Tag Archives: North Carolina State University

Nominations open for Kabiller Prizes in Nanoscience and Nanomedicine ($250,000 for visionary researcher and $10,000 for young investigator)

For a change I can publish something that doesn’t have a deadline in three days or less! Without more ado (from a Feb. 20, 2017 Northwestern University news release by Megan Fellman [h/t Nanowerk’s Feb. 20, 2017 news item]),

Northwestern University’s International Institute for Nanotechnology (IIN) is now accepting nominations for two prestigious international prizes: the $250,000 Kabiller Prize in Nanoscience and Nanomedicine and the $10,000 Kabiller Young Investigator Award in Nanoscience and Nanomedicine.

The deadline for nominations is May 15, 2017. Details are available on the IIN website.

“Our goal is to recognize the outstanding accomplishments in nanoscience and nanomedicine that have the potential to benefit all humankind,” said David G. Kabiller, a Northwestern trustee and alumnus. He is a co-founder of AQR Capital Management, a global investment management firm in Greenwich, Connecticut.

The two prizes, awarded every other year, were established in 2015 through a generous gift from Kabiller. Current Northwestern-affiliated researchers are not eligible for nomination until 2018 for the 2019 prizes.

The Kabiller Prize — the largest monetary award in the world for outstanding achievement in the field of nanomedicine — celebrates researchers who have made the most significant contributions to the field of nanotechnology and its application to medicine and biology.

The Kabiller Young Investigator Award recognizes young emerging researchers who have made recent groundbreaking discoveries with the potential to make a lasting impact in nanoscience and nanomedicine.

“The IIN at Northwestern University is a hub of excellence in the field of nanotechnology,” said Kabiller, chair of the IIN executive council and a graduate of Northwestern’s Weinberg College of Arts and Sciences and Kellogg School of Management. “As such, it is the ideal organization from which to launch these awards recognizing outstanding achievements that have the potential to substantially benefit society.”

Nanoparticles for medical use are typically no larger than 100 nanometers — comparable in size to the molecules in the body. At this scale, the essential properties (e.g., color, melting point, conductivity, etc.) of structures behave uniquely. Researchers are capitalizing on these unique properties in their quest to realize life-changing advances in the diagnosis, treatment and prevention of disease.

“Nanotechnology is one of the key areas of distinction at Northwestern,” said Chad A. Mirkin, IIN director and George B. Rathmann Professor of Chemistry in Weinberg. “We are very grateful for David’s ongoing support and are honored to be stewards of these prestigious awards.”

An international committee of experts in the field will select the winners of the 2017 Kabiller Prize and the 2017 Kabiller Young Investigator Award and announce them in September.

The recipients will be honored at an awards banquet Sept. 27 in Chicago. They also will be recognized at the 2017 IIN Symposium, which will include talks from prestigious speakers, including 2016 Nobel Laureate in Chemistry Ben Feringa, from the University of Groningen, the Netherlands.

2015 recipient of the Kabiller Prize

The winner of the inaugural Kabiller Prize, in 2015, was Joseph DeSimone the Chancellor’s Eminent Professor of Chemistry at the University of North Carolina at Chapel Hill and the William R. Kenan Jr. Distinguished Professor of Chemical Engineering at North Carolina State University and of Chemistry at UNC-Chapel Hill.

DeSimone was honored for his invention of particle replication in non-wetting templates (PRINT) technology that enables the fabrication of precisely defined, shape-specific nanoparticles for advances in disease treatment and prevention. Nanoparticles made with PRINT technology are being used to develop new cancer treatments, inhalable therapeutics for treating pulmonary diseases, such as cystic fibrosis and asthma, and next-generation vaccines for malaria, pneumonia and dengue.

2015 recipient of the Kabiller Young Investigator Award

Warren Chan, professor at the Institute of Biomaterials and Biomedical Engineering at the University of Toronto, was the recipient of the inaugural Kabiller Young Investigator Award, also in 2015. Chan and his research group have developed an infectious disease diagnostic device for a point-of-care use that can differentiate symptoms.

BTW, Warren Chan, winner of the ‘Young Investigator Award’, and/or his work have been featured here a few times, most recently in a Nov. 1, 2016 posting, which is mostly about another award he won but also includes links to some his work including my April 27, 2016 post about the discovery that fewer than 1% of nanoparticle-based drugs reach their destination.

