Tag Archives: Northern Graphite

Making graphite from coal and a few graphite facts

Canada is the 10th largest (1.2%) producer of graphite in the world with China leading the way in the top spot at 68.1%. That’s right, 1.2% can get you into the top 10.

If you’re curious about which countries fill out the other eight spots, The National Research Council of Canada has a handy webpage titled, Graphite Facts,

Graphite is a non-metallic mineral that has properties similar to metals, such as a good ability to conduct heat and electricity. Graphite occurs naturally or can be produced synthetically. Purified natural graphite has higher crystalline structure and offers better electrical and thermal conductivity than synthetic material.

Among the many applications, natural and synthetic graphite are used for electrodes, refractories, batteries and lubricants and by foundries. Coated spherical graphite is used to manufacture the anode in lithium-ion batteries. High-grade graphite is also used in fuel cells, semiconductors, LEDs and nuclear reactors.

The Lac des Iles mine is the only mine in Canada that is producing graphite. However, many other companies are working on graphite projects.

Canada’s graphite shipments reached 11,937 tonnes in 2020, up slightly from 11,045 tonnes in 2020 [sic].

Global production and demand for graphite are anticipated to increase in the coming years, largely because of the use of graphite in the batteries of electric vehicles. In 2020, global consumption of graphite reached 2.7 million tonnes. Synthetic graphite accounted for about two-thirds of the graphite consumption, which was largely concentrated in Asia.

In 2020, the value of Canada’s exports of graphite was $31.6 million, a 9% decrease compared to the previous year. Imports also decreased in 2020, by 33% to $20.9 million.

Natural graphite accounted for 46.7% ($14.8 million) of the value of Canada’s exports of graphite and 13.5% ($2.8 million) of Canada’s imports of graphite in 2020. Synthetic graphite accounted for 53.3% ($ 16.9 million) of Canada’s exports of graphite and 86.5% ($18.0 million) of Canada’s imports of graphite in 2020.

In 2020, the United States was the primary destination for Canada’s exports of natural and synthetic graphite, accounting for 85% and 42% of the total exports, respectively.

I think the writer meant that shipments were up slightly from 2019. The page was last updated on February 4, 2022.

The news from Ohio

A June 10, 2022 news item on Nanowerk about research into a new type of graphite (Note: A link has been removed),

As the world’s appetite for carbon-based materials like graphite increases, Ohio University researchers presented evidence this week for a new carbon solid they named “amorphous graphite.”

Physicist David Drabold and engineer Jason Trembly started with the question, “Can we make graphite from coal?”

“Graphite is an important carbon material with many uses. A burgeoning application for graphite is for battery anodes in lithium-ion batteries, and it is crucial for the electric vehicle industry — a Tesla Model S on average needs 54 kg of graphite. Such electrodes are best if made with pure carbon materials, which are becoming more difficult to obtain owing to spiraling technological demand,” they write in their paper that published in Physical Review Letters (“Ab initio simulation of amorphous graphite”).

Ab initio means from the beginning, and their work pursues novel paths to synthetic forms of graphite from naturally occurring carbonaceous material. What they found, with several different calculations, was a layered material that forms at very high temperatures (about 3000 degrees Kelvin). Its layers stay together due to the formation of an electron gas between the layers, but they’re not the perfect layers of hexagons that make up ideal graphene. This new material has plenty of hexagons, but also pentagons and heptagons. That ring disorder reduces the electrical conductivity of the new material compared with graphene, but the conductivity is still high in the regions dominated largely by hexagons.

A June 10, 2022 Ohio University news release (also on EurekAlert), which originated the news item, delves further into the research (Note: Links have been removed),

Not all hexagons

“In chemistry, the process of converting carbonaceous materials to a layered graphitic structure by thermal treatment at high temperature is called graphitization. In this letter, we show from ab initio and machine learning molecular dynamic simulations that pure carbon networks have an overwhelming proclivity to convert to a layered structure in a significant density and temperature window with the layering occurring even for random starting configurations. The flat layers are amorphous graphene: topologically disordered three-coordinated carbon atoms arranged in planes with pentagons, hexagons and heptagons of carbon,” said Drabold, Distinguished Professor of Physics and Astronomy in the College of Arts and Sciences at Ohio University.

“Since this phase is topologically disordered, the usual ‘stacking registry’ of graphite is only statistically respected,” Drabold said. “The layering is observed without Van der Waals corrections to density functional (LDA and PBE) forces, and we discuss the formation of a delocalized electron gas in the galleries (voids between planes) and show that interplane cohesion is partly due to this low-density electron gas. The in-plane electronic conductivity is dramatically reduced relative to graphene.”

The researchers expect their announcement to spur experimentation and studies addressing the existence of amorphous graphite, which may be testable from exfoliation and/or experimental surface structural probes.

Trembly, Russ Professor of Mechanical Engineering and director of the Institute for Sustainable Energy and the Environment in the Russ College of Engineering and Technology at Ohio University, has been working in part on green uses of coal. He and Drabold — along with physics doctoral students Rajendra Thapa, Chinonso Ugwumadu and Kishor Nepal — collaborated on the research. Drabold also is part of the Nanoscale & Quantum Phenomena Institute at OHIO, and he has published a series of papers on the theory of amorphous carbon and amorphous graphene. Drabold also emphasized the excellent work of his graduate students in carrying out this research.

Surprising interplane cohesion

“The question that led us to this is whether we could make graphite from coal,” Drabold said. “This paper does not fully answer that question, but it shows that carbon has an overwhelming tendency to layer — like graphite, but with many ‘defects’ such as pentagons and heptagons (five- and seven-member rings of carbon atoms), which fit quite naturally into the network. We present evidence that amorphous graphite exists, and we describe its process of formation. It has been suspected from experiments that graphitization occurs near 3,000K, but the details of the formation process and nature of disorder in the planes was unknown,” he added.

The Ohio University researchers’ work is also a prediction of a new phase of carbon.

“Until we did this, it was not at all obvious that layers of amorphous graphene (the planes including pentagons and heptagons) would stick together in a layered structure. I find that quite surprising, and it is likely that experimentalists will go hunting for this stuff now that its existence is predicted,” Drabold said. “Carbon is the miracle element — you can make life, diamond, graphite, Bucky Balls, nanotubes, graphene, [emphasis mine] and now this. There is a lot of interesting basic physics in this, too — for example how and why the planes bind, this by itself is quite surprising for technical reasons.”

Here’s a link to and a citation for the paper,

Ab Initio Simulation of Amorphous Graphite by R. Thapa, C. Ugwumadu, K. Nepal, J. Trembly, and D. A. Drabold. Phys. Rev. Lett. 128, 236402 DOI: https://doi.org/10.1103/PhysRevLett.128.236402 Published 10 June 2022 © 2022 American Physical Society

This paper is behind a paywall.

There is an earlier version of the paper which is open access at ArXiv (hosted by Cornell University),

[Submitted on 22 Feb 2022 (v1), last revised 23 Apr 2022 (this version, v2)]

Ab initio simulation of amorphous graphite by Rajendra Thapa, Chinonso Ugwumadu, Kishor Nepal, Jason Trembly, David Drabold

About graphite and Canadian mines

A July 25, 2011 posting marks the earliest appearance of graphite on this blog. Titled, “Canadians as hewers of graphite?” It featured Northern Graphite Corporation, which today (June 21, 2022) is the largest North American graphite producer according to the company’s homepage,

  • Only North American producer
  • Will be 3rd largest non-Chinese producer
  • Two large development projects
  • All projects:
    • In politically stable countries
    • Have “battery quality” graphite
    • Close to infrastructure

There’s also this from the company’s homepage,

Northern owns the Lac des Iles (LDI) mine in Quebec, the only significant graphite producer in North America. Northern plans to increase production and extend the mine life.

Northern is currently upgrading its Okorusu processing plant in Namibia. It will be back on line in 1H 2023 and make Northern the third largest non Chinese graphite producer.

Northern plans to develop its advanced stage Bissett Creek project in Ontario which has a full Feasibility Study. It has been rated as the highest margin graphite deposit in the world.

The Okanjande deposit in Namibia has a very large measured and indicated resource. Northern intends to study building a 150,000tpa plant to supply battery markets in Europe.

I notice the involvement in Namibia. I hope this is a ‘good’ mining company. Canadian mining companies have been known to breach human rights and environmental regulations when operating internationally. There’s a recent tragedy described in this June 20, 2020 news article on the Canadian Broadcasting Corporation (CBC) online news site (Note: A link has been removed),

Trevali Mining Corp. says it has recovered the bodies of the final two of eight workers killed after its Perkoa Mine in Burkina Faso flooded following heavy rainfall on Apr. 16 [2022].

The bodies of the other six workers were recovered by search teams late last month.

The Vancouver-based zinc miner says it is working alongside Burkinabe authorities to coordinate the dewatering and rehabilitation of the mine.

The flooding event is under investigation by the company and government authorities.

MiningWatch Canada, an Ottawa-based industry watchdog, has questioned how well the company was prepared for disaster and criticized the federal government’s lack of regulations on how Canadian mining companies operate internationally. [emphasis mine]

They say tighter rules are necessary for companies operating abroad. 

