Tag Archives: Norway

Microscopy, Paper and Fibre Research Institute (Norway), and nanocellulose

In keeping with a longstanding interest here in nanocellulose (aka, cellulose nanomaterials) the Norwegian Paper and Fibre Research Institute’s (PFI) ??,??, 2015 announcement about new ion milling equipment and a new scanning electron microscope suitable for research into cellulose at the nanoscale caught my eye,

In order to advance the microscopy capabilities of cellulose-based materials and thanks to a grant from the Norwegian Pulp and Paper Research Institute foundation, PFI has invested in a modern ion milling equipment and a new Scanning Electron Microscope (SEM).

Unusually, the entire news release is being stored at Nanowerk as a July 3, 2015 news item (Note: Links have been removed),

“There are several microscopy techniques that can be used for characterizing cellulose materials, but the scanning electron microscope is one of the most preferable ones as the microscope is easy to use, versatile and provides a multi-scale assessment”, explains Gary Chinga-Carrasco, lead scientist at the PFI Biocomposite area.

“However, good microscopy depends to a large extent on an adequate and optimized preparation of the samples”, adds Per Olav Johnsen, senior engineer and microscopy expert at PFI.

“We are always trying to be in front in the development of new characterization methods, facilitating research and giving support to our industrial partners”, says Chinga-Carrasco, who has been active in developing new methods for characterization of paper, biocomposites and nanocellulose and cannot hide his enthusiasm when he talks about PFI’s new equipment. “In the first period after the installation it is important to work with the equipment with several material samples and techniques to really become confident with its use and reveal its potential”.

The team at PFI is now offering new methods for assessing cellulose materials in great detail. They point out that they have various activities and projects where they already see a big potential with the new equipment.

Examples for these efforts are the assessment of porous nanocellulose structures for biomedical applications (for instance in the NanoHeal program) and the assessment of surface modified wood fibres for use in biocomposites (for instance in the FiberComp project).

Also unusual is the lack of detail about the microscope’s and ion milling machine’s technical specifications and capabilities.

The NanoHeal program was last mentioned here in an April 14, 2014 post and first mentioned here in an Aug. 23, 2012 posting.

Final comment, I wonder if Nanowerk is embarking on a new initiative where the company agrees to store news releases for various agencies such as PFI and others who would prefer not to  archive their own materials. Just a thought.

Nanotechnology research protocols for Environment, Health and Safety Studies in US and a nanomedicine characterization laboratory in the European Union

I have two items relating to nanotechnology and the development of protocols. The first item concerns the launch of a new web portal by the US National Institute of Standards and Technology.

US National Institute of Standards and Technology (NIST)

From a July 1, 2015 news item on Azonano,

As engineered nanomaterials increasingly find their way into commercial products, researchers who study the potential environmental or health impacts of those materials face a growing challenge to accurately measure and characterize them. These challenges affect measurements of basic chemical and physical properties as well as toxicology assessments.

To help nano-EHS (Environment, Health and Safety)researchers navigate the often complex measurement issues, the National Institute of Standards and Technology (NIST) has launched a new website devoted to NIST-developed (or co-developed) and validated laboratory protocols for nano-EHS studies.

A July 1, 2015 NIST news release on EurekAlert, which originated the news item, offers more details about the information available through the web portal,

In common lab parlance, a “protocol” is a specific step-by-step procedure used to carry out a measurement or related activity, including all the chemicals and equipment required. Any peer-reviewed journal article reporting an experimental result has a “methods” section where the authors document their measurement protocol, but those descriptions are necessarily brief and condensed, and may lack validation of any sort. By comparison, on NIST’s new Protocols for Nano-EHS website the protocols are extraordinarily detailed. For ease of citation, they’re published individually–each with its own unique digital object identifier (DOI).

The protocols detail not only what you should do, but why and what could go wrong. The specificity is important, according to program director Debra Kaiser, because of the inherent difficulty of making reliable measurements of such small materials. “Often, if you do something seemingly trivial–use a different size pipette, for example–you get a different result. Our goal is to help people get data they can reproduce, data they can trust.”

A typical caution, for example, notes that if you’re using an instrument that measures the size of nanoparticles in a solution by how they scatter light, it’s important also to measure the transmission spectrum of the particles if they’re colored, because if they happen to absorb light strongly at the same frequency as your instrument, the result may be biased.

“These measurements are difficult because of the small size involved,” explains Kaiser. “Very few new instruments have been developed for this. People are adapting existing instruments and methods for the job, but often those instruments are being operated close to their limits and the methods were developed for chemicals or bulk materials and not for nanomaterials.”

“For example, NIST offers a reference material for measuring the size of gold nanoparticles in solution, and we report six different sizes depending on the instrument you use. We do it that way because different instruments sense different aspects of a nanoparticle’s dimensions. An electron microscope is telling you something different than a dynamic light scattering instrument, and the researcher needs to understand that.”

The nano-EHS protocols offered by the NIST site, Kaiser says, could form the basis for consensus-based, formal test methods such as those published by ASTM and ISO.

NIST’s nano-EHS protocol site currently lists 12 different protocols in three categories: sample preparation, physico-chemical measurements and toxicological measurements. More protocols will be added as they are validated and documented. Suggestions for additional protocols are welcome at nanoprotocols@nist.gov.

The next item concerns European nanomedicine.

CEA-LETI and Europe’s first nanomedicine characterization laboratory

A July 1, 2015 news item on Nanotechnology Now describes the partnership which has led to launch of the new laboratory,

CEA-Leti today announced the launch of the European Nano-Characterisation Laboratory (EU-NCL) funded by the European Union’s Horizon 2020 research and innovation programm[1]e. Its main objective is to reach a level of international excellence in nanomedicine characterisation for medical indications like cancer, diabetes, inflammatory diseases or infections, and make it accessible to all organisations developing candidate nanomedicines prior to their submission to regulatory agencies to get the approval for clinical trials and, later, marketing authorization.

“As reported in the ETPN White Paper[2], there is a lack of infrastructure to support nanotechnology-based innovation in healthcare,” said Patrick Boisseau, head of business development in nanomedicine at CEA-Leti and chairman of the European Technology Platform Nanomedicine (ETPN). “Nanocharacterisation is the first bottleneck encountered by companies developing nanotherapeutics. The EU-NCL project is of most importance for the nanomedicine community, as it will contribute to the competiveness of nanomedicine products and tools and facilitate regulation in Europe.”

EU-NCL is partnered with the sole international reference facility, the Nanotechnology Characterization Lab of the National Cancer Institute in the U.S. (US-NCL)[3], to get faster international harmonization of analytical protocols.

“We are excited to be part of this cooperative arrangement between Europe and the U.S.,” said Scott E. McNeil, director of U.S. NCL. “We hope this collaboration will help standardize regulatory requirements for clinical evaluation and marketing of nanomedicines internationally. This venture holds great promise for using nanotechnologies to overcome cancer and other major diseases around the world.”

A July 2, 2015 EMPA (Swiss Federal Laboratories for Materials Science and Technology) news release on EurekAlert provides more detail about the laboratory and the partnerships,

The «European Nanomedicine Characterization Laboratory» (EU-NCL), which was launched on 1 June 2015, has a clear-cut goal: to help bring more nanomedicine candidates into the clinic and on the market, for the benefit of patients and the European pharmaceutical industry. To achieve this, EU-NCL is partnered with the sole international reference facility, the «Nanotechnology Characterization Laboratory» (US-NCL) of the US-National Cancer Institute, to get faster international harmonization of analytical protocols. EU-NCL is also closely connected to national medicine agencies and the European Medicines Agency to continuously adapt its analytical services to requests of regulators. EU-NCL is designed, organized and operated according to the highest EU regulatory and quality standards. «We are excited to be part of this cooperative project between Europe and the U.S.,» says Scott E. McNeil, director of US-NCL. «We hope this collaboration will help standardize regulatory requirements for clinical evaluation and marketing of nanomedicines internationally. This venture holds great promise for using nanotechnologies to overcome cancer and other major diseases around the world.»