Investigating nanoparticles and their environmental impact for industry?

It seems the Center for the Environmental Implications of Nanotechnology (CEINT) at Duke University (North Carolina, US) is making an adjustment to its focus and opening the door to industry, as well as, government research. It has for some years (my first post about the CEINT at Duke University is an Aug. 15, 2011 post about its mesocosms) been focused on examining the impact of nanoparticles (also called nanomaterials) on plant life and aquatic systems. This Jan. 9, 2017 US National Science Foundation (NSF) news release (h/t Jan. 9, 2017 Nanotechnology Now news item) provides a general description of the work,

We can’t see them, but nanomaterials, both natural and manmade, are literally everywhere, from our personal care products to our building materials–we’re even eating and drinking them.

At the NSF-funded Center for Environmental Implications of Nanotechnology (CEINT), headquartered at Duke University, scientists and engineers are researching how some of these nanoscale materials affect living things. One of CEINT’s main goals is to develop tools that can help assess possible risks to human health and the environment. A key aspect of this research happens in mesocosms, which are outdoor experiments that simulate the natural environment – in this case, wetlands. These simulated wetlands in Duke Forest serve as a testbed for exploring how nanomaterials move through an ecosystem and impact living things.

CEINT is a collaborative effort bringing together researchers from Duke, Carnegie Mellon University, Howard University, Virginia Tech, University of Kentucky, Stanford University, and Baylor University. CEINT academic collaborations include on-going activities coordinated with faculty at Clemson, North Carolina State and North Carolina Central universities, with researchers at the National Institute of Standards and Technology and the Environmental Protection Agency labs, and with key international partners.

The research in this episode was supported by NSF award #1266252, Center for the Environmental Implications of NanoTechnology.

The mention of industry is in this video by O’Brien and Kellan, which describes CEINT’s latest work ,

Somewhat similar in approach although without a direction reference to industry, Canada’s Experimental Lakes Area (ELA) is being used as a test site for silver nanoparticles. Here’s more from the Distilling Science at the Experimental Lakes Area: Nanosilver project page,

Water researchers are interested in nanotechnology, and one of its most commonplace applications: nanosilver. Today these tiny particles with anti-microbial properties are being used in a wide range of consumer products. The problem with nanoparticles is that we don’t fully understand what happens when they are released into the environment.

The research at the IISD-ELA [International Institute for Sustainable Development Experimental Lakes Area] will look at the impacts of nanosilver on ecosystems. What happens when it gets into the food chain? And how does it affect plants and animals?

Here’s a video describing the Nanosilver project at the ELA,

You may have noticed a certain tone to the video and it is due to some political shenanigans, which are described in this Aug. 8, 2016 article by Bartley Kives for the Canadian Broadcasting Corporation’s (CBC) online news.

Exploring the science of Iron Man (prior to the opening of Captain America: Civil War, aka, Captain America vs. Iron Man)

Not unexpectedly, there’s a news item about science and Iron Man (it’s getting quite common for the science in movies to be promoted and discussed) just a few weeks before the movie Captain America: Civil War or, as it’s also known, Captain America vs. Iron Man opens in the US. From an April 26, 2016 news item on phys.org,

… how much of our favourite superheros’ power lies in science and how much is complete fiction?

As Iron Man’s name suggests, he wears a suit of “iron” which gives him his abilities—superhuman strength, flight and an arsenal of weapons—and protects him from harm.

In scientific parlance, the Iron man suit is an exoskeleton which is worn outside the body to enhance it.

An April 26, 2016 posting by Chris Marr on the ScienceNetwork Western Australia blog, which originated the news item, provides an interesting overview of exoskeletons and some of the scientific obstacles still to be overcome before they become commonplace,

In the 1960s, the first real powered exoskeleton appeared—a machine integrated with the human frame and movements which provided the wearer with 25 times his natural lifting capacity.

The major drawback then was that the unit itself weighed in at 680kg.

UWA [University of Western Australia] Professor Adrian Keating suggests that some of the technology seen in the latest Marvel blockbuster, such as controlling the exoskeleton with simple thoughts, will be available in the near future by leveraging ongoing advances of multi-disciplinary research teams.

“Dust grain-sized micromachines could be programmed to cooperate to form reconfigurable materials such as the retractable face mask, for example,” Prof Keating says.