A May 10, 2022 article by Amanda Follett Hosgood about the disaster for The Tyee provides more details and asks some very pertinent and uncomfortable questions. (Yes, The Tyee is a very ‘left wing’ journalistic effort and they have a point where Canadian mining companies are concerned.)

Getting back to Northern Graphite, there’s this from their Governance page,

Northern Graphite is committed to conducting its activities in a manner that meets best international industry practices regardless of the country or location of operation.  The Company will operate with the highest standards of honesty, integrity, and ethical behaviour.  It will conduct its business in a manner that meets or exceeds all applicable laws, rules, and regulations and meets its social and moral obligations.  This policy applies to all Board members, officers and other employees, contractors, and other third parties working on behalf of or representing the Company.

The company gets more specific, from their Governance page,

  1. Taking all reasonable precautions to ensure the health and safety of workers and others affected by the Company’s operations.
  2. Managing and minimizing the environmental impact of the Company’s operations by following best international practices and standards and meeting stakeholder expectations while recognizing that mining will always have some unavoidable impacts on the environment. 
  3. Utilizing practices and technologies that minimize the Company’s water and carbon footprints.
  4. Respecting the rights, culture and development of local and Indigenous communities.
  5. The elimination of fraud, bribery, and corruption.
  6.  The protection and respect of human rights.
  7. Providing an adequate return to shareholders and investors while ensuring that all stakeholders benefit from the extraction of the earth’s resources through fair labour and compensation practices, local hiring and contracting, community support, and the payment of all applicable government taxes and royalties.

There are two other Canadian mining companies (that I know of) in pursuit of graphite, Lomiko Metals (British Columbia) and Focus Graphite (Ontario). All the mines in Canada, whether they are producing or not, are in either Québec or Ontario.

As for the research team in Ohio, congratulations on your very exciting work!

Graphite ‘gold’ rush?

Someone in Germany (I think) is very excited about graphite, more specifically, there’s excitement around graphite flakes located in the province of Québec, Canada. Although, the person who wrote this news release might have wanted to run a search for ‘graphite’ and ‘gold rush’. The last graphite gold rush seems to have taken place in 2013.

Here’s the March 1, 2018 news release on PR Newswire (Cision), Note: Some links have been removed),

PALM BEACH, Florida, March 1, 2018 /PRNewswire/ —

MarketNewsUpdates.com News Commentary

Much like the gold rush in North America in the 1800s, people are going out in droves searching for a different kind of precious metal, graphite. The thing your third grade pencils were made of is now one of the hottest commodities on the market. This graphite is not being mined by your run-of-the-mill old-timey soot covered prospectors anymore. Big mining companies are all looking for this important resource integral to the production of lithium ion batteries due to the rise in popularity of electric cars. These players include Graphite Energy Corp. (OTC: GRXXF) (CSE: GRE), Teck Resources Limited (NYSE: TECK), Nemaska Lithium (TSX: NMX), Lithium Americas Corp. (TSX: LAC), and Cruz Cobalt Corp. (TSX-V: CUZ) (OTC: BKTPF).

These companies looking to manufacturer their graphite-based products, have seen steady positive growth over the past year. Their development of cutting-edge new products seems to be paying off. But in order to continue innovating, these companies need the graphite to do it. One junior miner looking to capitalize on the growing demand for this commodity is Graphite Energy Corp.

Graphite Energy is a mining company, that is focused on developing graphite resources. Graphite Energy’s state-of-the-art mining technology is friendly to the environment and has indicate graphite carbon (Cg) in the range of 2.20% to 22.30% with average 10.50% Cg from their Lac Aux Bouleaux Graphite Property in Southern Quebec [Canada].

Not Just Any Graphite Will Do

Graphite is one of the most in demand technology metals that is required for a green and sustainable world. Demand is only set to increase as the need for lithium ion batteries grows, fueled by the popularity of electric vehicles. However, not all graphite is created equal. The price of natural graphite has more than doubled since 2013 as companies look to maintain environmental standards which the use of synthetic graphite cannot provide due to its pollutant manufacturing process. Synthetic graphite is also very expensive to produce, deriving from petroleum and costing up to ten times as much as natural graphite. Therefore manufacturers are interested in increasing the proportion of natural graphite in their products in order to lower their costs.

High-grade large flake graphite is the solution to the environmental issues these companies are facing. But there is only so much supply to go around. Recent news by Graphite Energy Corp. on February 26th [2018] showed promising exploratory results. The announcement of the commencement of drilling is a positive step forward to meeting this increased demand.

Everything from batteries to solar panels need to be made with this natural high-grade flake graphite because what is the point of powering your home with the sun or charging your car if the products themselves do more harm than good to the environment when produced. However, supply consistency remains an issue since mines have different raw material impurities which vary from mine to mine. Certain types of battery technology already require graphite to be almost 100% pure. It is very possible that the purity requirements will increase in the future.

Natural graphite is also the basis of graphene, the uses of which seem limited only by scientists’ imaginations, given the host of new applications announced daily. In a recent study by ResearchSEA, a team from the Ocean University of China and Yunnan Normal University developed a highly efficient dye-sensitized solar cell using a graphene layer. This thin layer of graphene will allow solar panels to generate electricity when it rains.

Graphite Energy Is Keeping It Green

Whether it’s the graphite for the solar panels that will power the homes of tomorrow, or the lithium ion batteries that will fuel the latest cars, these advancements need to made in an environmentally conscious way. Mining companies like Graphite Energy Corp. specialize in the production of environmentally friendly graphite. The company will be producing its supply of natural graphite with the lowest environmental footprint possible.

From Saltwater To Clean Water Using Graphite

The world’s freshwater supply is at risk of running out. In order to mitigate this global disaster, worldwide spending on desalination technology was an estimated $16.6 billion in 2016. Due to the recent intense droughts in California, the state has accelerated the construction of desalination plants. However, the operating costs and the impact on the environment due to energy requirements for the process, is hindering any real progress in the space, until now.

Jeffrey Grossman, a professor at MIT’s [Massachusetts Institute of Technology, United States] Department of Materials Science and Engineering (DMSE), has been looking into whether graphite/graphene might reduce the cost of desalination.

“A billion people around the world lack regular access to clean water, and that’s expected to more than double in the next 25 years,” Grossman says. “Desalinated water costs five to 10 times more than regular municipal water, yet we’re not investing nearly enough money into research. If we don’t have clean energy we’re in serious trouble, but if we don’t have water we die.”

Grossman’s lab has demonstrated strong results showing that new filters made from graphene could greatly improve the energy efficiency of desalination plants while potentially reducing other costs as well.

Graphite/Graphene producers like Graphite Energy Corp. (OTC: GRXXF) (CSE: GRE) are moving quickly to provide the materials necessary to develop this new generation of desalination plants.

Potential Comparables

Cruz Cobalt Corp. (TSX-V: CUZ) (OTC: BKTPF) Cruz Cobalt Corp. is cobalt mining company involved in the identification, acquisition and exploration of mineral properties. The company’s geographical segments include the United States and Canada. They are focused on acquiring and developing high-grade Cobalt projects in politically stable, environmentally responsible and ethical mining jurisdictions, essential for the rapidly growing rechargeable battery and renewable energy.

Nemaska Lithium (TSE: NMX.TO)

Nemaska Lithium is lithium mining company. The company is a supplier of lithium hydroxide and lithium carbonate to the emerging lithium battery market that is largely driven by electric vehicles. Nemaska mining operations are located in the mining friendly jurisdiction of Quebec, Canada. Nemaska Lithium has received a notice of allowance of a main patent application on its proprietary process to produce lithium hydroxide and lithium carbonate.

Lithium Americas Corp. (TSX: LAC.TO)

Lithium Americas is developing one of North America’s largest lithium deposits in northern Nevada. It operates nearly two lithium projects namely Cauchari-Olaroz project which is located in Argentina, and the Lithium Nevada project located in Nevada. The company manufactures specialty organoclay products, derived from clays, for sale to the oil and gas and other sectors.

Teck Resources Limited (NYSE: TECK)

Teck Resources Limited is a Canadian metals and mining company.Teck’s principal products include coal, copper, zinc, with secondary products including lead, silver, gold, molybdenum, germanium, indium and cadmium. Teck’s diverse resources focuses on providing products that are essential to building a better quality of life for people around the globe.

Graphite Mining Today For A Better Tomorrow

Graphite mining will forever be intertwined with the latest advancements in science and technology. Graphite deserves attention for its various use cases in automotive, energy, aerospace and robotics industries. In order for these and other industries to become sustainable and environmentally friendly, a reliance on graphite is necessary. Therefore, this rapidly growing sector has the potential to fuel investor interest in the mining space throughout 2018. The near limitless uses of graphite has the potential to impact every facet of our lives. Companies like Graphite Energy Corp. (OTC: GRXXF); (CSE: GRE) is at the forefront in this technological revolution.

For more information on Graphite Energy Corp. (OTC: GRXXF) (CSE: GRE), please visit streetsignals.com for a free research report.

