Tag Archives: NNI

UK and US issue documents nanomaterial safety to support safe work with nanomaterials

I am featuring two bits of information about nanosafety first from the UK and then from the US.

UK and nanosafety

A May 30, 2016 news item on Nanowerk announces a not particularly exciting but necessary report on handling nanomaterials safely (Note: A link has been removed),

The UK Nanosafety Group (UKNSG) has updated and published a 2nd edition of guidance (pdf) to support safe and responsible working practices with nanomaterials in research and development laboratories.

A May 25, 2016 UK Nanosafety Group press release, which originated the news item, provides more detail,

The document aims to provide guidance on factors relating to establishing a safe workplace and good safety practice when working with particulate nanomaterials. It is applicable to a wide range of nanomaterials, including particles, fibres, powders, tubes and wires as well as aggregates and agglomerates, and recognises previous and current uncertainty in developing effective risk management when dealing with nanomaterials and advocates a precautionary strategy to minimise potential exposure.

The 2nd edition of the guidance provides updates to account for changes in legislation, recent studies in the literature, and best practice since 2012. In particular, specific sections have been revised to account for the full implementation of Global Harmonised System (GHS) which came into force on 1 June 2015 through the CLP [Classification, Labelling and Packaging] regulations. The document explains the approaches that are presently being used to select effective control measures for the management of nanomaterials, more specifically control banding tools presently in use. Significant changes can be found in the following sections: ‘Hazard Banding’, ‘Exposure Control’, ‘Toxicology’, and ‘Monitoring’.

Of relevance to employers, managers, health and safety advisors, and users of particulate nanomaterials in research and development, the guidance should be read in conjunction with the Approved Code of Practice on COSHH [Control of Substances Hazardous to Health], together with the other literature referred to in the document. The document has been produced taking account of the safety information currently available and is presented in the format of guidance and recommendations to support implementation of suitable protocols and control measures by employers and employees. It is intended that the document will be reviewed and updated on a periodic basis to keep abreast of the evolving nature of the content.

The guidance titled “Working Safely with Nanomaterials in Research & Development” is about 48 pp. and can be found here.

Tidbit about US nano environmental, health, and safety

Sylvia Palmer has written a May 27, 2016 update for ChemicalWatch on reports about or including information about environmental, health, and safety measures being taken in the US,

Three reports released recently by the National Nanotechnology Initiative (NNI) highlight the US government’ investments and initiatives in nanotechnology. They also detail current progress and the need for further understanding of exposure to nanomaterials in consumer products –and how companies can protect their nanotechnology workforce.

NNI’s Quantifying exposure to engineered nanomaterials (QEEN) from manufactured products: addressing environmental, health, and safety implications notes significant progress has been made in the ability to quantify nanomaterial exposures. However, it says greater understanding of exposure risks in “real-world” scenarios is needed. Alternative testing models and high-throughput methods for rapidly estimating exposures will be further explored, it adds.

You can find the report, Quantifying exposure to engineered nanomaterials (QEEN) from manufactured products: addressing environmental, health, and safety implications, here. Palmer’s article briefly describes the other two reports which contain information about US nano environmental, health, and safety efforts.

There is more about the three reports in an April 11, 2016 posting by Lloyd Whitman (Assistant Director for Nanotechnology and Advanced Materials, White House Office of Science and Technology Policy) and Treye Thomas (leader of the Chemical Hazards Program team in the U.S. Consumer Product Safety Commission, and Coordinator for Environmental, Health, and Safety Research under the National Nanotechnology Initiative) on the White House blog,

The recently released NNI Supplement to the President’s Budget for Fiscal Year 2017, which serves as the annual report for the NNI, highlights the programs and coordinated activities taking place across the many departments, independent agencies, and commissions participating today in the NNI—an initiative that continues to serve as a model for effective coordination of Federal science and technology R&D. As detailed in this report, nanoEHS activities continue to account for about 10 percent of the annual NNI budget, with cumulative Federal R&D investments in this area exceeding $1 billion over the past decade. This report includes descriptions of a wide variety of individual agency and coordinated activities supporting the responsible development of nanotechnology.

