a plea for partnership at the end of this Dec. 9, 2013 NIOSH posting,

Producers and users of engineered nanomaterials are invited and encouraged to partner with NIOSH. Companies that have installed exposure controls, such as local exhaust ventilation, or are interested in assessing and reducing worker exposures can work with NIOSH engineers to develop and evaluate exposure mitigation options. Partnering with NIOSH not only benefits your company by providing an assessment of process emissions and recommending effective exposure control approaches  but also expands the knowledge base that benefits the industry as a whole.  Please feel free to contact us through the comment section below or by sending an e-mail to nioshblog@cdc.gov.  Thank for your interest in protecting workers!

You can find the NIOSH report, Current Strategies for Engineering Controls in Nanomaterial Production and Downstream Handling Processes here.

Shining a light on the women scientists at the US National Institute of Occupational Health and Safety (NIOSH)

A few days ago while researching another NIOSH (US National Institute of Occupational Health and Safety) story to be published later today, I stumbled across this Nov. 12, 2013 US National Institute of Occupational Health Safety (NIOSH) news release about their women and science video series,

The National Institute for Occupational Safety and Health (NIOSH) announces the availability of a new series of videos highlighting the stories of NIOSH women scientists. These “Women in Science” videos place the spotlight on the talented and diverse women researchers at NIOSH who provide encouragement for future occupational safety and health professionals, both men and women.

The development of world-class talent in science, technology, engineering, and mathematics (STEM) is critical to America’s global leadership. Scientists and policy makers see a particular need to engage young women in STEM careers, to address the fact that disproportionately fewer women than men currently work in STEM fields. These video spotlights touch upon the value placed by NIOSH on nurturing the rising generation of women scientists, and encouraging a new generation of scientific talent.

“At NIOSH, the mission of world-class research for preventing work-related injuries, illnesses, and deaths engages talented women, such as those highlighted in this series,” said NIOSH Director John Howard, M.D. “We hope the stories of these women will serve to encourage aspiring young scientists in their search for a field with which to serve.”

The “Women in Science” videos feature seven NIOSH scientists who share their personal journeys into various fields, describing interests while acknowledging duties, challenges, and balancing family life. The scientists include two epidemiologists, a U.S. Public Health Service officer and medical epidemiologist, a health communication specialist, a medical officer, a research civil and environmental health engineer, and a research psychologist. Between them are stories describing their career paths, the importance of research in protecting the American workforce, and advice for aspiring young scientists. Viewers will hear how a love of mystery books as a child led to a career as a “disease detective,” how adventures abroad were the driving force to a fulfilling career, how an experience with a severe head trauma patient guided the switch from neurosurgery to occupational medicine, and how research projects can involve breaking things and redesigning them to make them better.

A Nov. 13, 2013 posting by Alyssa Llamas (a Health Communication Specialist in the NIOSH Communication & Research Translation Office) on the NIOSH Science Blog gives the reasons for this video series (as for the fun facts included there, they weren’t quite as much fun as I hoped),

“When I grow up, I want to be an industrial hygienist.” Hearing a ten-year-old girl say those words would probably warrant a double take. While there might be some little girls out there dreaming about one day conducting research and working in a laboratory, studies suggest that more often, it’s a ten-year-old boy who will have the dream and will realize it when he grows up. The reality is that a disproportionately smaller number of women than men follow careers in science, technology, engineering, and math (STEM). Scientific organizations agree that a better balance is needed. Perhaps, when asked what they want to be when they grow up, more girls will one day enthusiastically say, “epidemiologist, health communication specialist, medical officer, engineer, psychologist!”

In order to remain competitive and innovative in science and technology, we must close the gender gap and harness the full potential of the female STEM workforce in the United States. …

You can find the videos on this NIOSH page titled, Science Speaks: A Focus on NIOSH Women in Science.

Gloves, Québec’s (Canada) Institut de recherche Robert-Sauvé en santé et en sécurité du travail, and a workplace nanotoxicity methodology report

A new report on a workplace health and safety issue in regard to nanoparticles (Development of a Method of Measuring Nanoparticle Penetration through Protective Glove Materials under Conditions Simulating Workplace Use)  was released in June 2013 by Québec’s Institut de recherche Robert-Sauvé en santé et en sécurité du travail (IRSST). Little research has been done on exposure through skin (cutaneous exposure), most research has focused on exposure by inhalation according to the report (en français version here),