Nine partners from eight countries

EU-NCL, which is funded by the EU for a four-year period with nearly 5 million Euros, brings together nine partners from eight countries: CEA-Tech in Leti and Liten, France, the coordinator of the project; the Joint Research Centre of the European Commission in Ispra, Italy; European Research Services GmbH in Münster Germany; Leidos Biomedical Research, Inc. in Frederick, USA; Trinity College in Dublin, Ireland; SINTEF in Oslo, Norway; the University of Liverpool in the UK; Empa, the Swiss Federal Laboratories for Materials Science and Technology in St. Gallen, Switzerland; Westfälische Wilhelms-Universität (WWU) and Gesellschaft für Bioanalytik, both in Münster, Germany. Together, the partnering institutions will provide a trans-disciplinary testing infrastructure covering a comprehensive set of preclinical characterization assays (physical, chemical, in vitro and in vivo biological testing), which will allow researchers to fully comprehend the biodistribution, metabolism, pharmacokinetics, safety profiles and immunological effects of their medicinal nano-products. The project will also foster the use and deployment of standard operating procedures (SOPs), benchmark materials and quality management for the preclinical characterization of medicinal nano-products. Yet another objective is to promote intersectoral and interdisciplinary communication among key drivers of innovation, especially between developers and regulatory agencies.

The goal: to bring safe and efficient nano-therapeutics faster to the patient

Within EU-NCL, six analytical facilities will offer transnational access to their existing analytical services for public and private developers, and will also develop new or improved analytical assays to keep EU-NCL at the cutting edge of nanomedicine characterization. A complementary set of networking activities will enable EU-NCL to deliver to European academic or industrial scientists the high-quality analytical services they require for accelerating the industrial development of their candidate nanomedicines. The Empa team of Peter Wick at the «Particles-Biology Interactions» lab will be in charge of the quality management of all analytical methods, a key task to guarantee the best possible reproducibility and comparability of the data between the various analytical labs within the consortium. «EU-NCL supports our research activities in developing innovative and safe nanomaterials for healthcare within an international network, which will actively shape future standards in nanomedicine and strengthen Empa as an enabler to facilitate the transfer of novel nanomedicines from bench to bedside», says Wick.

You can find more information about the laboratory on the Horizon 2020 (a European Union science funding programme) project page for the EU-NCL laboratory. For anyone curious about CEA-Leti, it’s a double-layered organization. CEA is France’s Commission on Atomic Energy and Alternative Energy (Commissariat à l’énergie atomique et aux énergies alternatives); you can go here to their French language site (there is an English language clickable option on the page). Leti is one of the CEA’s institutes and is known as either Leti or CEA-Leti. I have no idea what Leti stands for. Here’s the Leti website (this is the English language version).

LiquiGlide, a nanotechnology-enabled coating for food packaging and oil and gas pipelines

Getting condiments out of their bottles should be a lot easier in several European countries in the near future. A June 30, 2015 news item on Nanowerk describes the technology and the business deal (Note: A link has been removed),

The days of wasting condiments — and other products — that stick stubbornly to the sides of their bottles may be gone, thanks to MIT [Massachusetts Institute of Technology] spinout LiquiGlide, which has licensed its nonstick coating to a major consumer-goods company.

Developed in 2009 by MIT’s Kripa Varanasi and David Smith, LiquiGlide is a liquid-impregnated coating that acts as a slippery barrier between a surface and a viscous liquid. Applied inside a condiment bottle, for instance, the coating clings permanently to its sides, while allowing the condiment to glide off completely, with no residue.

In 2012, amidst a flurry of media attention following LiquiGlide’s entry in MIT’s $100K Entrepreneurship Competition, Smith and Varanasi founded the startup — with help from the Institute — to commercialize the coating.

Today [June 30, 2015], Norwegian consumer-goods producer Orkla has signed a licensing agreement to use the LiquiGlide’s coating for mayonnaise products sold in Germany, Scandinavia, and several other European nations. This comes on the heels of another licensing deal, with Elmer’s [Elmer’s Glue & Adhesives], announced in March [2015].

A June 30, 2015 MIT news release, which originated the news item, provides more details about the researcher/entrepreneurs’ plans,

But this is only the beginning, says Varanasi, an associate professor of mechanical engineering who is now on LiquiGlide’s board of directors and chief science advisor. The startup, which just entered the consumer-goods market, is courting deals with numerous producers of foods, beauty supplies, and household products. “Our coatings can work with a whole range of products, because we can tailor each coating to meet the specific requirements of each application,” Varanasi says.

Apart from providing savings and convenience, LiquiGlide aims to reduce the surprising amount of wasted products — especially food — that stick to container sides and get tossed. For instance, in 2009 Consumer Reports found that up to 15 percent of bottled condiments are ultimately thrown away. Keeping bottles clean, Varanasi adds, could also drastically cut the use of water and energy, as well as the costs associated with rinsing bottles before recycling. “It has huge potential in terms of critical sustainability,” he says.

Varanasi says LiquiGlide aims next to tackle buildup in oil and gas pipelines, which can cause corrosion and clogs that reduce flow. [emphasis mine] Future uses, he adds, could include coatings for medical devices such as catheters, deicing roofs and airplane wings, and improving manufacturing and process efficiency. “Interfaces are ubiquitous,” he says. “We want to be everywhere.”

The news release goes on to describe the research process in more detail and offers a plug for MIT’s innovation efforts,

LiquiGlide was originally developed while Smith worked on his graduate research in Varanasi’s research group. Smith and Varanasi were interested in preventing ice buildup on airplane surfaces and methane hydrate buildup in oil and gas pipelines.

Some initial work was on superhydrophobic surfaces, which trap pockets of air and naturally repel water. But both researchers found that these surfaces don’t, in fact, shed every bit of liquid. During phase transitions — when vapor turns to liquid, for instance — water droplets condense within microscopic gaps on surfaces, and steadily accumulate. This leads to loss of anti-icing properties of the surface. “Something that is nonwetting to macroscopic drops does not remain nonwetting for microscopic drops,” Varanasi says.

Inspired by the work of researcher David Quéré, of ESPCI in Paris, on slippery “hemisolid-hemiliquid” surfaces, Varanasi and Smith invented permanently wet “liquid-impregnated surfaces” — coatings that don’t have such microscopic gaps. The coatings consist of textured solid material that traps a liquid lubricant through capillary and intermolecular forces. The coating wicks through the textured solid surface, clinging permanently under the product, allowing the product to slide off the surface easily; other materials can’t enter the gaps or displace the coating. “One can say that it’s a self-lubricating surface,” Varanasi says.

Mixing and matching the materials, however, is a complicated process, Varanasi says. Liquid components of the coating, for instance, must be compatible with the chemical and physical properties of the sticky product, and generally immiscible. The solid material must form a textured structure while adhering to the container. And the coating can’t spoil the contents: Foodstuffs, for instance, require safe, edible materials, such as plants and insoluble fibers.

To help choose ingredients, Smith and Varanasi developed the basic scientific principles and algorithms that calculate how the liquid and solid coating materials, and the product, as well as the geometry of the surface structures will all interact to find the optimal “recipe.”

Today, LiquiGlide develops coatings for clients and licenses the recipes to them. Included are instructions that detail the materials, equipment, and process required to create and apply the coating for their specific needs. “The state of the coating we end up with depends entirely on the properties of the product you want to slide over the surface,” says Smith, now LiquiGlide’s CEO.