Streetsignals.com (SS) is the source of the Article and content set forth above. References to any issuer other than the profiled issuer are intended solely to identify industry participants and do not constitute an endorsement of any issuer and do not constitute a comparison to the profiled issuer. FN Media Group (FNM) is a third-party publisher and news dissemination service provider, which disseminates electronic information through multiple online media channels. FNM is NOT affiliated with SS or any company mentioned herein. The commentary, views and opinions expressed in this release by SS are solely those of SS and are not shared by and do not reflect in any manner the views or opinions of FNM. Readers of this Article and content agree that they cannot and will not seek to hold liable SS and FNM for any investment decisions by their readers or subscribers. SS and FNM and their respective affiliated companies are a news dissemination and financial marketing solutions provider and are NOT registered broker-dealers/analysts/investment advisers, hold no investment licenses and may NOT sell, offer to sell or offer to buy any security.

The Article and content related to the profiled company represent the personal and subjective views of the Author (SS), and are subject to change at any time without notice. The information provided in the Article and the content has been obtained from sources which the Author believes to be reliable. However, the Author (SS) has not independently verified or otherwise investigated all such information. None of the Author, SS, FNM, or any of their respective affiliates, guarantee the accuracy or completeness of any such information. This Article and content are not, and should not be regarded as investment advice or as a recommendation regarding any particular security or course of action; readers are strongly urged to speak with their own investment advisor and review all of the profiled issuer’s filings made with the Securities and Exchange Commission before making any investment decisions and should understand the risks associated with an investment in the profiled issuer’s securities, including, but not limited to, the complete loss of your investment. FNM was not compensated by any public company mentioned herein to disseminate this press release but was compensated seventy six hundred dollars by SS, a non-affiliated third party to distribute this release on behalf of Graphite Energy Corp.

FNM HOLDS NO SHARES OF ANY COMPANY NAMED IN THIS RELEASE.

This release contains “forward-looking statements” within the meaning of Section 27A of the Securities Act of 1933, as amended, and Section 21E the Securities Exchange Act of 1934, as amended and such forward-looking statements are made pursuant to the safe harbor provisions of the Private Securities Litigation Reform Act of 1995. “Forward-looking statements” describe future expectations, plans, results, or strategies and are generally preceded by words such as “may”, “future”, “plan” or “planned”, “will” or “should”, “expected,” “anticipates”, “draft”, “eventually” or “projected”. You are cautioned that such statements are subject to a multitude of risks and uncertainties that could cause future circumstances, events, or results to differ materially from those projected in the forward-looking statements, including the risks that actual results may differ materially from those projected in the forward-looking statements as a result of various factors, and other risks identified in a company’s annual report on Form 10-K or 10-KSB and other filings made by such company with the Securities and Exchange Commission. You should consider these factors in evaluating the forward-looking statements included herein, and not place undue reliance on such statements. The forward-looking statements in this release are made as of the date hereof and SS and FNM undertake no obligation to update such statements.

Media Contact:

FN Media Group, LLC
info@marketnewsupdates.com
+1(561)325-8757

SOURCE MarketNewsUpdates.com

Hopefully my insertions of ‘Canada’ and the ‘United States’ help to clarify matters. North America and the United States are not synonyms although they are sometimes used synonymously.

There is another copy of this news release on Wall Street Online (Deutschland), both in English and German.By the way, that was my first clue that there might be some German interest. The second clue was the Graphite Energy Corp. homepage. Unusually for a company with ‘headquarters’ in the Canadian province of British Columbia, there’s an option to read the text in German.

Graphite Energy Corp. seems to be a relatively new player in the ‘rush’ to mine graphite flakes for use in graphene-based applications. One of my first posts about mining for graphite flakes was a July 26, 2011 posting concerning Northern Graphite and their mining operation (Bissett Creek) in Ontario. I don’t write about them often but they are still active if their news releases are to be believed. The latest was issued February 28, 2018 and offers “financial metrics for the Preliminary Economic Assessment (the “PEA”) on the Company’s 100% owned Bissett Creek graphite project.”

The other graphite mining company mentioned here is Lomiko Metals. The latest posting here about Lomiko is a December 23, 2015 piece regarding an analysis and stock price recommendation by a company known as SeeThruEquity. Like Graphite Energy Corp., Lomiko’s mines are located in Québec and their business headquarters in British Columbia. Lomiko has a March 16, 2018 news release announcing its reinstatement for trading on the TSX (Toronto Stock Exchange),

(Vancouver, B.C.) Lomiko Metals Inc. (“Lomiko”) (“Lomiko”) (TSX-V: LMR, OTC: LMRMF, FSE: DH8C) announces it has been successful in its reinstatement application with the TSX Venture Exchange and trading will begin at the opening on Tuesday, March 20, 2018.

Getting back to the flakes, here’s more about Graphite Energy Corp.’s mine (from the About Lac Aux Bouleaux webpage),

Lac Aux Bouleaux

The Lac Aux Bouleaux Property is comprised of 14 mineral claims in one contiguous block totaling 738.12 hectares land on NTS 31J05, near the town of Mont-Laurier in southern Québec. Lac Aux Bouleaux “LAB” is a world class graphite property that borders the only producing graphite in North America [Note: There are three countries in North America, Canada, the United States, and Mexico. Québec is in Canada.]. On the property we have a full production facility already built which includes an open pit mine, processing facility, tailings pond, power and easy access to roads.

High Purity Levels

An important asset of LAB is its metallurgy. The property contains a high proportion of large and jumbo flakes from which a high purity concentrate was proven to be produced across all flakes by a simple flotation process. The concentrate can then be further purified using the province’s green and affordable hydro-electricity to be used in lithium-ion batteries.

The geological work performed in order to verify the existing data consisted of visiting approachable graphite outcrops, historical exploration and development work on the property. Large flake graphite showings located on the property were confirmed with flake size in the range of 0.5 to 2 millimeters, typically present in shear zones at the contact of gneisses and marbles where the graphite content usually ranges from 2% to 20%. The results of the property are outstanding showing to have jumbo flake natural graphite.

An onsite mill structure, a tailing dam facility, and a historical open mining pit is already present and constructed on the property. The property is ready to be put into production based on the existing infrastructure already built. The company would hope to be able to ship by rail its mined graphite directly to Teslas Gigafactory being built in Nevada [United States] which will produce 35GWh of batteries annually by 2020.

Adjacent Properties

The property is located in a very active graphite exploration and production area, adjacent to the south of TIMCAL’s Lac des Iles graphite mine in Quebec which is a world class deposit producing 25,000 tonnes of graphite annually. There are several graphite showings and past producing mines in its vicinity, including a historic deposit located on the property.

The open pit mine in operation since 1989 with an onsite plant ranked 5th in the world production of graphite. The mine is operated by TIMCAL Graphite & Carbon which is a subsidiary of Imerys S.A., a French multinational company. The mine has an average grade of 7.5% Cg (graphite carbon) and has been producing 50 different graphite products for various graphite end users around the globe.

Canadians! We have great flakes!

Ora Sound, a Montréal-based startup, and its ‘graphene’ headphones

For all the excitement about graphene there aren’t that many products as Glenn Zorpette notes in a June 20, 2017 posting about Ora Sound and its headphones on the Nanoclast blog (on the IEEE [Institute of Electrical and Electronics Engineers] website; Note: Links have been removed),

Graphene has long been touted as a miracle material that would deliver everything from tiny, ultralow-power transistors to the vastly long and ultrastrong cable [PDF] needed for a space elevator. And yet, 13 years of graphene development, and R&D expenditures well in the tens of billions of dollars have so far yielded just a handful of niche products. The most notable by far is a line of tennis racquets in which relatively small amounts of graphene are used to stiffen parts of the frame.

Ora Sound, a Montreal-based [Québec, Canada] startup, hopes to change all that. On 20 June [2017], it unveiled a Kickstarter campaign for a new audiophile-grade headphone that uses cones, also known as membranes, made of a form of graphene. “To the best of our knowledge, we are the first company to find a significant, commercially viable application for graphene,” says Ora cofounder Ari Pinkas, noting that the cones in the headphones are 95 percent graphene.

Kickstarter

It should be noted that participating in a Kickstarter campaign is an investment/gamble. I am not endorsing Ora Sound or its products. That said, this does look interesting (from the ORA: The World’s First Graphene Headphones Kickstarter campaign webpage),

ORA GQ Headphones uses nanotechnology to deliver the most groundbreaking audio listening experience. Scientists have long promised that one day Graphene will find its way into many facets of our lives including displays, electronic circuits and sensors. ORA’s Graphene technology makes it one of the first companies to have created a commercially viable application for this Nobel-prize winning material, a major scientific achievement.

The GQ Headphones come equipped with ORA’s patented GrapheneQ™ membranes, providing unparalleled fidelity. The headphones also offer all the features you would expect from a high-end audio product: wired/wireless operation, a gesture control track-pad, a digital MEMS microphone, breathable lambskin leather and an ear-shaped design optimized for sound quality and isolated comfort.

They have produced a slick video to promote their campaign,

At the time of publishing this post, the campaign will run for another eight days and has raised $650,949 CAD. This is more than $500,000 dollars over the company’s original goal of $135,000. I’m sure they’re ecstatic but this success can be a mixed blessing. They have many more people expecting a set of headphones than they anticipated and that can mean production issues.