In the workplace, the main pathway to NP exposure is inhalation (Ostiguy et al., 2008a). Exposure by the cutaneous route has not been studied much, partly because of the widely held belief that skin offers an impermeable barrier to NPs (Truchon et al., 2008). Yet a growing number of studies have pointed to the possible percutaneous absorption of NPs, such as in the case of skin damaged by abrasion (Zhang et al., 2008), repeated flexion (Rouse et al., 2007) or even through intact skin (Ryman-Rasmussen et al., 2006). Pores, hair follicles and sweat glands may also play a role in facilitating absorption of NPs through the skin (Hervé-Bazin, 2007). The nanoparticles are then carried throughout the body by the lymphatic circulatory system (Papp et al., 2008). Induced direct toxic effects have also been reported for epidermal keratinocyte cells exposed to carbon nanotubes and other types of NPs (Shvedova, 2003). [p. 17 PDF version; p. 1 print version; Note: See report bibliography for citations]

The researchers examined gloves made of four different types of material: nitrile, latex, neoprene, and butyl rubber under a number of different conditions. One type of nanoparticle was used for the study, titanium dioxide in powder and liquid forms. The report summary provides a bit more detail about the decision to develop a methodology and the testing methods,

With the exponential growth in industrial applications of nanotechnologies and the increased risk of occupational exposure to nanomaterials, the precautionary principle has been recommended. To apply this principle, and even though personal protective equipment against nanoparticles must be considered only as a last resort in the risk control strategy, this equipment must be available. To respond to the current lack of tools and knowledge in this area, a method was developed for measuring the penetration of nanoparticles through protective glove materials under conditions simulating workplace use.

This method consists of an experimental device for exposing glove samples to nanoparticles in powder form or in colloidal solution, while at the same time subjecting them to static or dynamic mechanical stresses and conditions simulating the microclimate in the gloves. This device is connected to a data control and acquisition system. To complete the method, a sampling protocol was developed and a series of nanoparticle detection techniques was selected.

Preliminary tests were performed using this method to measure the resistance of four models of protective gloves of different thicknesses made of nitrile, latex, neoprene and butyl to the passage of commercial TiO2 nanoparticles in powder form or colloidal solution. The results seem to indicate possible penetration of the nanoparticles in some types of gloves, particularly when subjected to repeated mechanical deformation and when the nanoparticles are in the form of colloidal solutions. Additional work is necessary to confirm these results, and consideration should be given to the selection of the configurations and values of the parameters that best simulate the different possible workplace situations. Nevertheless, a recommendation can already be issued regarding the need for regular replacement of gloves that have been worn, particularly with the thinnest gloves and when there has been exposure to nanoparticles in colloidal solution.

For interested parties, here’s a citation for and a link to the report (PDF),

Development of a Method of Measuring Nanoparticle Penetration through Protective Glove Materials under Conditions Simulating Workplace Use by Dolez, Patricia; Vinches, Ludwig; Perron, Gérald; Vu-Khanh, Toan; Plamondon, Philippe; L’Espérance, Gilles; Wilkinson, Kevin; Cloutier, Yves; Dion, Chantal; Truchon, Ginette
Studies and Research Projects / Report  R-785, Montréal, IRSST, 2013, 124 pages.

I last wrote about gloves and toxicity in a June 11, 2013 posting about gloves with sensors (they turned blue when exposed to toxic levels of chemicals). It would be interesting if they could find a way to create gloves with sensors that warn you when you are reaching dangerous levels of exposure through your gloves. Of course, first they’d have to determine what constitute a dangerous level of exposure. The US National Institute of Occupational Health and Safety (NIOSH) recently released its recommendations for exposure to carbon nanofibers and carbon nanotubes (my April 26, 2013 posting). In layperson’s terms, the recommended exposure is close to zero exposure. Presumably, the decision was based on the principle of being ‘safe rather than sorry’.

One final comment about exposure to engineered nanoparticles through skin, to date there has been no proof that there has been any significant exposure via skin. In fact, the first significant breach of the skin barrier was achieved for medical research, Chad Mirkin and his team at Northwestern University trumpeted their research breakthrough (pun intended) last year, from my July 4, 2012 posting,

Researchers at Northwestern University (Illinois, US) have found a way to deliver gene regulation technology using skin moisturizers. From the July 3, 2012 news item on Science Blog,

A team led by a physician-scientist and a chemist — from the fields of dermatology and nanotechnology — is the first to demonstrate the use of commercial moisturizers to deliver gene regulation technology that has great potential for life-saving therapies for skin cancers.

The topical delivery of gene regulation technology to cells deep in the skin is extremely difficult because of the formidable defenses skin provides for the body. The Northwestern approach takes advantage of drugs consisting of novel spherical arrangements of nucleic acids. These structures, each about 1,000 times smaller than the diameter of a human hair, have the unique ability to recruit and bind to natural proteins that allow them to traverse the skin and enter cells.

This goes a long way to explaining why primary occupational health and safety research has focused on exposure via inhalation rather than skin.  That said, I think ensuring safety means minimizing exposure by all routes until more is known about the hazards.