To understand and control the risks of using any new materials in consumer products, it is important to understand the potential for exposure and any associated hazards across product life cycles. Last month, the NNI released a report, Quantifying Exposure to Engineered Nanomaterials (QEEN) from Manufactured Products: Addressing Environmental, Health, and Safety Implications, summarizing a workshop on this topic sponsored by the U.S. Consumer Product Safety Commission (CPSC). The main goals of the workshop were to assess progress in developing tools and methods for quantifying exposure to engineered nanomaterials across the product life cycle, and to identify new research needed to advance exposure assessment for nanotechnology-enabled products. …

The technical experts who participated in CPSC’s workshop recommended that future work focus on the complex issue of determining biomarkers of exposure linked to disease, which will require substantive public–private collaboration, partnership, and knowledge sharing. Recognizing these needs, the President’s 2017 Budget request for CPSC includes funds for a new nanotechnology center led by the National Institute of Environmental Health Sciences (NIEHS) to develop test methods and to quantify and characterize the presence, release, and mechanisms of consumer exposure to nanomaterials in consumer products. This cost-effective, interagency collaboration will enable CPSC—through NIEHS—to collect the needed data to inform the safety of nanotechnology in consumer products and allow CPSC to benefit from NIEHS’s scientific network and experience.

Managing EHS risks across a product’s lifecycle includes protecting the workers who manufacture those products. The National Institute for Occupational Safety and Health has issued a series of documents providing guidance to this emerging industry, including the recently released publication Building a Safety Program to Protect the Nanotechnology Workforce: A Guide for Small to Medium-Sized Enterprises. This guide provides business owners with the tools necessary to develop and implement a written health and safety program to protect their employees.

Whitman also mentions a June 2016 international conference in the context of this news,

The responsible development of nanotechnology is a goal that the United States shares with many countries. The United States and the European Union are engaged in notable cooperation on this front. European and American scientists engaged in nanoEHS research convene annually for a joint workshop to identify areas of shared interest and mechanisms for collaboration to advance nanoEHS science. The 2016 joint workshop will be held on June 6–7, 2016 in Arlington, VA, and is free and open to the public. …

Vote for favourite EnvisioNano image ’til June 17, 2016

A June 6, 2016 news item on Nanowerk announces the latest and last voting round of the semifinal judging for the 2016 EnvisioNano contest,

Members of the public are invited to vote for the best images in this round of the National Nanotechnology Initiative (NNI) EnvisioNano contest.

Now in its third round, this contest has drawn submissions from students at top labs and schools across the United States.

This round includes images such as this one (from the 3rd voting round of the EnvisioNano page),

Iron Honeycomb: Hexagonal close-packed assembly of iron oxide nanoparticles Credits: Vikas Nandwana Advisor: Vinayak Dravid Department of Materials Science and Engineering Northwestern University

Iron Honeycomb: Hexagonal close-packed assembly of iron oxide nanoparticles Credits: Vikas Nandwana Advisor: Vinayak Dravid Department of Materials Science and Engineering Northwestern University

Nandwana also provides this description of his image,

Description: The particles shown here are made of iron oxide, or rust – just like on a car. But these nanoparticles are tiny, 100,000 times thinner than a sheet of paper. At such a small size, they demonstrate some unique properties that can be used to detect and treat diseases like cancer by just applying external magnetic field without any side effects. Due to the same size and shape, the magnetic nanoparticles self-assemble (or come together) into a closely-packed honeycomb pattern.  Iron oxide nanoparticles like these are already used to help people suffering from iron deficiency (anemia). Researchers study how these magnetic nanoparticles interact with each other and tissues in the body, which can open new avenues for nontoxic, targeted tests and treatments for cancer, Alzheimer’s and cardiovascular disease.
Laboratory website: http://vpd.ms.northwestern.edu/
Technique: Transmission Electron Microscopy
Funding Source: NTU-NU Institute for NanoMedicine located at the International Institute for Nanotechnology, Northwestern University, USA and the Nanyang Technological University, Singapore.

A June 6, 2016 US National Nanotechnology Initiative news release, which originated the news item, gives more details,

In the first two rounds of the EnvisioNano contest, student images racked up over 41,000 online views and both previous winning images were featured on the back cover of the NNI Supplement to the President’s 2017 Budget! We encourage everyone to cast votes for their favorite images. All students have provided a description of their photos and research, allowing the viewer to envision where the research is headed and to learn how seeing at the nanoscale is important to reaching that vision. So, as you view the pictures, take a moment to learn about the research and how nanotechnology may improve your life.

Voting starts Monday, June 6th, and is open until June 17th [2016].
View the images and cast your vote at: www.nano.gov/EnvisioNanoVoting.