Further, there appears to be only one member of the team with business experience and his (Ari Pinkas) experience includes marketing strategy for a few years and then founding an online marketplace for teachers. I would imagine Pinkas will be experiencing a very steep learning curve. Hopefully, Helge Seetzen, a member of the company’s advisory board will be able to offer assistance. According to Seetzen’s Wikipedia entry, he is a “… German technologist and businessman known for imaging & multimedia research and commercialization,” as well as, having a Canadian educational background and business experience. The rest of the team and advisory board appear to be academics.

The technology

A March 14, 2017 article by Andy Riga for the Montréal Gazette gives a general description of the technology,

A Montreal startup is counting on technology sparked by a casual conversation between two brothers pursuing PhDs at McGill University.

They were chatting about their disparate research areas — one, in engineering, was working on using graphene, a form of carbon, in batteries; the other, in music, was looking at the impact of electronics on the perception of audio quality.

At first glance, the invention that ensued sounds humdrum.

It’s a replacement for an item you use every day. It’s paper thin, you probably don’t realize it’s there and its design has not changed much in more than a century. Called a membrane or diaphragm, it’s the part of a loudspeaker that vibrates to create the sound from the headphones over your ears, the wireless speaker on your desk, the cellphone in your hand.

Membranes are normally made of paper, Mylar or aluminum.

Ora’s innovation uses graphene, a remarkable material whose discovery garnered two scientists the 2010 Nobel Prize in physics but which has yet to fulfill its promise.

“Because it’s so stiff, our membrane gets better sound quality,” said Robert-Eric Gaskell, who obtained his PhD in sound recording in 2015. “It can produce more sound with less distortion, and the sound that you hear is more true to the original sound intended by the artist.

“And because it’s so light, we get better efficiency — the lighter it is, the less energy it takes.”

In January, the company demonstrated its membrane in headphones at the Consumer Electronics Show, a big trade convention in Las Vegas.

Six cellphone manufacturers expressed interest in Ora’s technology, some of which are now trying prototypes, said Ari Pinkas, in charge of product marketing at Ora. “We’re talking about big cellphone manufacturers — big, recognizable names,” he said.

Technology companies are intrigued by the idea of using Ora’s technology to make smaller speakers so they can squeeze other things, such as bigger batteries, into the limited space in electronic devices, Pinkas said. Others might want to use Ora’s membrane to allow their devices to play music louder, he added.

Makers of regular speakers, hearing aids and virtual-reality headsets have also expressed interest, Pinkas said.

Ora is still working on headphones.

Riga’s article offers a good overview for people who are not familiar with graphene.

Zorpette’s June 20, 2017 posting (on Nanoclast) offers a few more technical details (Note: Links have been removed),

During an interview and demonstration in the IEEE Spectrum offices, Pinkas and Robert-Eric Gaskell, another of the company’s cofounders, explained graphene’s allure to audiophiles. “Graphene has the ideal properties for a membrane,” Gaskell says. “It’s incredibly stiff, very lightweight—a rare combination—and it’s well damped,” which means it tends to quell spurious vibrations. By those metrics, graphene soundly beats all the usual choices: mylar, paper, aluminum, or even beryllium, Gaskell adds.

The problem is making it in sheets large enough to fashion into cones. So-called “pristine” graphene exists as flakes, [emphasis mine] perhaps 10 micrometers across, and a single atom thick. To make larger, strong sheets of graphene, researchers attach oxygen atoms to the flakes, and then other elements to the oxygen atoms to cross-link the flakes and hold them together strongly in what materials scientists call a laminate structure. The intellectual property behind Ora’s advance came from figuring out how to make these structures suitably thick and in the proper shape to function as speaker cones, Gaskell says. In short, he explains, the breakthrough was, “being able to manufacture” in large numbers, “and in any geometery we want.”

Much of the R&D work that led to Ora’s process was done at nearby McGill University, by professor Thomas Szkopek of the Electrical and Computer Engineering department. Szkopek worked with Peter Gaskell, Robert-Eric’s younger brother. Ora is also making use of patents that arose from work done on graphene by the Nguyen Group at Northwestern University, in Evanston, Ill.

Robert-Eric Gaskell and Pinkas arrived at Spectrum with a preproduction model of their headphones, as well as some other headphones for the sake of comparison. The Ora prototype is clearly superior to the comparison models, but that’s not much of a surprise. …

… In the 20 minutes or so I had to audition Ora’s preproduction model, I listened to an assortment of classical and jazz standards and I came away impressed. The sound is precise, with fine details sharply rendered. To my surprise, I was reminded of planar-magnetic type headphones that are now surging in popularity in the upper reaches of the audiophile headphone market. Bass is smooth and tight. Overall, the unit holds up quite well against closed-back models in the $400 to $500 range I’ve listened to from Grado, Bowers & Wilkins, and Audeze.

Ora’s Kickstarter campaign page (Graphene vs GrapheneQ subsection) offers some information about their unique graphene composite,

A TECHNICAL INTRODUCTION TO GRAPHENE

Graphene is a new material, first isolated only 13 years ago. Formed from a single layer of carbon atoms, Graphene is a hexagonal crystal lattice in a perfect honeycomb structure. This fundamental geometry makes Graphene ridiculously strong and lightweight. In its pure form, Graphene is a single atomic layer of carbon. It can be very expensive and difficult to produce in sizes any bigger than small flakes. These challenges have prevented pristine Graphene from being integrated into consumer technologies.

THE GRAPHENEQ™ SOLUTION

At ORA, we’ve spent the last few years creating GrapheneQ, our own, proprietary Graphene-based nanocomposite formulation. We’ve specifically designed and optimized it for use in acoustic transducers. GrapheneQ is a composite material which is over 95% Graphene by weight. It is formed by depositing flakes of Graphene into thousands of layers that are bonded together with proprietary cross-linking agents. Rather than trying to form one, continuous layer of Graphene, GrapheneQ stacks flakes of Graphene together into a laminate material that preserves the benefits of Graphene while allowing the material to be formed into loudspeaker cones.

Scanning Electron Microscope (SEM) Comparison
Scanning Electron Microscope (SEM) Comparison

If you’re interested in more technical information on sound, acoustics, soundspeakers, and Ora’s graphene-based headphones, it’s all there on Ora’s Kickstarter campaign page.

The Québec nanotechnology scene in context and graphite flakes for graphene

There are two Canadian provinces that are heavily invested in nanotechnology research and commercialization efforts. The province of Québec has poured money into their nanotechnology efforts, while the province of Alberta has also invested heavily in nanotechnology, it has also managed to snare additional federal funds to host Canada’s National Institute of Nanotechnology (NINT). (This appears to be a current NINT website or you can try this one on the National Research Council website). I’d rank Ontario as being a third centre with the other provinces being considerably less invested. As for the North, I’ve not come across any nanotechnology research from that region. Finally, as I stumble more material about nanotechnology in Québec than I do for any other province, that’s the reason I rate Québec as the most successful in its efforts.

Regarding graphene, Canada seems to have an advantage. We have great graphite flakes for making graphene. With mines in at least two provinces, Ontario and Québec, we have a ready source of supply. In my first posting (July 25, 2011) about graphite mines here, I had this,

Who knew large flakes could be this exciting? From the July 25, 2011 news item on Nanowerk,

Northern Graphite Corporation has announced that graphene has been successfully made on a test basis using large flake graphite from the Company’s Bissett Creek project in Northern Ontario. Northern’s standard 95%C, large flake graphite was evaluated as a source material for making graphene by an eminent professor in the field at the Chinese Academy of Sciences who is doing research making graphene sheets larger than 30cm2 in size using the graphene oxide methodology. The tests indicated that graphene made from Northern’s jumbo flake is superior to Chinese powder and large flake graphite in terms of size, higher electrical conductivity, lower resistance and greater transparency.

Approximately 70% of production from the Bissett Creek property will be large flake (+80 mesh) and almost all of this will in fact be +48 mesh jumbo flake which is expected to attract premium pricing and be a better source material for the potential manufacture of graphene. The very high percentage of large flakes makes Bissett Creek unique compared to most graphite deposits worldwide which produce a blend of large, medium and small flakes, as well as a large percentage of low value -150 mesh flake and amorphous powder which are not suitable for graphene, Li ion batteries or other high end, high growth applications.

Since then I’ve stumbled across more information about Québec’s mines than Ontario’s  as can be seen:

There are some other mentions of graphite mines in other postings but they are tangential to what’s being featured:

  • (my Oct. 26, 2015 posting about St. Jean Carbon and its superconducting graphene and
  • my Feb. 20, 2015 posting about Nanoxplore and graphene production in Québec; and
  • this Feb. 23, 2015 posting about Grafoid and its sister company, Focus Graphite which gets its graphite flakes from a deposit in the northeastern part of Québec).

 

After reviewing these posts, I’ve begun to wonder where Ora’s graphite flakes come from? In any event, I wish the folks at Ora and their Kickstarter funders the best of luck.