However, all of these devices are in need of a power unit small enough to be carried yet providing enough capacity for more than a few minutes of superhuman use, he says.

Does anyone have a spare Arc Reactor?

Currently, most exoskeleton development has been for medical applications, with devices designed to give mobility to amputees and paraplegics, and there are a number in commercial production and use.

Dr Lei Cui, who lectures in Mechatronics at Curtin University, has recently developed both a hand and leg exoskeleton, designed for use by patients who have undergone surgery or have nerve dysfunction, spinal injuries or muscular dysfunction.

“Currently we use an internal battery that lasts about two hours in the glove, which can be programmed for only four different movement patterns,” Dr Cui says.

Dr Cui’s exoskeletons are made from plastic, making them light but offering little protection compared to the titanium exterior of Stark’s favourite suit.

It’s clear that we are a long way from being able to produce a working Iron Man suit at all, let alone one that flies, protects the wearer and has the capacity to fight back.

This is not the first time I’ve featured a science and pop culture story here. You can check out my April 28, 2014 posting for a story about how Captain America’s shield could be a supercapacitor (it also has a link to a North Carolina State University blog featuring science and other comic book heroes) and there is my May 6, 2013 post about Iron Man 3 and a real life injectable nano-network.

As for ScienceNetwork Western Australia, here’s more from their About SWNA page,

ScienceNetwork Western Australia (SNWA) is an online science news service devoted to sharing WA’s achievements in science and technology.

SNWA is produced by Scitech, the state’s science and technology centre and supported by the WA Government’s Office of Science via the Department of the Premier and Cabinet.

Our team of freelance writers work with in-house editors based at Scitech to bring you news from all fields of science, and from the research, government and private industry sectors working throughout the state. Our writers also produce profile stories on scientists. We collaborate with leading WA institutions to bring you Perspectives from prominent WA scientists and opinion leaders.

We also share news of science-related events and information about the greater WA science community including WA’s Chief Scientist, the Premier’s Science Awards, Innovator of the Year Awards and information on regional community science engagement.

Since our commencement in 2003 we have grown to share WA’s stories with local, national and global audiences. Our articles are regularly republished in print and online media in the metropolitan and regional areas.

Bravo to the Western Australia government! I wish there  initiatives of this type in Canada, the closest we have is the French language Agence Science-Presse supported by the Province of Québec.

Making diamonds at room temperature with a new carbon material

Scientists at North Carolina State University (NCSU) claim to have found a new phase for solid carbon which allows them to create diamond materials at room temperature. From a Nov. 30, 2015 news item on Nanowerk,

Researchers from North Carolina State University have discovered a new phase of solid carbon, called Q-carbon, which is distinct from the known phases of graphite and diamond. They have also developed a technique for using Q-carbon to make diamond-related structures at room temperature and at ambient atmospheric pressure in air.

Phases are distinct forms of the same material. Graphite is one of the solid phases of carbon; diamond is another.

“We’ve now created a third solid phase of carbon,” says Jay Narayan, the John C. Fan Distinguished Chair Professor of Materials Science and Engineering at NC State and lead author of three [?] papers describing the work. “The only place it may be found in the natural world would be possibly in the core of some planets.”

A Nov. 30, 2015 NCSU news release (also on EurekAlert), which originated the news item, describes some of the new material’s properties,

Q-carbon has some unusual characteristics. For one thing, it is ferromagnetic – which other solid forms of carbon are not. [definition from its Wikipedia entry: Ferromagnetism is the basic mechanism by which certain materials (such as iron) form permanent magnets, or are attracted to magnets.]

“We didn’t even think that was possible,” Narayan says.

In addition, Q-carbon is harder than diamond, and glows when exposed to even low levels of energy.

“Q-carbon’s strength and low work-function – its willingness to release electrons – make it very promising for developing new electronic display technologies,” Narayan says.

But Q-carbon can also be used to create a variety of single-crystal diamond objects. …

The news release describes the process for creating Q-carbon,

Researchers start with a substrate, such as such as sapphire, glass or a plastic polymer. The substrate is then coated with amorphous carbon – elemental carbon that, unlike graphite or diamond, does not have a regular, well-defined crystalline structure. The carbon is then hit with a single laser pulse lasting approximately 200 nanoseconds. During this pulse, the temperature of the carbon is raised to 4,000 Kelvin (or around 3,727 degrees Celsius) and then rapidly cooled. This operation takes place at one atmosphere – the same pressure as the surrounding air.