Once this voting round is completed, judges from the NNI will select the final winning image.

There are a few more details about the contest on this Envisio Nano page. It may be of interest to note that voting ends at 12 pm (noon) on June 17, 2016.

2015 winners were featured (as mentioned earlier) on the cover of the 2017 NNI budget supplement. I wrote about the supplement and embedded images of the cover in my April 4, 2016 posting.

How many nanoparticle-based drugs does it take to kill a cancer tumour? More than 1%

According to an April 27, 2016 news item on Nanowerk researchers at the University of Toronto (Canada) along with their collaborators in the US (Harvard Medical School) and Japan (University of Tokyo) have determined that less than 1% of nanoparticle-based drugs reach their intended destination (Note: A link has been removed),

Targeting cancer cells for destruction while leaving healthy cells alone — that has been the promise of the emerging field of cancer nanomedicine. But a new meta-analysis from U of T’s [University of Toronto] Institute of Biomaterials & Biomedical Engineering (IBBME) indicates that progress so far has been limited and new strategies are needed if the promise is to become reality.

“The amount of research into using engineered nanoparticles to deliver cancer drugs directly to tumours has been growing steadily over the last decade, but there are very few formulations used in patients. The question is why?” says Professor Warren Chan (IBBME, ChemE, MSE), senior author on the review paper published in Nature Reviews Materials (“Analysis of nanoparticle delivery to tumours”). “We felt it was time to look at the field more closely.”

An April 25, 2016 U of T news release, which originated the news item, details the research,

Chan and his co-authors analysed 117 published papers that recorded the delivery efficiency of various nanoparticles to tumours — that is, the percentage of injected nanoparticles that actually reach their intended target. To their surprise, they found that the median value was about 0.7 per cent of injected nanoparticles reaching their targets, and that this number has not changed for the last ten years. “If the nanoparticles do not get delivered to the tumour, they cannot work as designed for many nanomedicines,” says Chan.

Even more surprising was that altering nanoparticles themselves made little difference in the net delivery efficiency. “Researchers have tried different materials and nanoparticle sizes, different surface coatings, different shapes, but all these variations lead to no difference, or only small differences,” says Stefan Wilhelm, a post-doctoral researcher in Chan’s lab and lead author of the paper. “These results suggest that we have to think more about the biology and the mechanisms that are involved in the delivery process rather than just changing characteristics of nanoparticles themselves.”

Wilhelm points out that nanoparticles do have some advantages. Unlike chemotherapy drugs which go everywhere in the body, drugs delivered by nanoparticles accumulate more in some organs and less in others. This can be beneficial: for example, one current treatment uses nanoparticles called liposomes to encapsulate the cancer drug doxorubicin.

This encapsulation reduces the accumulation of doxorubicin in the heart, thereby reducing cardiotoxicity compared with administering the drug on its own.

Unfortunately, the majority of injected nanoparticles, including liposomes, end up in the liver, spleen and kidneys, which is logical since the job of these organs is to clear foreign substances and poisons from the blood. This suggests that in order to prevent nanoparticles from being filtered out of the blood before they reach the target tumour, researchers may have to control the interactions of those organs with nanoparticles.

It may be that there is an optimal particle surface chemistry, size, or shape required to access each type of organ or tissue.  One strategy the authors are pursuing involves engineering nanoparticles that can dynamically respond to conditions in the body by altering their surfaces or other properties, much like proteins do in nature. This may help them to avoid being filtered out by organs such as the liver, but at the same time to have the optimal properties needed to enter tumors.

More generally, the authors argue that, in order to increase nanoparticle delivery efficiency, a systematic and coordinated long-term strategy is necessary. To build a strong foundation for the field of cancer nanomedicine, researchers will need to understand a lot more about the interactions between nanoparticles and the body’s various organs than they do today. To this end, Chan’s lab has developed techniques  to visualize these interactions across whole organs using 3D optical microscopy, a study published in ACS Nano this week.

In addition to this, the team has set up an open online database, called the Cancer Nanomedicine Repository that will enable the collection and analysis of data on nanoparticle delivery efficiency from any study, no matter where it is published. The team has already uploaded the data gathered for the latest paper, but when the database goes live in June, researchers from all over the world will be able to add their data and conduct real-time analysis for their particular area of interest.

“It is a big challenge to collect and find ways to summarize data from a decade of research but this article will be immensely useful to researchers in the field,” says Professor Julie Audet (IBBME), a collaborator on the study.