Having researched materials for hundreds of different viscous liquids over the years — from peanut butter to crude oil to blood — LiquiGlide also has a database of optimal ingredients for its algorithms to pull from when customizing recipes. “Given any new product you want LiquiGlide for, we can zero in on a solution that meets all requirements necessary,” Varanasi says.

MIT: A lab for entrepreneurs

For years, Smith and Varanasi toyed around with commercial applications for LiquiGlide. But in 2012, with help from MIT’s entrepreneurial ecosystem, LiquiGlide went from lab to market in a matter of months.

Initially the idea was to bring coatings to the oil and gas industry. But one day, in early 2012, Varanasi saw his wife struggling to pour honey from its container. “And I thought, ‘We have a solution for that,’” Varanasi says.

The focus then became consumer packaging. Smith and Varanasi took the idea through several entrepreneurship classes — such as 6.933 (Entrepreneurship in Engineering: The Founder’s Journey) — and MIT’s Venture Mentoring Service and Innovation Teams, where student teams research the commercial potential of MIT technologies.

“I did pretty much every last thing you could do,” Smith says. “Because we have such a brilliant network here at MIT, I thought I should take advantage of it.”

That May [2012], Smith, Varanasi, and several MIT students entered LiquiGlide in the MIT $100K Entrepreneurship Competition, earning the Audience Choice Award — and the national spotlight. A video of ketchup sliding out of a LiquiGlide-coated bottle went viral. Numerous media outlets picked up the story, while hundreds of companies reached out to Varanasi to buy the coating. “My phone didn’t stop ringing, my website crashed for a month,” Varanasi says. “It just went crazy.”

That summer [2012], Smith and Varanasi took their startup idea to MIT’s Global Founders’ Skills Accelerator program, which introduced them to a robust network of local investors and helped them build a solid business plan. Soon after, they raised money from family and friends, and won $100,000 at the MassChallenge Entrepreneurship Competition.

When LiquiGlide Inc. launched in August 2012, clients were already knocking down the door. The startup chose a select number to pay for the development and testing of the coating for its products. Within a year, LiquiGlide was cash-flow positive, and had grown from three to 18 employees in its current Cambridge headquarters.

Looking back, Varanasi attributes much of LiquiGlide’s success to MIT’s innovation-based ecosystem, which promotes rapid prototyping for the marketplace through experimentation and collaboration. This ecosystem includes the Deshpande Center for Technological Innovation, the Martin Trust Center for MIT Entrepreneurship, the Venture Mentoring Service, and the Technology Licensing Office, among other initiatives. “Having a lab where we could think about … translating the technology to real-world applications, and having this ability to meet people, and bounce ideas … that whole MIT ecosystem was key,” Varanasi says.

Here’s the latest LiquiGlide video,


Credits:

Video: Melanie Gonick/MIT
Additional footage courtesy of LiquiGlide™
Music sampled from “Candlepower” by Chris Zabriskie
https://freemusicarchive.org/music/Ch…
http://creativecommons.org/licenses/b…

I had thought the EU (European Union) offered more roadblocks to marketing nanotechnology-enabled products used in food packaging than the US. If anyone knows why a US company would market its products in Europe first I would love to find out.

Construction and nanotechnology research in Scandinavia

I keep hearing about the possibilities for better (less polluting, more energy efficient, etc.) building construction materials but there never seems to be much progress.  A June 15, 2015 news item on Nanowerk, which suggests some serious efforts are being made in Scandinavia, may help to explain the delay,

It isn’t cars and vehicle traffic that produce the greatest volumes of climate gas emissions – it’s our own homes. But new research will soon be putting an end to all that!

The building sector is currently responsible for 40% of global energy use and climate gas emissions. This is an under-communicated fact in a world where vehicle traffic and exhaust emissions get far more attention.

In the future, however, we will start to see construction materials and high-tech systems integrated into building shells that are specifically designed to remedy this situation. Such systems will be intelligent and multifunctional. They will consume less energy and generate lower levels of harmful climate gas emissions.

With this objective in mind, researchers at SINTEF are currently testing microscopic nanoparticles as insulation materials, applying voltages to window glass and facades as a means of saving energy, and developing solar cells that prevent the accumulation of snow and ice.

Research Director Susie Jahren and Research Manager Petra Rüther are heading SINTEF’s strategic efforts in the field of future construction materials. They say that although there are major commercial opportunities available in the development of green and low carbon building technologies, the construction industry is somewhat bound by tradition and unable to pay for research into future technology development. [emphasis mine]

A June 15, 2015 SINTEF (Scandinavia’s largest independent research organisation) news release on the Alpha Galileo website, which originated the news item, provides an overview of the research being conducted into nanotechnology-enabled construction materials (Note: I have added some heads and ruthlessly trimmed from the text),

[Insulation]

SINTEF researcher Bente Gilbu Tilset is sitting in her office in Forskningsveien 1 in Oslo [Norway]. She and her colleagues are looking into the manufacture of super-insulation materials made up of microscopic nanospheres.

“Our aim is to create a low thermal conductivity construction material “, says Tilset. “When gas molecules collide, energy is transferred between them. If the pores in a given material are small enough, for example less than 100 nanometres in diameter, a molecule will collide more often with the pore walls than with other gas molecules. This will effectively reduce the thermal conductivity of the gas. So, the smaller the pores, the lower the conductivity of the gas”, she says.

[Solar cells]

As part of the project “Bygningsintegrerte solceller for Norge” (Building Integrated Photovoltaics, BIPV Norway), researchers from SINTEF, NTNU, the IFE [IFE Group, privately owned company, located in Sweden] and Teknova [company created by the Nordic Institute for Studies in Innovation {NIFU}, located in Norway], are planning to look into how we can utilise solar cells as integral housing construction components, and how they can be adapted to Norwegian daylight and climatic conditions.

One of the challenges is to develop a solar cell which prevents the accumulation of snow and ice. The cells must be robust enough to withstand harsh wind and weather conditions and have lifetimes that enable them to function as electricity generators.

[Energy]

Today, we spend 90 per cent of our time indoors. This is as much as three times more than in the 1950s. We are also letting less daylight into our buildings as a result of energy considerations and construction engineering requirements. Research shows that daylight is very important to our health, well-being and biological rhythms. It also promotes productivity and learning. So the question is – is it possible to save energy and get the benefits of greater exposure to daylight?

Technologies involving thermochromic, photochromic and electrochromic pigments can help us to control how sunlight enters our buildings, all according to our requirements for daylight and warmth from the sun.

Self-healing concrete

Every year, between 40 and 120 million Euros are spent in Europe on the maintenance of bridges, tunnels and construction walls. These time-consuming and costly activities have to be reduced, and the project CAPDESIGN is aiming to make a contribution in this field.

The objective of the project is to produce concrete that can be ‘restored’ after being exposed to loads and stresses by means of self-healing agents that prevent the formation of cracks. The method involves mixing small capsules into the wet concrete before it hardens. These remain in the matrix until loads or other factors threaten to crack it. The capsules then burst and the self-healing agents are released to repair the structure.

At SINTEF, researchers are working with the material that makes up the capsule shells. The shell has to be able to protect the self-healing agent in the capsules for an extended period and then, under the right conditions, break down and release the agents in response to the formation of cracks caused by temperature, pH, or a load or stress resulting from an impact or shaking. At the same time, the capsules must not impair the ductility or the mechanical properties of the newly-mixed concrete.

You’ll notice most of the research seems to be taking place in Norway. I suspect that is due to the story having come from a joint Norwegian Norwegian University of Science and Technology (NTNU)/SINTEF, website, Gemini.no/en. Anyone wishing to test their Norwegian readings skills need only omit ‘/en’ from the URL.