Superconducting graphene from Saint Jean Carbon (a Canadian company)

An announcement from Saint Jean Carbon helps to paint a picture of one Canadian graphene research and commercialization effort. From an Oct. 26, 2015 news item on Azonano,

Saint Jean Carbon Inc., a carbon sciences company engaged in the development of natural graphite properties and related carbon products is pleased to announce that it has completed an initial phase of research and development (R&D) work on the development of superconducting graphene.

An Oct. 22, 2015 Saint Jean Carbon news release, (also on Marketwired) which originated the news item, explains the company’s interest in superconducting graphene,

The result of the work has produced graphene that possibly may have magnetic properties; Magnetic properties are what is needed if the material is used in superconducting applications. This is believed to be a first. The encouraging result is just the very first step with many more tests to complete. Hopefully, this puts the project on the path towards the development of a low-temperature superconductor that leverages key properties of graphene.

Superconductivity is defined as a quantum mechanical phenomenon that offers the potential for zero electrical resistance. The ability to operate with no electrical resistance at or near room temperature holds significant potential in a wide range of product and technology applications. This include high-performance smart grids, electric power transmission, transformers, power storage devices, electric motors used in vehicle propulsion as in maglev trains, magnetic levitation devices, spintronic devices and superconducting magnetic refrigeration. Solving this puzzle; would have enormous technological importance.

The work has been based on the identification of the growing understanding of the magnetic properties (the ability to repel magnetic fields) of graphene. These properties could play a crucial role in enhancing superconductivity and therefore make it a good candidate for continued efforts to realize its potential. To truly understand the magnetic properties, the material has been sent to a third party for full magnetometer temperature testing; this is believed to be the only way to get accurate nano material measurements. The tests are very complex and time consuming but will provide us with absolute definitive measurements and a clear path forward for possible applications. Upon completion of the tests (estimated to be completed by October 28th 2015), the company will release the results. [emphases mine] Elements of the research work have relied on a patented (nanoparticle ultrasound separation) system designed to isolate and create large quantities of graphene cost effectively.

Company management must feel quite confident about the results of their testing to issue this ‘preview’ news release which goes on to highlight the advantages of using Canadian graphite for producing graphene,

The base graphite used in the research program was very pure, which minimized the need for costly and environmentally harsh purification. In addition, the graphene that was produced has excellent electrical/thermal connectivity; large high surface area, very good wettability, and had some promise of magnetic properties.

The production method has been initially shown to be less aggressive and significantly more cost effective than other processes such as the Hummers Method. This should further improve the overall ability to produce base material for many other needed applications for graphene today. The process may greatly shorten the time to market, and we are encouraged that there are already real needs for the material in all sorts of applications including polymers, epoxies and other coatings. The company plans to work with industry partners to develop a solution based application that can be developed today and be in use in a short time frame.

The next phase of the joint research effort is to prepare a bench scale system capable of producing larger quantities of high purity graphene samples for potential industry partners. Mr. Ogilvie commented, “We believe our working relationship with the university teams is an excellent opportunity to leverage Saint Jean’s graphite experience and assets while simultaneously expanding our focus on critical new carbon-based opportunities such as graphene superconductors. As one of the next steps in our go-forward plan is to quickly advance the product applications by working with a number of companies and potential strategic partners. Given the potential of graphene in everything from quantum computing to energy storage, Saint Jean has been encouraged by the breadth and depth of these preliminary discussions. As the work unfolds we look forward to keeping our shareholders actively informed on our continued efforts and results.” Dr. Don MacIntyre, the Company’s geologist, P. Geo., and Qualified Person, reviewed and approved the technical and scientific information in this release.

While the company’s executive offices are in Ontario with a second office in Alberta (company contact page), the graphite mines are in Québec (from  the news release),

About Saint Jean

Saint Jean is a publicly traded carbon sciences company with interest graphite mining claims on five 100% Company owned properties located in the province of Quebec in Canada. The five properties include the Walker property, a past producing mine, the Wallingford property, the St. Jovite property, East Miller and Clot property. For information on Saint Jean’s other properties and the latest news please go to the website: www.saintjeancarbon.com

Saint Jean Carbon’s chief executive officer (CEO) has an interesting carbon background (from the Management page),

Mr. Ogilvie brings a wealth of knowledge to the graphite sector. Mr. Ogilvie has been extensively involved in several start-ups, including emerging graphite companies, for over 33 years. He most recently served as Chief Executive Officer and Director for both Mega Graphite Inc. and Canada Carbon. Prior to this, in 2007 Mr. Ogilvie led a private investment group in the redevelopment and turnaround of Industrial Minerals Inc. (now known as Northern Graphite [emphasis mine] Corporation (NGC-TSX.V), a junior mining company that is presently developing one of the largest large-flake natural graphite deposits in the world. Mr. Ogilvie has direct experience in the development of technologies related to the production of graphite ores and the operation of global graphite markets for base and high purity graphite products.

Northern Graphite was last mentioned here in a March 9, 2015 post (scroll down about 50% of the way) featuring a report about the worldwide graphite market. In a Feb. 6, 2012 post, the first one about Northern Graphite, the focus is on the flakes.

Final comment: It seems like quite the month for Canadian graphene efforts of all stripes; I wrote an October 19, 2015 post featuring a new international graphene foundation (GO Foundation for graphene commercialization) being launched in Canada.

Global graphite market predictions

A Feb. 2, 2015 Persistence Market Research (PMR) news release about the worldwide graphite market found its way into my mailbox (on Mar. 2, 2015). Not being familiar with the business investment end of things or with Persistence Market Research I am cautiously interested in their market projections.

Here’s more from the news release,

According to a new market report published by Persistence Market Research “Global Market Study on Graphite: Battery Segment To Witness Highest Growth by 2020”, the global graphite market was valued at USD 13.62 billion in 2013 and is expected to grow at a CAGR [compound annual growth rate] of 3.7% from 2014 to 2020, to reach USD 17.56 billion in 2020.

Browse the full report with TOC at:
http://www.persistencemarketresearch.com/market-research/graphite-market.asp

Increasing the use of graphite in the automotive and battery industries is the major factor driving the demand for graphite. Graphite is an important material used in gaskets, clutch materials, motors, exhaust systems, and cylinder heads. In the past, asbestos was the main component of linings and disk brake pads. Graphite, with benefits such as low-noise braking, makes a good replacement for asbestos in brake pads. Moreover, it is an important element in the manufacture of ultra-lightweight carbon-fiber reinforced plastic (CFRP). Traditionally, CFRP was mainly used in the aerospace and Formula One car industries. However, CFRP is now gaining popularity in the passenger car industry due to its lightweight. This, in turn, helps reduce fuel consumption and CO2 emissions.

Asia-Pacific is the largest market for graphite globally. Rise of technologically advanced applications of graphite in pebble-bed nuclear reactors, fuel cells, solar power systems, and automotive and aerospace industries is driving the graphite market in the Asia Pacific region. China and India are the major markets for graphite in the region. Rising demand for steel and other metals has increased the demand for graphite electrodes in Asia Pacific. This, in turn, is driving the growth of the graphite market. China accounts for over 70% share of total graphite production in the world. According to China’s Twelfth Five-Year Plan, the government plans to have around 5.0 million battery-electric vehicles plying on the roads by 2020. This is expected to increase demand for graphite in the Asia Pacific market during the forecast period.

According to a research report, the sale of plug-in electric vehicles in North America is expected to rise at a CAGR of 30.0% from 2012 to 2020. The total sales of tablets in the U.S. market grew from 9.7 million in 2010 to 40.6 million in 2013. This growth in sales is expected to drive demand for lithium-ion batteries. Rising demand for electric vehicles and other electronic devices such as mobiles, tablets, laptops, and cameras offers huge potential for the growth of the lithium-ion battery industry. This, in turn, is further expected to boost demand for graphite in North America. Europe is the second-largest graphite market in the world. Growing use of carbon fiber instead of steel in the automotive and aerospace industries in Europe is leading to increasing demand for graphite. Graphite is considered as a key material for green technology. Due to this fact, it is widely used in many applications for energy storage, photovoltaics, and in various electronic products.

The graphite market is bifurcated on the basis of form (natural graphite and synthetic graphite). Synthetic graphite is further sub-segmented on the basis of form (graphite electrode, carbon fiber, graphite blocks, graphite powder, and others). Graphite market is also segmented on the basis of end-use (electrode, refractory, lubricant, foundry, battery, and others). All the segments provide market size and forecast by volume and by value. The synthetic graphite segment holds the largest share of USD 12.49 billion in the graphite market in 2013 and is expected to reach USD 16.06 billion by 2020 at a CAGR of 3.7% from 2014 to 2020.

In terms of revenue, the global graphite market grew from USD 12.30 billion in 2010 to USD 13.62 billion in 2013 at a CAGR of 3.4%. In terms of volume, the global graphite market grew from 2.19 million tons in 2010 to 2.68 million tons in 2013 at a CAGR of 7.1%. Under regional segment, the Asia Pacific graphite market (the largest market in 2013) increased by 3.8% CAGR during 2010–2013 to reach USD 9.17 billion in 2013.