Wilhelm says there is a long way to go in order to improve the clinical translation of cancer nanomedicines, but he’s optimistic about the results. “From the first publication on liposomes in 1965 to when they were first approved for use in treating cancer, it took 30 years,” he says. “In 2016, we already have a lot of data, so there’s a chance that the translation of new cancer nanomedicines for clinical use could go much faster this time. Our meta-analysis provides a ‘reality’ check of the current state of cancer nanomedicine and identifies the specific areas of research that need to be investigated to ensure that there will be a rapid clinical translation of nanomedicine developments.”

I made time to read this paper,

Analysis of nanoparticle delivery to tumours by Stefan Wilhelm, Anthony J. Tavares, Qin Dai, Seiichi Ohta, Julie Audet, Harold F. Dvorak, & Warren C. W. Chan. Nature Reviews Materials 1, Article number: 16014 (2016  doi:10.1038/natrevmats.2016.14 Published online: 26 April 2016

It appears to be open access.

The paper is pretty accessible but it does require that you have some tolerance for your own ignorance (assuming you’re not an expert in this area) and time. If you have both, you will find a good description of the various pathways scientists believe nanoparticles take to enter a tumour. In short, they’re not quite sure how nanoparticles gain entry. As well, there are discussions of other problems associated with the field such as producing enough nanoparticles for general usage.

More than an analysis, there’s also a proposed plan for future action (from Analysis of nanoparticle delivery to tumours ),

UofT_30yrCancerMedicine

Current research in using nanoparticles in vivo has focused on innovative design and demonstration of utility of these nanosystems for imaging and treating cancer. The poor clinical translation has encouraged the researchers in the field to investigate the effect of nanoparticle design (for example, size, shape and surface chemistry) on its function and behaviour in the body in the past 10 years. From a cancer-targeting perspective, we do not believe that nanoparticles will be successfully translated to human use if the current ‘research paradigm’ of nanoparticle targeting continues because the delivery efficiency is too low. We propose a long-term strategy to increase the delivery efficiency and enable nanoparticles to be translated to patient care in a cost-effective manner from the research stage. A foundation for the field will be built by obtaining a detailed view of nanoparticle–organ interaction during nanoparticle transport to the tumour, using computational strategies to organize and simulate the results and the development of new tools to assess nanoparticle delivery. In addition, we propose that these results should be collected in a central database to allow progress in the field to be monitored and correlations to be established. A 30-year strategy was proposed and seemed to be a reasonable time frame because the first liposome system was reported in 1965 (Ref. 122) and the first liposome formulation (Doxil) was approved by the US Food and Drug Administration (FDA) in 1995 (Refs 91,92). This 30-year time frame may be shortened as a research foundation has already been established but only if the community can parse the immense amount of currently published data. NP, nanoparticle.

Another paper was mentioned in the news release,

Three-Dimensional Optical Mapping of Nanoparticle Distribution in Intact Tissues by Shrey Sindhwani, Abdullah Muhammad Syed, Stefan Wilhelm, Dylan R Glancy, Yih Yang Chen, Michael Dobosz, and Warren C.W. Chan.ACS Nano, Just Accepted Manuscript Publication Date (Web): April 21, 2016 DOI: 10.1021/acsnano.6b01879

Copyright © 2016 American Chemical Society

This paper is behind a paywall.

Finally, Melanie Ward in an April 26, 2016 article for Science News Hub has another approach to describing the research. Oddly, she states this,

However, the study warns about the lack of efficiency despite major economic investments (more than one billion dollars in the US in the past decade).

She’s right; the US has spent more than $1B in the last decade. In fact, they’ve allocated over $1B every year to the National Nanotechnology Initiative (NNI) for almost two decades for a total of more than $20B. You might want to apply some caution when reading. BTW, I think that’s a wise approach for everything you read including the blog postings here.

NanoMech get $10M investment from Saudi company

This news comes from the US state of Arkansas (not often featured here). The company, NanoMech, seems to be focused on lubricants and coatings according to an April 13, 2013 news release on Business Wire,

NanoMech announced today that it has secured $10 million in capital for leading its Series C Financing round from Saudi Aramco Energy Ventures (SAEV), the corporate venturing subsidiary of Saudi Arabia’s national oil company. This capital infusion and relationship will significantly accelerate NanoMech’s manufacturing, sales and product development. NanoMech uses nanotechnology to develop advanced products for industrial and mechanical applications – such as lubricants, coatings and specialty chemicals. These products have enabled a step change in performance, efficiency and reliability in multiple industries such as energy, transportation, aerospace, manufacturing, automotive, agricultural equipment and military.