Gender gaps in science and how statistics prove and disprove the finding

A Feb. 17, 2015 Northwestern University news release by Hilary Hurd Anyaso (also on EurekAlert) features research suggesting that parity in the numbers of men and women students pursuing science degrees is being achieved,

Scholars from diverse fields have long proposed that interlocking factors such as cognitive abilities, discrimination and interests may cause more women than men to leave the science, technology, engineering and mathematics (STEM) pipeline after entering college.

Now a new Northwestern University analysis has poked holes in the much referenced “leaky pipeline” metaphor.

The research shows that the bachelor’s-to-Ph.D. pipeline in science and engineering fields no longer leaks more women than men as it did in the past

Curt Rice, a professor at Norway’s University of Tromsø, has challenged the findings in a Feb. 18, 2015 post on his eponymous website (more about that later).

The news release goes on to describe how the research was conducted and the conclusions researchers drew from the data,

The researchers used data from two large nationally representative research samples to reconstruct a 30-year portrait of how bachelor’s-to-Ph.D. persistence rates for men and women have changed in the United States since the 1970s. For this study, the term STEM persistence rate refers to the proportion of students who earned a Ph.D. in a particular STEM field (e.g. engineering) among students who had earlier received bachelor’s degrees in that same field.

They were particularly surprised that the gender persistence gap completely closed in pSTEM fields (physical science, technology, engineering and mathematics) — the fields in which women are most underrepresented.

Among students earning pSTEM bachelor’s degrees in the 1970s, men were 1.6 to 1.7 times as likely as women to later earn a pSTEM Ph.D. However, this gap completely closed by the 1990s.

Men still outnumber women by approximately three to one among pSTEM Ph.D. earners. But those differences in representation are not explained by differences in persistence from the bachelor’s to Ph.D. degree, said David Miller, an advanced doctoral student in psychology at Northwestern and lead author of the study.

“Our analysis shows that women are overcoming any potential gender biases that may exist in graduate school or undergraduate mentoring about pursing graduate school,” Miller said. “In fact, the percentage of women among pSTEM degree earners is now higher at the Ph.D. level than at the bachelor’s, 27 percent versus 25 percent.”

Jonathan Wai, a Duke University Talent Identification Program research scientist and co-author of the study, said a narrowing of gender gaps makes sense given increased efforts to promote gender diversity in science and engineering.

“But a complete closing of the gap was unexpected, especially given recent evidence of gender bias in science mentoring,” Wai said.

Consequently, the widely used leaky pipeline metaphor is a dated description of gender differences in postsecondary STEM education, Wai added.

Other research shows that gaps in persistence rates are also small to nonexistent past the Ph.D., Miller said.

“For instance, in physical science and engineering fields, male and female Ph.D. holders are equally likely to earn assistant professorships and academic tenure,” Miller said.

The leaky pipeline metaphor is inaccurate for nearly all postsecondary pathways in STEM, Miller said, with two important exceptions.

“The Ph.D.-to-assistant-professor pipeline leaks more women than men in life science and economics,” he said. “Differences in those fields are large and important.”

The implications of the research, Miller said, are important in guiding research, resources and strategies to explain and change gender imbalances in science.

“The leaking pipeline metaphor could potentially direct thought and resources away from other strategies that could more potently increase women’s representation in STEM,” he said.

For instance, plugging leaks in the pipeline from the beginning of college to the bachelor’s degree would fail to substantially increase women’s representation among U.S. undergraduates in the pSTEM fields, Miller said.

Of concern, women’s representation among pSTEM bachelor’s degrees has been decreasing during the past decade, Miller noted. “Our analyses indicate that women’s representation at the Ph.D. level is starting to follow suit by declining for the first time in over 40 years,” he said.

“This recent decline at the Ph.D. level could likely mean that women’s progress at the assistant professor level might also slow down or reverse in future years, so these trends will need to be watched closely,” Wai said.

While the researchers are encouraged that gender gaps in doctoral persistence have closed, they stressed that accurately assessing and changing gender biases in science should remain an important goal for educators and policy makers.

Before moving on to Rice’s comments, here’s a link to and citation for the paper,

The bachelor’s to Ph.D. STEM pipeline no longer leaks more women than men: a 30-year analysis by David I. Miller and Jonathan Wai. Front. Psychol., 17 February 2015, doi: 10.3389/fpsyg.2015.00037

This paper is open access (at least for now).

Maybe the situation isn’t improving after all

Curt Rice’s response titled, The incontinent pipeline: it’s not just women leaving higher education, suggests this latest research has unmasked a problem (Note: Links have been removed),

Freshly published research gives a more nuanced picture. The traditional recitation of percentages at various points along the pipeline provides a snapshot. The new research is more like a time-lapse film.

Unfortunately, the new study doesn’t actually show a pipeline being tightened up to leak less. Instead, it shows a pipeline that is leaking even more! The convergence in persistence rates for men and women is not a result of an increase in the rate of women taking a PhD; it’s the result of a decline in the rate of men doing so. It’s as though the holes have gotten bigger — they used to be so small that only women slipped through, but now men slide out, too.

Rice believes  that this improvement is ‘relative improvement’ i.e. the improvement exists in relation to declining numbers of men, a statistic that Rice gives more weight to than the Northwestern researchers appear to have done. ‘Absolute improvement’ would mean that numbers of women studying in the field had improved while men’s numbers had held steady or improved for them too.

To be fair, the authors of the paper seem to have taken at least some of this decline in men’s numbers into account (from the research paper),,

Reasons for the convergences in persistence rates remain unclear. Sometimes the convergence was driven by declines in men’s rates (e.g., in mathematics/computer science), increases in women’s rates (e.g., in physical science), or both (e.g., in engineering). help account for the changes in persistence rates. …

Overenthusiasm in the news release

Unfortunately, the headline and bullet list of highlights suggest a more ebullient research conclusion than seems warranted by the actual research results.

Think again about gender gap in science
Bachelor’s-to-Ph.D. pipeline in science, engineering no longer ‘leaks’ more women than men, new 30-year analysis finds

Research shows dated ‘leaky pipeline’ assumptions about gender imbalances in science

  • Men outnumber women as Ph.D. earners in science but no longer in doctoral persistence
  • Dramatic increase of women in science at Ph.D., assistant professorship levels since 1970s, but recent decline since 2010 may be of concern for future supply of female scientists
  • Assessing inaccurate assumptions key to correcting gender biases in science

Here’s the researchers’ conclusion,

Overall, these results and supporting literature point to the need to understand gender differences at the bachelor’s level and below to understand women’s representation in STEM at the Ph.D. level and above. Women’s representation in computer science, engineering, and physical science (pSTEM) fields has been decreasing at the bachelor’s level during the past decade. Our analyses indicate that women’s representation at the Ph.D. level is starting to follow suit by declining for the first time in over 40 years (Figure 2). This recent decline may also cause women’s gains at the assistant professor level and beyond to also slow down or reverse in the next few years. Fortunately, however, pathways for entering STEM are considerably diverse at the bachelor’s level and below. For instance, our prior research indicates that undergraduates who join STEM from a non-STEM field can substantially help the U.S. meet needs for more well-trained STEM graduates (Miller et al., under review). Addressing gender differences at the bachelor’s level could have potent effects at the Ph.D. level, especially now that women and men are equally likely to later earn STEM Ph.D.’s after the bachelor’s.

The conclusion seems to contradict the researchers’ statements in the news release,

“But a complete closing of the gap was unexpected, especially given recent evidence of gender bias in science mentoring,” Wai said.

Consequently, the widely used leaky pipeline metaphor is a dated description of gender differences in postsecondary STEM education, Wai added.

Other research shows that gaps in persistence rates are also small to nonexistent past the Ph.D., Miller said.