The end result is a film of Q-carbon, and researchers can control the process to make films between 20 nanometers and 500 nanometers thick.

By using different substrates and changing the duration of the laser pulse, the researchers can also control how quickly the carbon cools. By changing the rate of cooling, they are able to create diamond structures within the Q-carbon.

“We can create diamond nanoneedles or microneedles, nanodots, or large-area diamond films, with applications for drug delivery, industrial processes and for creating high-temperature switches and power electronics,” Narayan says. “These diamond objects have a single-crystalline structure, making them stronger than polycrystalline materials. And it is all done at room temperature and at ambient atmosphere – we’re basically using a laser like the ones used for laser eye surgery. So, not only does this allow us to develop new applications, but the process itself is relatively inexpensive.”

And, if researchers want to convert more of the Q-carbon to diamond, they can simply repeat the laser-pulse/cooling process.

If Q-carbon is harder than diamond, why would someone want to make diamond nanodots instead of Q-carbon ones? Because we still have a lot to learn about this new material.

“We can make Q-carbon films, and we’re learning its properties, but we are still in the early stages of understanding how to manipulate it,” Narayan says. “We know a lot about diamond, so we can make diamond nanodots. We don’t yet know how to make Q-carbon nanodots or microneedles. That’s something we’re working on.”

NC State has filed two provisional patents on the Q-carbon and diamond creation techniques.

While the news release mentions Narayan is the lead author of three papers about this work, only two papers are cited at the end of the news release.

Here are the links and citations,

Research Update: Direct conversion of amorphous carbon into diamond at ambient pressures and temperatures in air by Jagdish Narayan and Anagh Bhaumik. APL Mater. 3, 100702 (2015); http://dx.doi.org/10.1063/1.4932622 [Published Oct. 7, 2015]

Novel Phase of Carbon, Ferromagnetism and Conversion into Diamond by Jagdish Narayan and Anagh Bhaumik. Published online Nov. 30 [, 2015] in the Journal of Applied Physics  DOI: 10.1063/1.4936595

Both articles are open access.

A 244-atom submarine powered by light

James Tour lab researchers at Rice University announce in a Nov. 16, 2015 news item on Nanowerk,

Though they’re not quite ready for boarding a lá “Fantastic Voyage,” nanoscale submarines created at Rice University are proving themselves seaworthy.

Each of the single-molecule, 244-atom submersibles built in the Rice lab of chemist James Tour has a motor powered by ultraviolet light. With each full revolution, the motor’s tail-like propeller moves the sub forward 18 nanometers.
And with the motors running at more than a million RPM, that translates into speed. Though the sub’s top speed amounts to less than 1 inch per second, Tour said that’s a breakneck pace on the molecular scale.

“These are the fastest-moving molecules ever seen in solution,” he said.

Expressed in a different way, the researchers reported this month in the American Chemical Society journal Nano Letters that their light-driven nanosubmersibles show an “enhancement in diffusion” of 26 percent. That means the subs diffuse, or spread out, much faster than they already do due to Brownian motion, the random way particles spread in a solution.

While they can’t be steered yet, the study proves molecular motors are powerful enough to drive the sub-10-nanometer subs through solutions of moving molecules of about the same size.

“This is akin to a person walking across a basketball court with 1,000 people throwing basketballs at him,” Tour said.

A Nov. 16, 2015 Rice University news release (also on EurekAlert), which originated the news item, provides context and details about the research,

Tour’s group has extensive experience with molecular machines. A decade ago, his lab introduced the world to nanocars, single-molecule cars with four wheels, axles and independent suspensions that could be “driven” across a surface.

Tour said many scientists have created microscopic machines with motors over the years, but most have either used or generated toxic chemicals. He said a motor that was conceived in the last decade by a group in the Netherlands proved suitable for Rice’s submersibles, which were produced in a 20-step chemical synthesis.

“These motors are well-known and used for different things,” said lead author and Rice graduate student Victor García-López. “But we were the first ones to propose they can be used to propel nanocars and now submersibles.”