An April 11, 2013 NanoMech news release, which originated the item on Business Wire, provides a few more details and some quotes,

“NanoMech is honored to achieve this recognition and investment by the world’s largest energy company,” said NanoMech Chairman and CEO Jim Phillips. “Building on current momentum, NanoMech will use this financing and relationship to expand our global reach, invest in additional sales and marketing resources. We will also increase investment in our market-leading nanotechnology platforms, nGlide, GuardX, TuffTek, and nGuard.”

This capital infusion and relationship will significantly improve NanoMech’s manufacturing, sales and product development. Today’s announcement represents NanoMech’s most significant milestone in the continued validation and authentication of its unique technology.

“Response to NanoMech’s technology at Saudi Aramco and several of our major suppliers has been very positive,” said Cory Steffek, Managing Director, North America for SAEV. “A platform technology like NanoMech’s has significant potential to bring innovation, not only to the energy sector, but also to many other critical industries.”

NanoMech has validated and commercialized its innovations to iconic world-leading businesses and has completed an upgrade of its smart factory and labs. Several Fortune 100 and emerging companies have incorporated NanoMech’s nano-engineered solutions to create high-performance products.

“After more than a decade of extensive research and development, and recent large-scale commercialization successes,” said Dr. Ajay P. Malshe, CTO and Founder of NanoMech. “Our industry is leading disruptive nanoscience and is light years ahead of the competition. We are transforming entire industries.

The big talk is rooted not just in hype but also in a major US government push to commercialize nanotechnology research, which has received billions of dollars in government funding (from the NanoMech news release),

“Aramco’s strategic investment in NanoMech will transform the productivity paradigm for sustainable global energy production,” said Deborah Wince-Smith, CEO of the U.S. Council on Competitiveness and NanoMech board member. “It will accelerate NanoMech’s position as the global leader in advanced nanotechnology.”

$1.4B for US National Nanotechnology Initiative (NNI) in 2017 budget

According to an April 1, 2016 news item on Nanowerk, the US National Nanotechnology (NNI) has released its 2017 budget supplement,

The President’s Budget for Fiscal Year 2017 provides $1.4 billion for the National Nanotechnology Initiative (NNI), affirming the important role that nanotechnology continues to play in the Administration’s innovation agenda. NNI
Cumulatively totaling nearly $24 billion since the inception of the NNI in 2001, the President’s 2017 Budget supports nanoscale science, engineering, and technology R&D at 11 agencies.

Another 9 agencies have nanotechnology-related mission interests or regulatory responsibilities.

An April 1, 2016 NNI news release, which originated the news item, affirms the Obama administration’s commitment to the NNI and notes the supplement serves as an annual report amongst other functions,

Throughout its two terms, the Obama Administration has maintained strong fiscal support for the NNI and has implemented new programs and activities to engage the broader nanotechnology community to support the NNI’s vision that the ability to understand and control matter at the nanoscale will lead to new innovations that will improve our quality of life and benefit society.

This Budget Supplement documents progress of these participating agencies in addressing the goals and objectives of the NNI. It also serves as the Annual Report for the NNI called for under the provisions of the 21st Century Nanotechnology Research and Development Act of 2003 (Public Law 108-153, 15 USC §7501). The report also addresses the requirement for Department of Defense reporting on its nanotechnology investments, per 10 USC §2358.

For additional details and to view the full document, visit www.nano.gov/2017BudgetSupplement.

I don’t seem to have posted about the 2016 NNI budget allotment but 2017’s $1.4B represents a drop of $100M since 2015’s $1.5 allotment.