Incomplete pipeline

Getting back to Rice, he notes the pipeline in the Northwestern paper is incomplete (Note: Links have been removed),

In addition to the dubious celebration of the decline of persistence rates of men, the new research article also looks at an incomplete pipeline. In particular, it leaves aside the important issue of which PhD institutions students get into. For young researchers moving towards academic careers, we know that a few high-prestige universities are responsible for training future faculty members at nearly all other research universities. Are women and men getting into those high prestige universities in the same numbers? Or do women go to lower prestige institutions?

Following on that thought about lower prestige institutions and their impact on your career, there’s a Feb. 23, 2015 article by Joel Warner and Aaron Clauset in Slate investigating the situation, which applies to both men and women,

The United States prides itself on offering broad access to higher education, and thanks to merit-based admissions, ample financial aid, and emphasis on diverse student bodies, our country can claim some success in realizing this ideal.

The situation for aspiring professors is far grimmer. Aaron Clauset, a co-author of this article, is the lead author of a new study published in Science Advances that scrutinized more than 16,000 faculty members in the fields of business, computer science, and history at 242 schools. He and his colleagues found, as the paper puts it, a “steeply hierarchical structure that reflects profound social inequality.” The data revealed that just a quarter of all universities account for 71 to 86 percent of all tenure-track faculty in the U.S. and Canada in these three fields. Just 18 elite universities produce half of all computer science professors, 16 schools produce half of all business professors, and eight schools account for half of all history professors.

Then, Warner and Clauset said this about gender bias,

Here’s further evidence that the current system isn’t merely sorting the best of the best from the merely good. Female graduates of elite institutions tend to slip 15 percent further down the academic hierarchy than do men from the same institutions, evidence of gender bias to go along with the bias toward the top schools.

I suggest reading the Slate article, Rice’s post, and, if you have time, the Northwestern University research paper.

Coda: All about Curt Rice

Finally, this is for anyone who’s unfamiliar with Curt Rice (from the About page on his website; Note: Links have been removed),

In addition to my work as a professor at the University of Tromsø, I have three other roles that are closely related to the content on this website. I was elected by the permanent faculty to sit on the university board, I lead Norway’s Committee on Gender Balance and Diversity in Research, and I am the head of the Board for Current Research Information System in Norway (CRIStin). In all of these roles, I work to pursue my conviction that research and education are essential to improving society, and that making universities better therefore has the potential to make societies better.

I’m currently writing a book on gender balance. Why do men and women have different career paths? Why should we care? How can we start to make things better? Why is improving gender balance not only the right thing to do, but also the smart thing to do? For a taste of my approach, grab a copy of my free ebook on gender equality.

Beyond this book project, I use my speaking and writing engagements to reach audiences on the topics that excite me the most: gender balance, open access, leadership issues and more. These interests have grown during the past decade while I’ve had the privilege to occupy what were then two brand new leadership positions at the University of Tromsø.

From 2009–2013, I served as the elected Vice Rector for Research & Development (prorektor for forskning og utvikling). Before that, from 2002–2008, I was the founding director of my university’s first Norwegian Center of Excellence, the Center for Advanced Study in Theoretical Linguistics (CASTL). Given the luxury of being able to define those positions, I was able to pursue my passion for improving academic life by working to enhance conditions for education and research.

I’m part of the European Science Foundation’s genderSTE COST action (Gender, Science, Technology and Environment); I helped create the BALANSE program at the Research Council of Norway, which is designed to increase the numbers of women at the highest levels of research organizations. I am on the Advisory Board of the European Commission project EGERA (Effective Gender Equality in Research and Academia); I was on the Science Leaders Panel of the genSET project, in which we advised the European Commission about gender in science; I am a member of the Steering Committee for the Gender Summits.

I also led a national task force on research-based education that issued many suggestions for Norwegian institutions.

The quantum chemistry of nanomedicines

A Jan. 29, 2015 news item on Nanowerk provides an overview of the impact quantum chemical reactions may have on nanomedicines. Intriguingly, this line of query started with computations of white dwarf stars,

Quantum chemical calculations have been used to solve big mysteries in space. Soon the same calculations may be used to produce tomorrow’s cancer drugs.

Some years ago research scientists at the University of Oslo in Norway were able to show that the chemical bonding in the magnetic fields of small, compact stars, so-called white dwarf stars, is different from that on Earth. Their calculations pointed to a completely new bonding mechanism between two hydrogen atoms. The news attracted great attention in the media. The discovery, which in fact was made before astrophysicists themselves observed the first hydrogen molecules in white dwarf stars, was made by UiO’s Centre for Theoretical and Computational Chemistry. They based their work on accurate quantum chemical calculations of what happens when atoms and molecules are exposed to extreme conditions.

A Jan. 29, 2015 University of Oslo press release by Yngve Vogt, which originated the news item, offers a substantive description of molecules, electrons, and more for those of us whose last chemistry class is lost in the mists of time,

The research team is headed by Professor Trygve Helgaker, who for the last thirty years has taken the international lead on the design of a computer system for calculating quantum chemical reactions in molecules.

Quantum chemical calculations are needed to explain what happens to the electrons’ trajectories within a molecule.

Consider what happens when UV radiation sends energy-rich photons into your cells. This increases the energy level of the molecules. The outcome may well be that some of the molecules break up. This is exactly what happens when you sun-bathe.

“The extra energy will affect the behaviour of electrons and can destroy the chemical bonding within the molecule. This can only be explained by quantum chemistry. The quantum chemical models are used to produce a picture of the forces and tensions at play between the atoms and the electrons of a molecule, and of what is required for a molecule to dissociate,” says Trygve Helgaker.

The absurd world of the electrons

The quantum chemical calculations solve the Schrödinger equation for molecules. This equation is fundamental to all chemistry and describes the whereabouts of all electrons within a molecule. But here we need to pay attention, for things are really rather more complicated than that. Your high school physics teacher will have told you that electrons circle the atom. Things are not that simple, though, in the world of quantum physics. Electrons are not only particles, but waves as well. The electrons can be in many places at the same time. It’s impossible to keep track of their position. However, there is hope. Quantum chemical models describe the electrons’ statistical positions. In other words, they can establish the probable location of each electron.

The results of a quantum chemical calculation are often more accurate than what is achievable experimentally.

Among other things, the quantum chemical calculations can be used to predict chemical reactions. This means that the chemists will no longer have to rely on guesstimates in the lab. It is also possible to use quantum chemical calculations in order to understand what happens in experiments.

Enormous calculations

The calculations are very demanding.

“The Schrödinger equation is a highly complicated, partial differential equation, which cannot be accurately solved. Instead, we need to make do with heavy simulations”, says researcher Simen Kvaal.

The computations are so demanding that the scientists use one of the University’s fastest supercomputers.

“We are constantly stretching the boundaries of what is possible. We are restricted by the available machine capacity,” explains Helgaker.

Ten years ago it took two weeks to carry out the calculations for a molecule with 140 atoms. Now it can be done in two minutes.

“That’s 20,000 times faster than ten years ago. The computation process is now running 200 times faster because the computers have been doubling their speed every eighteen months. And the process is a further 100 times faster because the software has been undergoing constant improvement,” says senior engineer Simen Reine.

This year the research group has used 40 million CPU hours, of which twelve million were on the University’s supercomputer, which is fitted with ten thousand parallel processors. This allows ten thousand CPU hours to be over and done with in 60 minutes.

“We will always fill the computer’s free capacity. The higher the computational capacity, the bigger and more reliable the calculations.”

Thanks to ever faster computers, the quantum chemists are able to study ever larger molecules.

Today, it’s routine to carry out a quantum chemical calculation of what happens within a molecule of up to 400 atoms. By using simplified models it is possible to study molecules with several thousand atoms. This does, however, mean that some of the effects within the molecule are not being described in detail.