The motors, which operate more like a bacteria’s flagellum than a propeller, complete each revolution in four steps. When excited by light, the double bond that holds the rotor to the body becomes a single bond, allowing it to rotate a quarter step. As the motor seeks to return to a lower energy state, it jumps adjacent atoms for another quarter turn. The process repeats as long as the light is on.

For comparison tests, the lab also made submersibles with no motors, slow motors and motors that paddle back and forth. All versions of the submersibles have pontoons that fluoresce red when excited by a laser, according to the researchers. (Yellow, sadly, was not an option.)

“One of the challenges was arming the motors with the appropriate fluorophores for tracking without altering the fast rotation,” García-López said.

Once built, the team turned to Gufeng Wang at North Carolina State University to measure how well the nanosubs moved.

“We had used scanning tunneling microscopy and fluorescence microscopy to watch our cars drive, but that wouldn’t work for the submersibles,” Tour said. “They would drift out of focus pretty quickly.”

The North Carolina team sandwiched a drop of diluted acetonitrile liquid containing a few nanosubs between two slides and used a custom confocal fluorescence microscope to hit it from opposite sides with both ultraviolet light (for the motor) and a red laser (for the pontoons).

The microscope’s laser defined a column of light in the solution within which tracking occurred, García-López said. “That way, the NC State team could guarantee it was analyzing only one molecule at a time,” he said.

Rice’s researchers hope future nanosubs will be able to carry cargoes for medical and other purposes. “There’s a path forward,” García-López said. “This is the first step, and we’ve proven the concept. Now we need to explore opportunities and potential applications.”

Here’s a link to and a citation for the paper,

Unimolecular Submersible Nanomachines. Synthesis, Actuation, and Monitoring by Víctor García-López, Pinn-Tsong Chiang, Fang Chen, Gedeng Ruan, Angel A. Martí, Anatoly B. Kolomeisky, Gufeng Wang, and James M. Tour. Nano Lett., Article ASAP DOI: 10.1021/acs.nanolett.5b03764 Publication Date (Web): November 5, 2015

Copyright © 2015 American Chemical Society

This paper is behind a paywall.

There is an illustration of the 244-atom submersible,

Rice University scientists have created light-driven, single-molecule submersibles that contain just 244 atoms. Illustration by Loïc Samuel

Rice University scientists have created light-driven, single-molecule submersibles that contain just 244 atoms. Illustration by Loïc Samuel

$81M for US National Nanotechnology Coordinated Infrastructure (NNCI)

Academics, small business, and industry researchers are the big winners in a US National Science Foundation bonanza according to a Sept. 16, 2015 news item on Nanowerk,

To advance research in nanoscale science, engineering and technology, the National Science Foundation (NSF) will provide a total of $81 million over five years to support 16 sites and a coordinating office as part of a new National Nanotechnology Coordinated Infrastructure (NNCI).

The NNCI sites will provide researchers from academia, government, and companies large and small with access to university user facilities with leading-edge fabrication and characterization tools, instrumentation, and expertise within all disciplines of nanoscale science, engineering and technology.

A Sept. 16, 2015 NSF news release provides a brief history of US nanotechnology infrastructures and describes this latest effort in slightly more detail (Note: Links have been removed),

The NNCI framework builds on the National Nanotechnology Infrastructure Network (NNIN), which enabled major discoveries, innovations, and contributions to education and commerce for more than 10 years.

“NSF’s long-standing investments in nanotechnology infrastructure have helped the research community to make great progress by making research facilities available,” said Pramod Khargonekar, assistant director for engineering. “NNCI will serve as a nationwide backbone for nanoscale research, which will lead to continuing innovations and economic and societal benefits.”

The awards are up to five years and range from $500,000 to $1.6 million each per year. Nine of the sites have at least one regional partner institution. These 16 sites are located in 15 states and involve 27 universities across the nation.

Through a fiscal year 2016 competition, one of the newly awarded sites will be chosen to coordinate the facilities. This coordinating office will enhance the sites’ impact as a national nanotechnology infrastructure and establish a web portal to link the individual facilities’ websites to provide a unified entry point to the user community of overall capabilities, tools and instrumentation. The office will also help to coordinate and disseminate best practices for national-level education and outreach programs across sites.