The 2017 NNI budget supplement describes the NNI’s main focus,

Over the past year, the NNI participating agencies, the White House Office of Science and Technology Policy (OSTP), and the National Nanotechnology Coordination Office (NNCO) have been charting the future directions of the NNI, including putting greater focus on promoting commercialization and increasing education and outreach efforts to the broader nanotechnology community. As part of this effort, and in keeping with recommendations from the 2014 review of the NNI by the President’s Council of Advisors for Science and Technology, the NNI has been working to establish Nanotechnology-Inspired Grand Challenges, ambitious but achievable goals that will harness nanotechnology to solve National or global problems and that have the potential to capture the public’s imagination. Based upon inputs from NNI agencies and the broader community, the first Nanotechnology-Inspired Grand Challenge (for future computing) was announced by OSTP on October 20, 2015, calling for a collaborative effort to “create a new type of computer that can proactively interpret and learn from data, solve unfamiliar problems using what it has learned, and operate with the energy efficiency of the human brain.” This Grand Challenge has generated broad interest within the nanotechnology community—not only NNI agencies, but also industry, technical societies, and private foundations—and planning is underway to address how the agencies and the community will work together to achieve this goal. Topics for additional Nanotechnology-Inspired Grand Challenges are under review.

Interestingly, it also offers an explanation of the images on its cover (Note: Links have been removed),

US_NNI_2017_budget_cover

About the cover

Each year’s National Nanotechnology Initiative Supplement to the President’s Budget features cover images illustrating recent developments in nanotechnology stemming from NNI activities that have the potential to make major contributions to National priorities. The text below explains the significance of each of the featured images on this year’s cover.

US_NNI_2017_front_cover_CloseUp

Front cover featured images (above): Images illustrating three novel nanomedicine applications. Center: microneedle array for glucose-responsive insulin delivery imaged using fluorescence microscopy. This “smart insulin patch” is based on painless microneedles loaded with hypoxia-sensitive vesicles ~100 nm in diameter that release insulin in response to high glucose levels. Dr. Zhen Gu and colleagues at the University of North Carolina (UNC) at Chapel Hill and North Carolina State University have demonstrated that this patch effectively regulates the blood glucose of type 1 diabetic mice with faster response than current pH-sensitive formulations. The inset image on the lower right shows the structure of the nanovesicles; each microneedle contains more than 100 million of these vesicles. The research was supported by the American Diabetes Association, the State of North Carolina, the National Institutes of Health (NIH), and the National Science Foundation (NSF). Left: colorized rendering of a candidate universal flu vaccine nanoparticle. The vaccine molecule, developed at the NIH Vaccine Research Center, displays only the conserved part of the viral spike and stimulates the production of antibodies to fight against the ever-changing flu virus. The vaccine is engineered from a ~13 nm ferritin core (blue) combined with a 7 nm influenza antigen (green). Image credit: NIH National Institute of Allergy and Infectious Diseases (NIAID). Right: colorized scanning electron micrograph of Ebola virus particles on an infected VERO E6 cell. Blue represents individual Ebola virus particles. The image was produced by John Bernbaum and Jiro Wada at NIAID. When the Ebola outbreak struck in 2014, the Food and Drug Administration authorized emergency use of lateral flow immunoassays for Ebola detection that use gold nanoparticles for visual interpretation of the tests.

US_NNI_2017_back_cover._CloseUp

Back cover featured images (above): Images illustrating examples of NNI educational outreach activities. Center: Comic from the NSF/NNI competition Generation Nano: Small Science Superheroes. Illustration by Amina Khan, NSF. Left of Center: Polymer Nanocone Array (biomimetic of antimicrobial insect surface) by Kyle Nowlin, UNC-Greensboro, winner from the first cycle of the NNI’s student image contest, EnvisioNano. Right of Center: Gelatin Nanoparticles in Brain (nasal delivery of stroke medication to the brain) by Elizabeth Sawicki, University of Illinois at Urbana-Champaign, winner from the second cycle of EnvisioNano. Outside right: still photo from the video Chlorination-less (water treatment method using reusable nanodiamond powder) by Abelardo Colon and Jennifer Gill, University of Puerto Rico at Rio Piedras, the winning video from the NNI’s Student Video Contest. Outside left: Society of Emerging NanoTechnologies (SENT) student group at the University of Central Florida, one of the initial nodes in the developing U.S. Nano and Emerging Technologies Student Network; photo by Alexis Vilaboy.

Vote for* winner for Generation Nano: Small Science, Superheroes

The US National Science Foundation’s (NSF) contest “Generation Nano: Small Science, Superheroes” for high school students has whittled down the entries to three finalists and bringing them to Washington, DC where the winner will announced at the 2016 USA Science & Engineering Festival (April 16 – 17, 2016) according to a March 30, 2016 NSF news release,

The National Science Foundation (NSF) today announced the names of three finalists in its Generation Nano: Small Science, Superheroes competition, sponsored by NSF and its National Nanotechnology Initiative (NNI) and supported by many, including superhero legend Stan Lee.