The researchers are now getting close to a level which enables them to study the quantum mechanics of living cells.

“This is exciting. The molecules of living cells may contain many hundred thousand atoms, but there is no need to describe the entire molecule using quantum mechanical principles. Consequently, we are already at a stage when we can help solve biological problems.”

There’s more from the press release which describes how this work could be applied in the future,

Hunting for the electrons of the insulin molecule

The chemists are thus able to combine sophisticated models with simpler ones. “This will always be a matter of what level of precision and detail you require. The optimal approach would have been to use the Schrödinger equation for everything.”

By way of compromise they can give a detailed description of every electron in some parts of the model, while in other parts they are only looking at average numbers.

Simen Reine has been using the team’s computer program, while working with Aarhus University [Finland], on a study of the insulin molecule. An insulin molecule consists of 782 atoms and 3,500 electrons.

“All electrons repel each other, while at the same time being pulled towards the atomic nuclei. The nuclei also repel each other. Nevertheless, the molecule remains stable. In order to study a molecule to a high level of precision, we therefore need to consider how all of the electrons move relative to one another. Such calculations are referred to as correlated and are very reliable.”

A complete correlated calculation of the insulin molecule takes nearly half a million CPU hours. If they were given the opportunity to run the program on the entire University’s supercomputer, the calculations would theoretically take two days.

“In ten years, we’ll be able to make these calculations in two minutes.”

Medically important

“Quantum chemical calculations can help describe phenomena at a level that may be difficult to access experimentally, but may also provide support for interpreting and planning experiments. Today, the calculations will be put to best use within the fields of molecular biology and biochemistry,” says Knut Fægri [vice-rector at the University of Oslo].

“Quantum chemistry is a fundamental theory which is important for explaining molecular events, which is why it is essential to our understanding of biological systems,” says [Associate Professor] Michele Cascella.

By way of an example, he refers to the analysis of enzymes. Enzymes are molecular catalysts that boost the chemical reactions within our cells.

Cascella also points to nanomedicines, which are drugs tasked with distributing medicine round our bodies in a much more accurate fashion.

“In nanomedicine we need to understand physical phenomena on a nano scale, forming as correct a picture as possible of molecular phenomena. In this context, quantum chemical calculations are important,” explains Michele Cascella.

Proteins and enzymes

Professor K. Kristoffer Andersson at the Department of Biosciences uses the simpler form of quantum chemical calculations to study the details of protein structures and the chemical atomic and electronic functions of enzymes.

“It is important to understand the chemical reaction mechanism, and how enzymes and proteins work. Quantum chemical calculations will teach us more about how proteins go about their tasks, step by step. We can also use the calculations to look at activation energy, i.e. how much energy is required to reach a certain state. It is therefore important to understand the chemical reaction patterns in biological molecules in order to develop new drugs,” says Andersson.

His research will also be useful in the search for cancer drugs. He studies radicals, which may be important to cancer. Among other things, he is looking at the metal ions function in proteins. These are ions with a large number of protons, neutrons and electrons.

Photosynthesis

Professor Einar Uggerud at the Department of Chemistry has uncovered an entirely new form of chemical bonding through sophisticated experiments and quantum chemical calculations.

Working with research fellow Glenn Miller, Professor Uggerud has found an unusually fragile key molecule, in a kite-shaped structure, consisting of magnesium, carbon and oxygen. The molecule may provide a new understanding of photosynthesis. Photosynthesis, which forms the basis for all life, converts CO2 into sugar molecules.

The molecule reacts so fast with water and other molecules that it has only been possible to study in isolation from other molecules, in a vacuum chamber.

“Time will tell whether the molecule really has an important connection with photosynthesis,” says Einar Uggerud.

I’m delighted with this explanation as it corrects my understanding of chemical bonds and helps me to better understand computational chemistry. Thank you University of Oslo and Yngve Vogt.

Finally, here’s a representation of an insulin molecule as understood by quantum computation,

QuantumInsulinMolecule

INSULIN: Working with Aarhus University, Simen Reine has calculated the tensions between the electrons and atoms of an insulin molecule. An insulin molecule consists of 782 atoms and 3,500 electrons. Illustration: Simen Reine-UiO

 

PlasCarb: producing graphene and renewable hydrogen from food waster

I have two tidbits about PlasCarb the first being an announcement of its existence and the second an announcement of its recently published research. A Jan. 13, 2015 news item on Nanowerk describes the PlasCarb project (Note: A link has been removed),

The Centre for Process Innovation (CPI) is leading a European collaborative project that aims to transform food waste into a sustainable source of significant economic added value, namely graphene and renewable hydrogen.

The project titled PlasCarb will transform biogas generated by the anaerobic digestion of food waste using an innovative low energy microwave plasma process to split biogas (methane and carbon dioxide) into high value graphitic carbon and renewable hydrogen.

A Jan. 13, 2015 CPI press release, which originated the news item, describes the project and its organization in greater detail,

CPI  as the coordinator of the project is responsible for the technical aspects in the separation of biogas into methane and carbon dioxide, and separating of the graphitic carbon produced from the renewable hydrogen. The infrastructure at CPI allows for the microwave plasma process to be trialled and optimised at pilot production scale, with a future technology roadmap devised for commercial scale manufacturing.

Graphene is one of the most interesting inventions of modern times. Stronger than steel, yet light, the material conducts electricity and heat. It has been used for a wide variety of applications, from strengthening tennis rackets, spray on radiators, to building semiconductors, electric circuits and solar cells.

The sustainable creation of graphene and renewable hydrogen from food waste in provides a sustainable method towards dealing with food waste problem that the European Union faces. It is estimated that 90 million tonnes of food is wasted each year, a figure which could rise to approximately 126 million tonnes by 2020. In the UK alone, food waste equates to a financial loss to business of at least £5 billion per year.

Dr Keith Robson, Director of Formulation and Flexible Manufacturing at CPI said, “PlasCarb will provide an innovative solution to the problems associated with food waste, which is one of the biggest challenges that the European Union faces in the strive towards a low carbon economy.  The project will not only seek to reduce food waste but also use new technological methods to turn it into renewable energy resources which themselves are of economic value, and all within a sustainable manner.”

PlasCarb will utilise quality research and specialist industrial process engineering to optimise the quality and economic value of the Graphene and hydrogen, further enhancing the sustainability of the process life cycle.

Graphitic carbon has been identified as one of Europe’s economically critical raw materials and of strategic performance in the development of future emerging technologies. The global market for graphite, either mined or synthetic is worth over €10 billion per annum. Hydrogen is already used in significant quantities by industry and recognised with great potential as a future transport fuel for a low carbon economy. The ability to produce renewable hydrogen also has added benefits as currently 95% of hydrogen is produced from fossil fuels. Moreover, it is currently projected that increasing demand of raw materials from fossil sources will lead to price volatility, accelerated environmental degradation and rising political tensions over resource access.

Therefore, the latter stages of the project will be dedicated to the market uptake of the PlasCarb process and the output products, through the development of an economically sustainable business strategy, a financial risk assessment of the project results and a flexible financial model that is able to act as a primary screen of economic viability. Based on this, an economic analysis of the process will be determined. Through the development of a decentralised business model for widespread trans-European implementation, the valorisation of food waste will have the potential to be undertaken for the benefit of local economies and employment. More specifically, three interrelated post project exploitation markets have been defined: food waste management, high value graphite and RH2 sales.