Request Sample Report of Graphite Market:
http://www.persistencemarketresearch.com/samples/3367

I was intrigued to note Canadian businesses included in a list of the major companies in this field,

Some of the major companies operating in the global graphite market are Triton Minerals Ltd., Lamboo Resources Limited, Mason Graphite, Focus Graphite Inc., Energizer Resources Inc., Northern Graphite Corporation, Alabama Graphite Corp., Flinders Resources Ltd., Syrah Resources Limited, SGL Carbon SE, GrafTech International Holdings Inc, Graphite India Limited, Nippon Graphite Industries, Co., Ltd., Asbury Graphite Mills, Inc, Showa Denko K.K., and Tokai Carbon Co., Ltd.  [emphases mine]

The highlighted companies are Canadian and have been mentioned on this blog at least once in relation to graphite and/or graphene. One observation, Lomiko Metals (a British Columbia-based company mentioned here a few times) didn’t make the list.

Getting back to the PMR news release,

Related Published Report:

Global Market Study on Paints and Coatings: Industrial Paints and Coatings to Witness Highest Growth by 2020: http://www.persistencemarketresearch.com/market-research/paints-coatings-market.asp

Graphite Market, by Form

  • Natural graphite
  • Synthetic graphite

Synthetic Graphite Market, by Form

  • Graphite electrode
  • Carbon fiber
  • Graphite blocks
  • Graphite powder
  • Others

Graphite Market, by End Use

  • Electrode
  • Refractory
  • Lubricant
  • Foundry
  • Battery
  • Others

Graphite Market, by Region

  • North America
  • Europe
  • Asia Pacific
  • Rest of the World

Browse PMR Chemicals and Materials Market Research Reports @
http://www.persistencemarketresearch.com/category/chemicals-and-materials.asp

About Us

Persistence Market Research (PMR) is a U.S.-based full-service market intelligence firm specializing in syndicated research, custom research, and consulting services. PMR boasts market research expertise across the Healthcare, Chemicals and Materials, Technology and Media, Energy and Mining, Food and Beverages, Semiconductor and Electronics, Consumer Goods, and Shipping and Transportation industries. The company draws from its multi-disciplinary capabilities and high pedigree team of analysts to share data that precisely corresponds to clients’ business needs.

Again, I cannot attest to the quality of the analysis but it’s safe to say it’s interesting.

For anyone as ignorant about business and investing terminology as I am, here’s a definition for CAGR (compound annual growth rate) from the Investopedia website,

CAGR isn’t the actual return in reality. It’s an imaginary number that describes the rate at which an investment would have grown if it grew at a steady rate. You can think of CAGR as a way to smooth out the returns.

Don’t worry if this concept is still fuzzy to you – CAGR is one of those terms best defined by example. Suppose you invested $10,000 in a portfolio on Jan 1, 2005. Let’s say by Jan 1, 2006, your portfolio had grown to $13,000, then $14,000 by 2007, and finally ended up at $19,500 by 2008.

Your CAGR would be the ratio of your ending value to beginning value ($19,500 / $10,000 = 1.95) raised to the power of 1/3 (since 1/# of years = 1/3), then subtracting 1 from the resulting number:

1.95 raised to 1/3 power = 1.2493. (This could be written as 1.95^0.3333).1.2493 – 1 = 0.2493Another way of writing 0.2493 is 24.93%. [sic]

Thus, your CAGR for your three-year investment is equal to 24.93%, representing the smoothed annualized gain you earned over your investment time horizon.

NanoXplore: graphene and graphite in Québec (Canada)

For the second time this week I’m going to be mentioning the province of Québec (Canada) in relation to its ‘nanotechnology’ businesses (see: Cellulose nanocrystals (CNC), also known as nanocrystalline cellulose (NCC), and toxicity; some Celluforce news; anti-petroleum extremists posted on Feb. 19, 2015). A Feb. 20, 2015 news item on Azonano announces a graphene production facility in the Montréal area,

Group NanoXplore Inc., a Montreal-based company specialising in the production and application of graphene and its derivative materials, announced today that its graphene production facility is in full operation with a capacity of 3 metric tonnes per year. This is the largest graphene production capacity in Canada and, outside of China, one of the 5 largest in the world.

A Feb. 19, 2015 NanoXplore news release on MarketWire, which originated the news item, provides a bit more detail in amidst the promotional hype,

NanoXplore’s production process is unique and the core of the company’s competitive advantage. The proprietary process gently and efficiently creates pristine graphene from natural flake graphite without creating the crystalline defects that can limit performance. The process also functionalises the graphene material during production making subsequent mixing with a broad range of industrial materials simple and efficient. NanoXplore’s facility is routinely producing several standard grades of graphene as well as derivative products such as a unique graphite-graphene composite suitable for anodes in Li-ion batteries. [emphasis mine]

Another graphite connection in Québec

Interestingly, back in 2012 Hydro-Québec signed a deal with another Québec-based company, Focus Graphite (which owns a graphite deposit in the northeastern part of the province) to explore ways to produce more efficient lithium-ion batteries (my Nov 27, 2012 posting).

Getting back to the news release, it also provides a summary description of NanoXplore,

NanoXplore is a privately held advanced materials company focused on the large-scale production of high quality graphene and the integration of graphene into real world industrial products. NanoXplore achieves significant improvements in performance for its customers with very low levels of graphene because its material is of high quality (few defects, highly dispersible), because the production process can easily tune the dimensions of the graphene platelets, and because NanoXplore has specific expertise in dispersing graphene in a broad range of industrial materials. NanoXplore partners with its customers to integrate graphene into their products and processes, providing them with innovative products and a strong competitive advantage.

Graphite mines

NanoXplore, too, has some sort of relationship with a graphite mine or, in this case mining company, Mason Graphite (from the NanoXplore website’s Investors’ page),

FROM MINE TO PRODUCT

Partnered with Canadian mining company Mason Graphite, NanoXplore has access to lower quartile graphite/graphene production costs as well as a stable, long term, large flake source of raw material. Local government bodies have embraced the graphite-graphene cluster. With production and R&D centrally located in Montreal, NanoXplore offers world class innovation and true intellectual property safety for its formulation partners.

By the way, Benoit Gascon, NanoXplore’s board chair (scroll down to the bottom  of the team list) is also Mason Graphite’s Chief Executive Officer (CEO). The company has recently announced a detailed study on large-scale production of value-added graphite products (from a Feb. 11, 2015 Mason Graphite news release),

Mason Graphite Inc. (“Mason Graphite” or the “Company”) (TSX VENTURE:LLG)(OTCQX:MGPHF) announces that it has initiated a detailed study for large scale processing of value-added graphite products.

Value-added processing includes micronization, additional purification, spheronization and coating, resulting in graphite products that are suitable for a wide range of electrochemical applications (including alkaline batteries, lithium-ion batteries and fuel cells), technical applications (including carbon brushes, brake linings, plastics and lubricants), and other specialized uses.

The development and validation of the fabrication processes for these graphite products will be carried out by the National Research Council of Canada (“NRC”) along with Hatch, and is expected to conclude by the end of 2015. Following initial scoping work, equipment trials and product testing, the Company intends to provide preliminary results and an updated work program by mid-2015.

The NRC is the Government of Canada’s premier research and technology organization. Hatch is an engineering firm located in Montreal which is already working closely with Mason Graphite on the development of the Lac Gueret Graphite Project.

Other parts of Canada and the graphite/graphene enterprise

NanoXplore and Focus Graphite are not the only companies with connections to a graphite mine in Québec. There’s also Vancouver (Canada)-based Lomiko Metals (mentioned here in an April 17, 2013 posting [for the first time]. A. Paul Gill, Lomiko’s CEO, seems to be pursuing a similar business strategy in that Lomiko, too, has a number of business alliances, e.g., the mine, a research and development laboratory, etc. Moving out of Québec, there is also a graphite mine in Ontario owned by Northern Graphite (my Feb. 6, 2012 posting). It seems Canadians in eastern Canada have a valuable resource in graphite flakes.

A ‘graphite today, graphene tomorrow’ philosophy from Focus Graphite

Focus Graphite, a Canadian company with the tag line ‘Think Graphite today, Think Graphene tomorrow’, is making a bit of splash this month (April 2013) with its announcement of three deals (two joint ventures and the commissioning of their pilot plant) and it’s only April 17.

The most recent is the pilot plant announcement, from Focus Graphite’s Apr. 17, 2013 press release,

Focus Graphite Inc. (TSX-V:FMS)(OTCQX:FCSMF)(FRANKFURT:FKC) (“Focus” or the “Company”) is pleased to report the commissioning of its pilot plant and the start-up of circuit testing for the production of high-grade graphite concentrates from the Company’s wholly-owned Lac Knife, Québec graphite project.

The principal objectives of the pilot plant testwork are to confirm the results from Phase II bench scale Locked Cycle Tests (LCT)*; to assess the technical viability and operational performance of the processing plant design; to generate tailings for environmental testing, and; to produce a range of graphite raw materials for customer assessments and for further upgrading.

The Lac Knife project pilot plant was designed and built and is being operated by SGS Canada Inc. (“SGS”) in Lakefield, Ontario. The testing is expected to last 4-6 weeks.

….