New NNCI awards:

Mid-Atlantic Nanotechnology Hub for Research, Education and Innovation, University of Pennsylvania with partner Community College of Philadelphia, principal investigator (PI): Mark Allen
Texas Nanofabrication Facility, University of Texas at Austin, PI: Sanjay Banerjee

Northwest Nanotechnology Infrastructure, University of Washington with partner Oregon State University, PI: Karl Bohringer

Southeastern Nanotechnology Infrastructure Corridor, Georgia Institute of Technology with partners North Carolina A&T State University and University of North Carolina-Greensboro, PI: Oliver Brand

Midwest Nano Infrastructure Corridor, University of  Minnesota Twin Cities with partner North Dakota State University, PI: Stephen Campbell

Montana Nanotechnology Facility, Montana State University with partner Carlton College, PI: David Dickensheets
Soft and Hybrid Nanotechnology Experimental Resource,

Northwestern University with partner University of Chicago, PI: Vinayak Dravid

The Virginia Tech National Center for Earth and Environmental Nanotechnology Infrastructure, Virginia Polytechnic Institute and State University, PI: Michael Hochella

North Carolina Research Triangle Nanotechnology Network, North Carolina State University with partners Duke University and University of North Carolina-Chapel Hill, PI: Jacob Jones

San Diego Nanotechnology Infrastructure, University of California, San Diego, PI: Yu-Hwa Lo

Stanford Site, Stanford University, PI: Kathryn Moler

Cornell Nanoscale Science and Technology Facility, Cornell University, PI: Daniel Ralph

Nebraska Nanoscale Facility, University of Nebraska-Lincoln, PI: David Sellmyer

Nanotechnology Collaborative Infrastructure Southwest, Arizona State University with partners Maricopa County Community College District and Science Foundation Arizona, PI: Trevor Thornton

The Kentucky Multi-scale Manufacturing and Nano Integration Node, University of Louisville with partner University of Kentucky, PI: Kevin Walsh

The Center for Nanoscale Systems at Harvard University, Harvard University, PI: Robert Westervelt

The universities are trumpeting this latest nanotechnology funding,

NSF-funded network set to help businesses, educators pursue nanotechnology innovation (North Carolina State University, Duke University, and University of North Carolina at Chapel Hill)

Nanotech expertise earns Virginia Tech a spot in National Science Foundation network

ASU [Arizona State University] chosen to lead national nanotechnology site

UChicago, Northwestern awarded $5 million nanotechnology infrastructure grant

That is a lot of excitement.

Audience perceptions of emerging technologies and media stories that emphasize conflict over nuance

A few names popped into my head, as soon as I saw a news release focused on audience perceptions and emerging technologies. I was right about one of the authors (Dominique Brossard of the University of Wisconsin-Madison [UWM] often writes on the topic) however, the lead author is Andrew Binder of North Carolina State University (NCSU). An August 31, 2015 NCSU news release describes a joint NCSU-UWM research project  (Note: Links have been removed),

Researchers from NC State University and the University of Wisconsin-Madison have found more evidence that how media report on emerging technologies – such as nanotechnology or genetically modified crops – influences public opinion on those subjects.

Specifically, when news stories highlight conflict in the scientific community on an emerging technology, people who accept the authority of scientists on scientific subjects are more likely to view the emerging technology as risky.

“Scientists – even scientists who disagree – often incorporate caveats and nuance into their comments on emerging technologies,” says Andrew R. Binder, lead author of a paper on the work and an associate professor of communication at NC State. “For example, a scientist may voice an opinion but note a lack of data on the subject. But that nuance is often lost in news stories.

“We wanted to know stories that present scientists as being in clear conflict, leaving out the nuance, affected the public’s perception of uncertainty on an issue – particularly compared to stories that incorporate the nuances of each scientist’s position,” Binder says.

For their experiment, the researchers had 250 college students answer a questionnaire on their deference to scientific authority and their perceptions of nanotechnology. Participants were split into four groups. Before asking about nanotechnology, one group was asked to read a news story about nanotech that quoted scientists and presented them as being in conflict; one group read a news story with quotes that showed disagreement between scientists but included nuance on each scientist’s position; one group read a story without quotes; and one group – the control group – was given no reading.

In most instances, the reading assignments did not have a significant impact on study participants’ perception of risks associated with nanotechnology. However, those participants who were both “highly deferent” to scientific authority and given the “conflict” news item perceived nanotechnology as being significantly more risky as compared to those highly deferent study participants who read the “nuance” article.