PlasCarb is a 3-year collaborative project, co-funded under the European Union’s Seventh Framework Programme (FP7) and will further reinforce Europe’s leading position in environmental technologies and innovation in high value Carbon. The consortium is composed of eight partners led by CPI from five European countries, whose complimentary research and industrial expertise will enable the required results to be successfully delivered. The project partners are; The Centre for Process Innovation (UK), GasPlas AS (NO), CNRS (FR), Fraunhofer IBP (DE), Uvasol Ltd (UK), GAP Waste Management (UK), Geonardo Ltd. (HU), Abalonyx AS (NO).

You can find PlasCarb here.

The second announcement can be found in a PlasCarb Jan. 14, 2015 press release announcing the publication of research on heterostructures of graphene ribbons,

Few materials have received as much attention from the scientific world or have raised so many hopes with a view to their potential deployment in new applications as graphene has. This is largely due to its superlative properties: it is the thinnest material in existence, almost transparent, the strongest, the stiffest and at the same time the most strechable, the best thermal conductor, the one with the highest intrinsic charge carrier mobility, plus many more fascinating features. Specifically, its electronic properties can vary enormously through its confinement inside nanostructured systems, for example. That is why ribbons or rows of graphene with nanometric widths are emerging as tremendously interesting electronic components. On the other hand, due to the great variability of electronic properties upon minimal changes in the structure of these nanoribbons, exact control on an atomic level is an indispensable requirement to make the most of all their potential.

The lithographic techniques used in conventional nanotechnology do not yet have such resolution and precision. In the year 2010, however, a way was found to synthesise nanoribbons with atomic precision by means of the so-called molecular self-assembly. Molecules designed for this purpose are deposited onto a surface in such a way that they react with each other and give rise to perfectly specified graphene nanoribbons by means of a highly reproducible process and without any other external mediation than heating to the required temperature. In 2013 a team of scientists from the University of Berkeley and the Centre for Materials Physics (CFM), a mixed CSIC (Spanish National Research Council) and UPV/EHU (University of the Basque Country) centre, extended this very concept to new molecules that were forming wider graphene nanoribbons and therefore with new electronic properties. This same group has now managed to go a step further by creating, through this self-assembly, heterostructures that blend segments of graphene nanoribbons of two different widths.

The forming of heterostructures with different materials has been a concept widely used in electronic engineering and has enabled huge advances to be made in conventional electronics. “We have now managed for the first time to form heterostructures of graphene nanoribbons modulating their width on a molecular level with atomic precision. What is more, their subsequent characterisation by means of scanning tunnelling microscopy and spectroscopy, complemented with first principles theoretical calculations, has shown that it gives rise to a system with very interesting electronic properties which include, for example, the creation of what are known as quantum wells,” pointed out the scientist Dimas de Oteyza, who has participated in this project. This work, the results of which are being published this very week in the journal Nature Nanotechnology, therefore constitutes a significant success towards the desired deployment of graphene in commercial electronic applications.

Here’s a link to and a citation for the paper,

Molecular bandgap engineering of bottom-up synthesized graphene nanoribbon heterojunctions by Yen-Chia Chen, Ting Cao, Chen Chen, Zahra Pedramrazi, Danny Haberer, Dimas G. de Oteyza, Felix R. Fischer, Steven G. Louie, & Michael F. Crommie. Nature Nanotechnology (2015) doi:10.1038/nnano.2014.307 Published online 12 January 2015

This article is behind a paywall but there is a free preview available via ReadCube access.

Self-healing (high voltage installations) in the subsea and a search for funding

More concept than reality, nonetheless, the possibilities offered by this Scandinavian research are appealing. From a Dec. 16, 2014 news item on ScienceDaily,

Embryonic faults in subsea high voltage installations are difficult to detect and very expensive to repair. Researchers believe that self-repairing materials could be the answer.

The vital insulating material which encloses sensitive high voltage equipment may now be getting some ‘first aid’.

“We have preliminary results indicating that this is a promising concept, but we need to do more research to check out other solutions and try the technique out under different conditions.” So says SINTEF [largest independent research organisation in Scandinavial researcher Cédric Lesaint, who is hoping that the industry will soon wake up to the idea.

A Nov. 26, 2014 SINTEF press release, which originated the news item, describes the concept in more detail,

The technology used involves so-called ‘microcapsules’, which are added to traditional insulation materials and have the ability to ‘sniff out’ material fatigue and then release repairing molecules. The team working on this project is made up of chemists, physicists and electrical engineers. If they succeed, they may have discovered the next generation of insulating materials which can be applied in costly electrical installations.

The press release then describes a phenomenon named ‘electrical trees’,

So-called electrical trees develop in electrical insulation materials that are approaching the end of their useful lives. Electrical stress fields exploit small weaknesses in the insulation material and generate hair-thin channels that spread through the material like the branches of a tree. When the channels finally reach the surface of the insulation material, the damage is done and short-circuiting will occur.

“Short-circuiting is almost always linked to an electrical tree”, explains Lesaint’s colleague, Øystein Hestad.

Faults of this kind are extremely expensive to repair, especially if they occur in a device installed on an offshore wind farm or a subsea oil production installation – perhaps even under inhospitable Arctic conditions.

Under such conditions, say researchers, self-repairing insulation materials represent a cost-effective alternative to traditional repair methods.

The specific solution the researchers propose (from the press release),

SINTEF researchers have based their work on an established idea developed to repair mechanical damage and cracks in composite materials. The composites are mixed with microcapsules filled with a liquid monomer – single molecules which have the property to join with each other (polymerise) to form long-chain molecules. If cracks or other forms of damage encroach on the capsules, the monomer is released and fills the cracks.

“As far as we know, we’re the first to have tested this technique on damage resulting from electrical stress fields”, says Lesaint.

The microcapsules they incorporated into the insulation materials burst when they encounter one of the branches of an electrical tree. The liquid monomer then invades the thin channels forming the ‘tree’ and polymerises. The channels are filled in and the electrical degradation of the insulation material is halted.

In this way the ‘immune defences’ of the insulation material are strengthened, and the lifetime of the installation extended.

As promising as the research is, the scientists are looking for funds (from the press release),

This summer [2014], the SINTEF research team presented the concept at a conference in Philadelphia, USA.

“Many people were surprised, especially when they realised that we had chosen to share the concept with others”, says Lesaint. “Taking the chance that other researchers might steal such a good idea is a risk we have to take”, he says.

The industry has also expressed some interest, but so far not enough to consider funding further research.

“We’re being met with curious interest, but have been told to come back when we have more test results”, says Lesaint. “The problem is that at present we have insufficient funds to conduct the research needed to carry the project forward”, he says.

Next year [2015?] will thus decide as to whether this self-repairing project will take the step from being a promising concept to becoming the next generation of insulation materials.

You can also find the press release/article by Lars Martin Hjortho here in  a Gemini.no newsletter.

Here’s an illustration the researchers have made available,

Subsea installations can get longer life-time with self-repairing materials. Illustration: SINTEF Energy  [downloaded from http://gemini.no/en/2014/11/self-repairing-subsea-material/]

Subsea installations can get longer life-time with self-repairing materials. Illustration: SINTEF Energy [downloaded from http://gemini.no/en/2014/11/self-repairing-subsea-material/]

Norway and degradable electronics

It’s a bit higgledy-piggledy but a Nov. 20, 2014 news item on Nanowerk highlights some work with degradable electronics taking place in Norway,

When the FM frequencies are removed in Norway in 2017, all old-fashioned radios will become obsolete, leaving the biggest collection of redundant electronics ever seen – a mountain of waste weighing something between 25,000 and 30,000 tonnes.

The same thing is happening with today’s mobile telephones, PCs and tablets, all of which are constantly being updated and replaced faster than the blink of an eye. The old devices end up on waste tips, and even though we in the west recover some materials for recycling, this is only a small proportion of the whole.