The highlights of those tests conducted by SGS confirmed:-       The average amount of graphite flake recovered from the core samples in the Phase II LCT increased to 92.2% compared with a recovery of 84.7% graphite flake in the Phase I LCT;

–       The proportion of large flakes (+80 mesh) in the graphite concentrates ranged between 35% and 58%;

–       The carbon content of graphite concentrates produced from the four (4) composites averaged 96.6 %C, including the fine flake fraction (-200 mesh), a 4.6% increase over Phase I LCT completed in mid-2012.

Final results for Phase II LCT including for the two composite drill core samples of massive graphite mineralisation are pending.

* A locked cycle test is a repetitive batch flotation test conducted to assess flow sheet design. It is the preferred method for arriving at a metallurgical projection from laboratory testing. The final cycles of the test are designed to simulate a continuous, stable flotation circuit.

There’s also the announcement of a joint venture between Grafoid (a company where, I believe, 40% is owned by Focus Graphite) with the University of Waterloo, from the Apr. 17, 2013 news item on Azonano,

Focus Graphite Inc. on behalf of Grafoid Inc. (“Grafoid”) is pleased to announce the signing of a two-year R&D agreement between Grafoid Inc. and the University of Waterloo to investigate and develop a graphene-based composite for electrochemical energy storage for the automotive and/or portable electronics sectors.

Gary Economo, President and CEO of Focus Graphite Inc. and Grafoid Inc., said the objective of the agreement is to research and develop patentable applications using Grafoid’s unique investment which derives graphene from raw, graphite ore to target specialty high value graphene derivatives ranging from sulfur graphene to nanoporous graphene foam.

“Today’s announcement marks Grafoid’s fifth publicly declared graphene development project with a major academic or corporate institution, and the third related directly to a next generation green technology or renewable energy development project,” Mr. Economo said.

It follows R&D partnering projects announced with Rutgers University’s AMIPP, CVD Equipment Corporation, with Hydro-Quebec’s research institute, IREQ, and with British Columbia-based CapTherm Systems, an advanced thermal management technologies developer and producer.

Focus Graphite’s Apr. 16, 2013 press release, which originated the news item on Azonano, provides some context for the intense worldwide interest in graphene and the business imperatives,

Alternative Energy & Graphene:

The quest for alternative energy sources is one of the most important and exciting challenges facing science and technology in the 21st century. Environmentally-friendly, efficient and sustainable energy generation and usage have become large efforts for advancing human societal needs.  Graphene is a pure form of carbon with powerful characteristics which can bring about success in portable, stationary and transportation applications in high energy demanding areas in which electrochemical energy storage and conversion devices such as batteries, fuel cells and electrochemical supercapacitors  are the necessary devices.

Electrochemical Supercapacitors:

Supercapacitors, a zero-emission energy storage system, have a number of high-impact characteristics, such as fast charging, long charge-discharge cycles and broad operating temperature ranges, currently used or heavily researched in hybrid or electrical vehicles, electronics, aircrafts, and smart grids for energy storage. The US Department of Energy has assigned the same importance to supercapacitors and batteries. There is much research looking at combining electrochemical supercapacitors with battery systems or fuel cells.

Fuel Cells:

A fuel cell is a zero-emission source of power, and the only byproduct of a fuel cell is water. Some fuel cells use natural gas or hydrocarbons as fuel, but even those produce far less emissions than conventional sources. As a result, fuel cells eliminate or at least vastly reduce the pollution and greenhouse gas emissions caused by burning fossil fuels, and since they are also quiet in operation, they also reduce noise pollution. Fuel cells are more efficient than combustion engines as they generate electricity electrochemically. Since they can produce electricity onsite, the waste heat produced can also be used for heating purposes. Small fuel cells are already replacing batteries in portable products.

Toyota is planning to launch fuel cell cars in 2015, and has licensed its fuel cell vehicle technology to Germany’s BMW AG. BMW will use the technology to build a prototype vehicle by 2015, with plans for a market release around 2020.

By 2020, market penetration could rise as high as 1.2 million fuel cell vehicles, which would represent 7.6% of the total U.S. automotive market. Other fuel cell end users are fork lift and mining industries which continuously add profits to this growing industry.

Proton or polymer exchange membranes (PEM) have become the dominant fuel cell technology in the automotive market.

The U.S. Department of Energy has set fuel cell performance standards for 2015. As of today, no technologies under development have been able to meet the DOE’s  targets for performance and cost.

As I am from British Columbia and it was where* the first joint venture deal signed in April, here’s a bit more from Focus Graphite’s Apr. 9, 2013 press release,

Focus Graphite Inc. (TSX-V:FMS)(OTCQX:FCSMF)(FRANKFURT:FKC) on behalf of Grafoid Inc., announced today Grafoid’s joint venture development agreement with Coquitlam, British Columbia-based CapTherm Systems Inc. to develop and commercialize next generation, multiphase thermal management systems for electric vehicle (EV) battery and light emitting diode (LED) technologies.

CapTherm Systems Inc – Progressive Thermal Management is a thermal management/cooling company specializing in personal computer, server, LED, and electric vehicle cooling systems. It develops and commercializes proprietary, next-generation high-power electronics cooling technologies.

Its multiphase cooling technologies represent the core of its products that harness the power of latent heat from vaporization.

Under the terms of the agreement, Grafoid Inc., a company invested in the production of high-energy graphene and the development of graphene industrial applications will supply both materials and its science for adapting graphene to CapTherm’s existing EV and LED cooling systems.

Focus Graphite is a Canadian company, you can find more information on their website and the same for Grafoid and SGS Canada, and CapTherm Systems.

I have previously mentioned Focus Graphite in a Nov. 27, 2012 posting about their deal with Hydro Québec’s research institute, IREQ. I have also mentioned graphite mining in Canada with regard to the Northern Graphite Corporation and its Bissett Creek mine (my July 25, 2011 posting and my Feb. 6, 2012 posting). Apparently, Canada has high quality, large graphic flakes.

* ‘where’ added to sentence on Feb. 23, 2015.

Hydro-Québec, graphite, and lithium-ion batteries

While Dexter Johnson at Nanoclast blog writes about an investigation into why the storage capacity of lithium-ion (Li-ion) batteries degrades in his Nov. 26, 2012 posting (Newly Developed Live Nanoscale Imaging Technique Promises Improvement in Li-ion Batteries), Hydro-Québec and Grafoid Inc. have signed a development deal for the next generation of lithium iron phosphate materials to be combined with graphene for next generation rechargeable batteries. From the Nov. 27, 2012 news item on Nanowerk,

The 50-50 collaborative agreement sets out terms with the objective of creating patentable inventions by combining graphene, supplied by Grafoid, with Hydro-Québec’s patented lithium iron phosphate technologies.

Two key, specific commercial target markets – the rechargeable automobile battery sectors and batteries for mobile electronic devices used in smartphones, computing tablets and laptop computers – were identified in the agreement.

Hydro-Québec will study Grafoid’s graphene conductivity, electrochemical performance and its effects in electrode formulations, electrolyte and separator optimizations. Detailed characterizations of Grafoid’s supplied materials will be undertaken at IREQ’s cutting edge facilities using its advanced electron microscopy, spectrographic and other in-house technologies.

Hydro-Québec will also supply lithium iron phosphate materials and its electrochemistry know how which it acquired under license from famed American inventor Dr. John Goodenough.

The Nov. 26, 2012 news release from Focus Graphite, which originated the news item, provides additional detail about the various principles in the deal,

About Focus Graphite

Focus Graphite Inc. is an emerging mid-tier junior mining development company, a technology solutions supplier and a business innovator. Focus is the owner of the Lac Knife graphite deposit located in the Côte-Nord region of northeastern Québec. The Lac Knife project hosts a NI 43-101 compliant Measured and Indicated mineral resource of 4.972 Mt grading 15.7% carbon as crystalline graphite with an additional Inferred mineral resource of 3.000 Mt grading 15.6% crystalline graphite  Focus’ goal is to assume an industry leadership position by becoming a low-cost producer of technology-grade graphite. On October 29th, 2012 the Company released the results of a Preliminary Economic Analysis (“PEA”) of the Lac Knife project which demonstrates that the project has robust economics and excellent potential to become a profitable producer of graphite.  As a technology-oriented enterprise with a view to building long-term, sustainable shareholder value, Focus Graphite is also investing in the development of graphene applications and patents through Grafoid Inc.

About Grafoid Inc.

Grafoid, Inc. is a privately held Canadian corporation investing in graphene applications and economically scalable production processes for graphene and graphene derivatives from raw, unprocessed, graphite ore. Focus Graphite Inc., (TSX-V: FMS; OTCQX: FCSMF; FSE: FKC) holds a 40% interest in Grafoid Inc. [emphasis mine]

About IREQ

Hydro-Québec’s research institute, IREQ, is a global leader in the development of advanced materials for battery manufacturing and creates leading edge processes from its state of the art facilities. IREQ holds more than 100 patent rights and has issued over 40 licenses for battery materials to some of the world’s most successful battery manufacturers and materials suppliers. Its areas of expertise include energy storage and IREQ is a lead partner with private sector companies in Québec to build EV and HEV charging stations in support of its technology developments. Its material development contributions are helping to develop safe, high-performance lithium ion batteries that can be charged more quickly and a greater number of times. IREQ promotes open innovation and partners with private firms, universities, government agencies and research centers in Québec and abroad. Its partnerships allow IREQ to develop, industrialize and market technologies resulting from those innovation projects.