High school students Madeleine Chang from Bergen County Academies in New Jersey, Vuong Mai from Martha Ellen Stilwell School of the Arts in Georgia and Eric Liu from Thomas Jefferson High School for Science and Technology in Virginia will come to Washington, D.C., to display their comics and compete for prizes at the 2016 USA Science & Engineering Festival in mid-April.

The competition drew submissions from all over the country. All responded to the call to think big — or in this case small — and use nanotechnology to empower their own original superheroes. Chang’s hero “Radio Blitz” disposes of local waste. Mai’s protector “Nine” dons a Nanosuit for strength to save a kidnapping victim. And Liu’s “Nanoman” fights the malignant crab-monster, “Cancer.”

“These three finalists tell a great story — all while they exemplify the combination of a sound technical basis for use of nanotechnology and artistic presentation,” said Lisa Friedersdorf, deputy director of the National Nanotechnology Coordination Office. “I think these comics will inspire other students to learn more about what is possible with nanotechnology.”

When it comes to applications for nanotechnology, “The possibilities abound,” said Mihail C. Roco, NSF senior advisor for science and engineering and key architect of NNI.

“Since these high school students were born, more discoveries have come from nanotechnology than any other field of science, with its discoveries penetrating all aspects of society — new industries, medicine, agriculture and the management of natural resources,” Roco said. “It is so exciting that these kids are getting in on the ground floor of progress. The competition inspires young people to dream high and create solutions in a way that may change their lives and those around them. We need this new talent; the future of emerging technologies, including nanotechnology depends on it.”

Those of us who cannot attend the festival, can vote online,

And remember to vote for your favorite from April 7 to 15.

*ETA March 31, 2016 at 1115 hours PDT: The vote link from the news release does not seem to be operational presumably since we the voting period doesn’t start until April 7, 2016.

Congratulations to the three finalists!

*’or’ switched to ‘for’  in the headline at 1110 hours PDT on March 31, 2016.

US Nanotechnology Initiative for water sustainability

Wednesday, March 23, 2016 was World Water Day and to coincide with that event the US National Nanotechnology Initiative (NNI) in collaboration with several other agencies announced a new ‘signature initiative’. From a March 24, 2016 news item on Nanowerk (Note: A link has been removed),

As a part of the White House Water Summit held yesterday on World Water Day, the Federal agencies participating in the National Nanotechnology Initiative (NNI) announced the launch of a Nanotechnology Signature Initiative (NSI), Water Sustainability through Nanotechnology: Nanoscale Solutions for a Global-Scale Challenge.

A March 23, 2016 NNI news release provides more information about why this initiative is important,

Access to clean water remains one of the world’s most pressing needs. As today’s White House Office of Science and Technology blog post explains, “the small size and exceptional properties of engineered nanomaterials are particularly promising for addressing the key technical challenges related to water quality and quantity.”

“One cannot find an issue more critical to human life and global security than clean, plentiful, and reliable water sources,” said Dr. Michael Meador, Director of the National Nanotechnology Coordination Office (NNCO). “Through the NSI mechanism, NNI member agencies will have an even greater ability to make meaningful strides toward this initiative’s thrust areas: increasing water availability, improving the efficiency of water delivery and use, and enabling next-generation water monitoring systems.”

A March 23, 2016 US White House blog posting by Lloyd Whitman and Lisa Friedersdorf describes the efforts in more detail (Note: A link has been removed),

The small size and exceptional properties of engineered nanomaterials are particularly promising for addressing the pressing technical challenges related to water quality and quantity. For example, the increased surface area—a cubic centimeter of nanoparticles has a surface area larger than a football field—and reactivity of nanometer-scale particles can be exploited to create catalysts for water purification that do not require rare or precious metals. And composites incorporating nanomaterials such as carbon nanotubes might one day enable stronger, lighter, and more durable piping systems and components. Under this NSI, Federal agencies will coordinate and collaborate to more rapidly develop nanotechnology-enabled solutions in three main thrusts: [thrust 1] increasing water availability; [thrust 2] improving the efficiency of water delivery and use; and [thrust 3] enabling next-generation water monitoring systems.