“One thing that’s interesting here is that participants who were highly deferential to scientific authority but were in the control group or read the news item without quotes – they landed about halfway between the ‘conflict’ group and the ‘nuance’ group,” Binder says. “So it would seem that the way reporters frame scientific opinion can sway an audience one way or the other.”

The researchers also found that, while an appearance of conflict can increase one’s perception of risk, it did not increase participants’ sense of certainty in their position.

As a practical matter, the findings raise questions for journalists – since scientists have limited control over how they’re portrayed in the news. Previous surveys have found that many people are deferent to scientific authority – they trust scientists – so a reporter’s decision to cut nuance or highlight conflict could make a very real impact on how the public perceives emerging technologies.

“Reporters can’t include every single detail, and scientists want to include everything,” Binder says. “So I don’t think there’s a definitive solution out there that will make everyone happy. But hopefully this will encourage both parties to meet in the middle.”

I have one comment, this research was conducted on college students whose age range is likely more restricted than what you’d find in the general populace. I don’t know if the research team has plans or more funding but it would seem the next step would be to tested a wider range to see if the results with the college students can be generalized.

Here’s a link to and a citation for the paper,

Conflict or Caveats? Effects of Media Portrayals of Scientific Uncertainty on Audience Perceptions of New Technologies by Andrew R. Binder, Elliott D. Hillback, and Dominique Brossard. Risk Analysis DOI: 10.1111/risa.12462 Article first published online: 13 AUG 2015

© 2015 Society for Risk Analysis

This paper is behind a paywall.

Building nanocastles in the sand

Scientists have taken inspiration from sandcastles to build robots made of nanoparticles. From an Aug. 5, 2015 news item on ScienceDaily,

If you want to form very flexible chains of nanoparticles in liquid in order to build tiny robots with flexible joints or make magnetically self-healing gels, you need to revert to childhood and think about sandcastles.

In a paper published this week in Nature Materials, researchers from North Carolina State University and the University of North Carolina-Chapel Hill show that magnetic nanoparticles encased in oily liquid shells can bind together in water, much like sand particles mixed with the right amount of water can form sandcastles.

An Aug. 5, 2015 North Carolina State University (NCSU) news release (also on EurekAlert) by Mick Kulikowski, which originated the news item, expands on the theme,

“Because oil and water don’t mix, the oil wets the particles and creates capillary bridges between them so that the particles stick together on contact,” said Orlin Velev, INVISTA Professor of Chemical and Biomolecular Engineering at NC State and the corresponding author of the paper.

“We then add a magnetic field to arrange the nanoparticle chains and provide directionality,” said Bhuvnesh Bharti, research assistant professor of chemical and biomolecular engineering at NC State and first author of the paper.

Chilling the oil is like drying the sandcastle. Reducing the temperature from 45 degrees Celsius to 15 degrees Celsius freezes the oil and makes the bridges fragile, leading to breaking and fragmentation of the nanoparticle chains. Yet the broken nanoparticles chains will re-form if the temperature is raised, the oil liquefies and an external magnetic field is applied to the particles.

“In other words, this material is temperature responsive, and these soft and flexible structures can be pulled apart and rearranged,” Velev said. “And there are no other chemicals necessary.”

The paper is also co-authored by Anne-Laure Fameau, a visiting researcher from INRA [French National Institute for Agricultural Research or Institut National de la Recherche Agronomique], France. …

Here’s a link to and a citation for the paper,

Nanocapillarity-mediated magnetic assembly of nanoparticles into ultraflexible filaments and reconfigurable networks by Bhuvnesh Bharti, Anne-Laure Fameau, Michael Rubinstein, & Orlin D. Velev. Nature Materials (2015) doi:10.1038/nmat4364 Published online 03 August 2015

This paper is behind a paywall.

Greening silver nanoparticles with lignin

A July 13, 2015 news item on phys.org highlights a new approach to making silver nanoparticles safer in the environment,

North Carolina State University researchers have developed an effective and environmentally benign method to combat bacteria by engineering nanoscale particles that add the antimicrobial potency of silver to a core of lignin, a ubiquitous substance found in all plant cells. The findings introduce ideas for better, greener and safer nanotechnology and could lead to enhanced efficiency of antimicrobial products used in agriculture and personal care.