About Hydro-Québec

Hydro-Québec is Canada’s largest electricity producer among the world’s largest hydroelectric power producers and a public utility that generates, transmits and distributes electricity. Its sole shareholder is the Québec government. It primarily exploits renewable generating options, in particular hydropower, and supports the development of wind energy through purchases from independent power producers. Its research institute, IREQ, conducts R&D in energy efficiency, energy storage and other energy-related fields. Hydro-Québec invests more than $100 million per year in research.

Here’s one last bit I want to highlight from the Focus Graphite news release,

“Commercially, and ultimately, our technology development partnership with Hydro-Québec aims to produce high capacity, LFP-graphene batteries with ultra short charging times and longer recyclable lifetimes,” Mr. Economo said [Gary Economo, President and Chief Executive Officer of both Grafoid Inc. and Focus Graphite].

He said the parties chose to focus their collaboration on LFP-graphene batteries and materials because of their short-term-to-market potential.

In light of Dexter’s very informative posting about Li-ion batteries and the investigation into why the storage capatcity degrades, I find this Hydro-Québec/Grafoid Inc. development provides insight into the relationship between scientific research and business and insight into the risks as the various groups compete to bring products to market or to improve those products such that they come to dominate the market.

One last comment, graphite flakes are also mined in Ontario as per both my July 25, 2011 posting and my Feb. 6, 2012 posting about Northern Graphite Corporation and its Bissett Creek mine.

Canada’s contribution to graphene research: big graphite flakes

Northern Graphite, a graphite flake mining company in Ontario, has just signed an agreement with Grafen Chemical Industries (based in Turkey). From the Feb. 4, 2012 news item,

Northern Graphite Corporation has announced that it has agreed to supply its +48 mesh and +32 mesh extra large flake graphite to Grafen Chemical Industries [GCI] for graphene research and has also agreed to enter into a cooperation agreement to develop intellectual property rights. Northern will retain a 50% interest in the North American patent rights to any products and processes developed by Grafen. [emphases mine]

I wonder if this is a new trend or simply indicative of my ignorance but this is the first time I heard of a mining company negotiating for intellectual property rights as part of a deal.

At any rate, I last wrote about Northern Graphite July 25, 2011 when the company announced that a researcher from the Chinese Academy of Sciences had successfully made graphene with the ‘extra-large’ graphite flakes that have been found in Ontario.

Here’s what makes these Ontario graphite flakes so interesting (from my July 25, 2011 posting),

The tests indicated that graphene made from Northern’s jumbo flake is superior to Chinese powder and large flake graphite in terms of size, higher electrical conductivity, lower resistance and greater transparency.

As for Grafen’s use of the flakes,

Grafen has developed a novel fabrication method allowing it to synthesize graphene of excellent quality and with considerable yield. Its graphene production process is a highly modified implementation of the conventional graphite oxide manufacturing technique and eliminates known major drawbacks such as extreme disruption of crystal structure of precursor graphite causing low product qualities of electrical conductivity, mechanical performance etc.

Grafen is testing its process at the lab/pilot plant scale level and is optimizing and improving the process by employing different raw materials and formulations. Grafen recognizes that Northern’s +32 and +48 mesh large flake, high carbon graphite will be an excellent choice for large area graphene preparation and intends to adapt them to its process. In a near future Grafen plans to scale-up its graphene production process to provide products to the research industry that will eventually lead to commercial scale production.

The news item provides some insight into the worldwide chase to develop graphene and why graphite is so important,

Graphite is one of only two naturally occurring forms of carbon, the other being diamonds. A graphite flake is much like a deck of cards, it consists of many thin layers stacked one on top of the other with weak bonds holding them together. Delaminating these layers to the lowest common denominator results in a one atom thick sheet of carbon with the carbon atoms arranged in a honeycomb pattern. This is graphene.

Graphene was first isolated by scientists at the University of Manchester who won the Noble Prize for Physics in 2010 for their efforts. Graphene is transparent in infra-red and visible light, flexible, and stronger than steel. It conducts heat 10 times faster than copper and can carry 1,000 times the density of electrical current of copper wire. Graphene is expected to be a revolutionary material that could change the technology of semi conductors and LCD touch screens and monitors, create super small transistors and super dense data storage, increase energy storage and solar cell efficiency, and will transform many other applications.

According to a professor at Georgia Tech University, there are nearly 200 companies, including Intel and IBM, currently involved in graphene research. In 2010 graphene was the subject of approximately 3,000 research papers and the European Union and South Korea have each recently started $1.5 billion efforts to build industrial scale, next generation display materials using graphene as a substitute for indium tin oxide(“ITO”). The world has only 5-10 years of ITO reserves remaining and prices exceed US$700,000 per tonne.

If you’re interested about Northern Graphite there’s more here, and if you want to learn more about Grafen Chemical Industries, go here.

Canadians as hewers of graphite?

Who knew large flakes could be this exciting? From the July 25, 2011 news item on Nanowerk,

Northern Graphite Corporation has announced that graphene has been successfully made on a test basis using large flake graphite from the Company’s Bissett Creek project in Northern Ontario. Northern’s standard 95%C, large flake graphite was evaluated as a source material for making graphene by an eminent professor in the field at the Chinese Academy of Sciences who is doing research making graphene sheets larger than 30cm2 in size using the graphene oxide methodology. The tests indicated that graphene made from Northern’s jumbo flake is superior to Chinese powder and large flake graphite in terms of size, higher electrical conductivity, lower resistance and greater transparency.

Approximately 70% of production from the Bissett Creek property will be large flake (+80 mesh) and almost all of this will in fact be +48 mesh jumbo flake which is expected to attract premium pricing and be a better source material for the potential manufacture of graphene. The very high percentage of large flakes makes Bissett Creek unique compared to most graphite deposits worldwide which produce a blend of large, medium and small flakes, as well as a large percentage of low value -150 mesh flake and amorphous powder which are not suitable for graphene, Li ion batteries or other high end, high growth applications.

For anyone who’s not familiar with the excitement over graphene and its possibilities, here’s the latest from the two scientists who pioneered work in this area (from the July 24, 2011 news item on Nanowerk),

Now the research from the creators [Andre Geim and Konstantin Novoselov] of the material promises to accelerate that research, and potentially open up countless more electronic opportunities.

The researchers, from the universities of Manchester, Madrid and Moscow, have studied in detail the effect of interactions between electrons on the electronic properties of graphene.

They use extremely high-quality graphene devices which are prepared by suspending sheets of graphene in a vacuum.

This way most of the unwanted scattering mechanisms for electrons in graphene could be eliminated, thus enhancing the effect of electron-on-electron interaction.

This is the first effect of its kind where the interactions between electrons in graphene could be clearly seen.

The reason for such unique electronic properties is that electrons in this material are very different from those in any other metals. They mimic massless relativistic particles – such as photons.

Due to such properties graphene is sometimes called ‘CERN on a desk’ – referencing the Large Hadron Collider in Switzerland. This is just one of the reasons why the electronic properties are particularly exciting and often bring surprises.

Northern Graphite’s home page features a bullish few paragraphs about its prospects (excerpted from the home page),

Northern Graphite Corporation is an Ottawa-based Canadian company that recently closed a $4 million initial public offering and began trading on the TSX Venture Exchange under the symbol “NGC”.

Northern’s principal asset is the Bissett Creek graphite project located 100km east of North Bay, Ontario and close to major roads and rail and power lines. The Company has completed an NI 43-101 preliminary assessment report on the project and has subsequently initiated a bankable final feasibility study and commenced the environmental and mine permitting process.  Northern anticipates that it will be in a position to begin construction of the mine early in 2012, subject to positive results from the bankable final feasibility study and the availability of financing.

Graphite prices have almost tripled since 2005 due to the ongoing industrialization of China, India and other emerging economies and resultant strong demand from traditional steel and automotive markets. However, new applications such as lithium-ion batteries, fuel cells and nuclear power have the potential to create significant, incremental demand growth in the future. For example, there is 20 to 30 times more graphite than lithium in lithium-ion batteries. The use of li-ion batteries is growing rapidly in consumer electronics and this trend will continue with the increased use of hybrid and all electric vehicles.

On the plus side, this looks like there might be more jobs. As is often the case in Canada, these jobs are about extracting resources (the hewers of wood, drawers of water economy).

I did find a reference to the environment on pp. 101-2 of a technical report mainly focused on an economic assessment of the Bissett Creek property. The section on the environment concentrates on the location of a waste dump and railings. Hopefully, the geologists and engineers who run the company will have more information about environmental impacts in the not too distant future since they (from the July 25, 2011 news item on Nanowerk) are getting ready to construct facilities,

Northern Graphite Corporation holds a 100% interest in the Bissett Creek graphite project which is located 17kms from the Trans Canada highway between Ottawa and North Bay, Ontario. The Company is in the process of completing a bankable Final Feasibility Study and permitting with the objective of initiating construction, subject to the results of the study and the availability of financing, in the first part of 2012.

I gather they are looking for investors.