A technical “white paper” released by the agencies this week highlights key technical challenges for each thrust, identifies key objectives to overcome those challenges, and notes areas of research and development where nanotechnology promises to provide the needed solutions. By shining a spotlight on these areas, the new NSI will increase Federal coordination and collaboration, including with public and private stakeholders, which is vital to making progress in these areas. The additional focus and associated collective efforts will advance stewardship of water resources to support the essential food, energy, security, and environment needs of all stakeholders.

We applaud the commitment of the Federal agencies who will participate in this effort—the Department of Commerce/National Institute of Standards and Technology, Department of Energy, Environmental Protection Agency, National Aeronautics and Space Administration, National Science Foundation, and U.S. Department of Agriculture/National Institute of Food and Agriculture. As made clear at this week’s White House Water Summit, the world’s water systems are under tremendous stress, and new and emerging technologies will play a critical role in ensuring a sustainable water future.

The white paper (12 pp.) is titled: Water Sustainability through Nanotechnology: Nanoscale Solutions for a Global-Scale Challenge and describes the thrusts in more detail.

A March 22, 2016 US White House fact sheet lays out more details including funding,

Click here to learn more about all of the commitments and announcements being made today. They include:

  • Nearly $4 billion in private capital committed to investment in a broad range of water-infrastructure projects nationwide. This includes $1.5 billion from Ultra Capital to finance decentralized and scalable water-management solutions, and $500 million from Sustainable Water to develop water reclamation and reuse systems.
  • More than $1 billion from the private sector over the next decade to conduct research and development into new technologies. This includes $500 million from GE to fuel innovation, expertise, and global capabilities in advanced water, wastewater, and reuse technologies.
  • A Presidential Memorandum and supporting Action Plan on building national capabilities for long-term drought resilience in the United States, including by setting drought resilience policy goals, directing specific drought resilience activities to be completed by the end of the year, and permanently establishing the National Drought Resilience Partnership as an interagency task force responsible for coordinating drought-resilience, response, and recovery efforts.
  • Nearly $35 million this year in Federal grants from the Environmental Protection Agency, the National Oceanic and Atmospheric Administration, the National Science Foundation, and the U.S. Department of Agriculture to support cutting-edge water science;
  • The release of a new National Water Model that will dramatically enhance the Nation’s river-forecasting capabilities by delivering forecasts for approximately 2.7 million locations, up from 4,000 locations today (a 700-fold increase in forecast density).

This seems promising and hopefully other countries will follow suit.

US Science and Technology Policy Office wants some nanotechnology commercialization success stories

The US Science and Technology Policy Office published a notice on Feb. 2, 2016 on the US Federal Register, ‘Requests for Information: Nanotechnology Commercialization Success’ (PDF request).

 

For anyone who’d like a little more information before clicking onto the PDF link, here’s more from the US Federal Register notice titled: Nanotechnology Commercialization Success Stories,

The purpose of this Request for Information (RFI) is to seek examples of commercialization success stories stemming from U.S. Government-funded nanotechnology research and development (R&D) since the inception of the National Nanotechnology Initiative (NNI) in 2001. The information gathered in response to this RFI may be used as examples to highlight the impact of the Initiative or to inform future activities to promote the commercialization of federally funded nanotechnology R&D. Depending on the nature of the feedback, responses may be used to shape the agenda for a workshop to share best practices and showcase commercial nanotechnology-enabled products and services. Commercial entities, academic institutions, government laboratories, and individuals who have participated in federally funded R&D; collaborated with Federal laboratories; utilized federally funded user facilities for nanoscale fabrication, characterization, and/or simulation; or have otherwise benefited from NNI agency resources are invited to respond.

The deadline is Feb. 29, 2016 and they would prefer contact via email,

 Email: NNISuccessStories@nnco.nano.gov. Include [NNI Success Story] in the subject line of the message.

Mail: Mike Kiley, National Nanotechnology Coordination Office, ATTN: RFI0116, 4201 Wilson Blvd., Stafford II, Suite 405, Arlington, VA 22230. If submitting a response by mail, allow sufficient time for mail processing.

They also have guidelines for the submission,

Submissions are limited to five pages, one of which
we strongly recommend be an overview slide using the template provided at www.nano.gov/NNISuccessStories. Responses must be unclassified and should not contain any sensitive personally identifiable information (such as home address or social security number), or information that might be considered proprietary or confidential). Please include a contact name, e-mail address, and/or phone number in case clarification of details in your submission is required.

The PDF is five pages and you may wish to review the entire document before making your submission.