A July 13, 2015 North Carolina State University (NCSU) news release (also on EurekAlert), which originated the news item, adds a bit more information,

As the nanoparticles wipe out the targeted bacteria, they become depleted of silver. The remaining particles degrade easily after disposal because of their biocompatible lignin core, limiting the risk to the environment.

“People have been interested in using silver nanoparticles for antimicrobial purposes, but there are lingering concerns about their environmental impact due to the long-term effects of the used metal nanoparticles released in the environment,” said Velev, INVISTA Professor of Chemical and Biomolecular Engineering at NC State and the paper’s corresponding author. “We show here an inexpensive and environmentally responsible method to make effective antimicrobials with biomaterial cores.”

The researchers used the nanoparticles to attack E. coli, a bacterium that causes food poisoning; Pseudomonas aeruginosa, a common disease-causing bacterium; Ralstonia, a genus of bacteria containing numerous soil-borne pathogen species; and Staphylococcus epidermis, a bacterium that can cause harmful biofilms on plastics – like catheters – in the human body. The nanoparticles were effective against all the bacteria.

The method allows researchers the flexibility to change the nanoparticle recipe in order to target specific microbes. Alexander Richter, the paper’s first author and an NC State Ph.D. candidate who won a 2015 Lemelson-MIT prize, says that the particles could be the basis for reduced risk pesticide products with reduced cost and minimized environmental impact.

“We expect this method to have a broad impact,” Richter said. “We may include less of the antimicrobial ingredient without losing effectiveness while at the same time using an inexpensive technique that has a lower environmental burden. We are now working to scale up the process to synthesize the particles under continuous flow conditions.”

I don’t quite understand how the silver nanoparticles/ions are rendered greener. I gather the lignin is harmless but where do the silver nanoparticles/ions go after they’ve been stripped of their lignin cover and have killed the bacteria? I did try reading the paper’s abstract (not much use for someone with my science level),

Silver nanoparticles have antibacterial properties, but their use has been a cause for concern because they persist in the environment. Here, we show that lignin nanoparticles infused with silver ions and coated with a cationic polyelectrolyte layer form a biodegradable and green alternative to silver nanoparticles. The polyelectrolyte layer promotes the adhesion of the particles to bacterial cell membranes and, together with silver ions, can kill a broad spectrum of bacteria, including Escherichia coli, Pseudomonas aeruginosa and quaternary-amine-resistant Ralstonia sp. Ion depletion studies have shown that the bioactivity of these nanoparticles is time-limited because of the desorption of silver ions. High-throughput bioactivity screening did not reveal increased toxicity of the particles when compared to an equivalent mass of metallic silver nanoparticles or silver nitrate solution. Our results demonstrate that the application of green chemistry principles may allow the synthesis of nanoparticles with biodegradable cores that have higher antimicrobial activity and smaller environmental impact than metallic silver nanoparticles.

If you can explain what happens to the silver nanoparticles, please let me know.

Meanwhile, here’s a link to and a citation for the paper,

An environmentally benign antimicrobial nanoparticle based on a silver-infused lignin core by Alexander P. Richter, Joseph S. Brown, Bhuvnesh Bharti, Amy Wang, Sumit Gangwal, Keith Houck, Elaine A. Cohen Hubal, Vesselin N. Paunov, Simeon D. Stoyanov, & Orlin D. Velev. Nature Nanotechnology (2015) doi:10.1038/nnano.2015.141 Published online 13 July 2015

This paper is behind a paywall.

The science of the Avengers: Age of Ultron

The American Chemical Society (ACS) has produced a video (almost 4 mins.) in their Reactions Science Video Series of podcasts focusing on the Avengers, super heroes, as portrayed in Avengers: Age of Ultron and science. From an April 29, 2015 ACS news release on EurekAlert,

Science fans, assemble! On May 1, the world’s top superhero team is back to save the day in “Avengers: Age of Ultron.” This week, Reactions looks at the chemistry behind these iconic heroes’ gear and superpowers, including Tony Stark’s suit, Captain America’s shield and more.

Here’s the video,


While the chemists are interested in the metal alloys, there is more ‘super hero science’ writing out there. Given my interests, I found the ‘Captain America’s shield as supercapacitor theory’ as described in Matt Shipman’s April 15, 2014 post on The Abstract (North Carolina State University’s official newsroom blog quite interesting. I featured Shipman’s ‘super hero and science’ series of posts in my April 28, 2014 posting.