And nor does the future bode well with waste in mind. Technologists’ vision of the future is the “Internet of Things”. Electronics are currently printed onto plastics. All products are fitted with sensors designed to measure something, and to make it possible to talk to other devices around them. Davor Sutija is General Manager at the electronics firm Thin Film, and he predicts that in the course of a few years each of us will progress from having a single sensor to having between a hundred and a thousand. This in turn will mean that billions of devices with electronic bar codes will be released onto the market.

Researchers are now getting to grips with this problem. Their aim is to develop processes in which electronics are manufactured in such a way that their entire life cycle is controlled, including their ultimate disappearance.

A Nov. 20, 2014 article by Åse Dragland for the Gemini newsletter (also found as a Nov. 20, 2014 news release on SINTEF [Norwegian: Stiftelsen for industriell og teknisk forskning]), describes the inspiration for the work in Norway while pointing out some signficant differences from US researchers in the approach to creating a commercial application,

In New Orleans in the USA, researchers have made electronic circuits which they implant into surgical wounds following operations on rats. Each wound is sewn up and the electricity in the circuits then accelerates the healing process. After a few weeks, the electronics are dissolved by the body fluids, making it unnecessary to re-open the wound to remove them manually.

In Norway, researchers at SINTEF have now succeeded in making components containing magnesium circuits designed to transfer energy. These are soluble in water and disappear after a few hours.

“We make no secret of the fact that we are putting our faith in the research results coming out of the USA”, says Karsten Husby at SINTEF ICT. “The Americans have made amazing contributions both in relation to medical applications, and towards resolving the issue of waste. We want to try to find alternative approaches to the same problem”, he says.

The circuit containing the small components is printed on a silicon wafer. At only a few nanometres thick, the circuits are extremely thin, and this enables them to dissolve more effectively. Some of the circuit components are made of magnesium, others of silicon, and others of silicon with a magnesium additive.

But the journey to the researchers’ goal from their current position leaves them with more than enough work to do. Making the ultra-thin circuits is a challenge enough in itself, but they also have to find a “coating” or “film” which will act as a protective packaging around the circuits.

The Americans use silk as their coating material, but the Norwegians are not in favour of this. The silk used is made as part of a process which involves the substance lithium, which is banned at MiNaLab – the laboratory where the SINTEF researchers work.

“Lithium generates a technical problem for our lab”, says Geir Uri Jensen, “so we’re considering alternatives, including a variety of plastics”, he says. “In order to achieve this, we’ve brought in some materials scientists here at SINTEF who are very skilled in this field”, he says.

The nature of the coating must be tailored to the time at which the electronics are required to degrade. In some cases this is just one week – in others, four. For example, if the circuit package is designed to be used in seawater, and fitted with sensors for taking measurements from oil spills, the film must be made so that it remains in place for the weeks in which the measurements are being taken.

“When the external fluids penetrate to the “guts” inside the packaging, the circuits begin to degrade. The job must be completed before this happens”, says Karsten Husby.

Geir Uri Jensen makes a sketch and explains how the nano researchers use horizontal and vertical etching processes in the lab to deposit all the layers onto the silicon circuits. And then – how they have to etch and lift the circuit loose from the silicon wafer in order later to transfer it across to the film.

“This works well enough using sensors at full scale”, he says, “but when the wafers are as thin as this, things become more tricky”. Jensen shrugs. “Even if the angle is just a little off, the whole assembly will snap”, he says.

There’s no doubt that as the use of consumer electronics increases, so too does the need to remove obsolete electronic products. Just think of all the cheap electronics built into children’s toys which are thrown away every year.

The removal of “outdated electronics” can also be a very labour-intensive process. Every day, surgeons place implants fitted with sensors into our bodies in order to measure everything from blood pressure and pressure on the brain, to how our hip implants are working. Some weeks later they have to operate again in order to remove the electronics.

But not everyone is interested in the new technologies developing in this field. Electronics companies which manufacture circuits are more interested in selling their products than in investing in research that results in their products disappearing. And companies which rely on recycling for their revenues may regard these new ideas as a threat to their existence.
Eco-friendly electronics are on the way

“It’s important to make it clear that we’re not manufacturing a final product, but a demo that can show that an electronic component can be made with properties that make it degradable”, says Husby. “Our project is now in its second year, but we’ll need a partner active in the industry and more funding in the years ahead if we’re to meet our objectives. There’s no doubt that eco-friendly electronics is a field which will come into its own, also here in Norway. And we’ve made it our mission to reach our goals”, he says.

Here’s an image of dissolving electronic circuits made available by the researchers,

Electronic circuits can be implanted into surgical wounds and assist the healing process by accelerating wound closure. After a few weeks, the electronics are dissolved by the body fluids, making it unnecessary to re-open the wound to remove them manually. Photos: Werner Juvik/SINTEF - See more at: http://gemini.no/en/2014/11/tomorrows-degradable-electronics/#sthash.Erh1sZp2.dpuf

Electronic circuits can be implanted into surgical wounds and assist the healing process by accelerating wound closure. After a few weeks, the electronics are dissolved by the body fluids, making it unnecessary to re-open the wound to remove them manually. Photos: Werner Juvik/SINTEF – See more at: http://gemini.no/en/2014/11/tomorrows-degradable-electronics/#sthash.Erh1sZp2.dpuf

The researcher most associated with this kind of work is John Rogers at the University of Illinois at Urbana-Champaign and you can read more about biodegradable/dissolving electronics in a Sept. 27, 2012 article (open access) by Katherine Bourzac for Nature magazine. You can find more information about Thin Film Electronics or Thinfilm Electronics (mentioned in the third paragraph of the news item on Nanowerk) website here.

Canada’s National Science and Technology Week (Oct. 17 – 26, 2014) followed by Transatlantic Science Week (Oct. 27 – 29, 2014)

Canada’s National Science and Technology Week (it’s actually 10 days) starts on today, Oct. 17, 2014 this year. You can find a listing of events across the country on the National Science and Technology Week Events List webpage (Note: I have reformatted the information I’ve excerpted from the page but all the details remain the same and links have been removed),

Alberta

Medicine Hat     Praxis Annual Family Science Olympics     Medicine Hat High School Taylor Science Centre (enter on 5th street)     Saturday, October 18, 2014, 10:00 a.m. – 3:00 p.m.     Praxis will be hosting their annual Family Science Olympics. The day will consist of ten hands on science challenges that each family can participate in. If you complete eight of the ten, you will be entered into the draw for the grand prize of a remote control helicopter with a camera. Each “family” must have at least one person over the age of 18. The event is free and will have something for all ages.

British Columbia

Vancouver     First Responder’s weekend     Science World at TELUS World of Science     Saturday October 18 & Sunday October 19, 10am – 6pm both days     First responders are an important and integral part of every community. Join Vancouver firefighters, BC paramedics, Vancouver police, Ecomm 911 and the Canadian Border Services Agency as they showcase who our first responders are, what they do, the technology they use and the role that science plays in their work. Explore emergency technology inside and emergency response vehicles outside the building.

Manitoba

Dugald     Bees, Please     Springfield Public Library, Dugald, Manitoba     October 17, 22, and 24th for programs. We will have the display set up for the duration, from Oct 17-26th. 10 a.m to 8 p.m.     Preschool programs all week will feature stories and crafts on bees and their importance in the world. Kids in the Kitchen, menu selections will feature the use of honey all week. We will have displays of honey, bees and farming with local Ag. Society assistance.

New Brunswick

Dieppe     Tech Trek 2014     Dieppe Arts and Culture Centre     Saturday, October 25, 2014, 9 AM – 12 PM     Come join us for a morning filled with science and tech activities for children of all ages! Admission to this event is free!

Ontario

Ottawa     Funfest     Booth Street Complex(Corner of Booth and Carling)     Sunday, October 19, 2014 – 11:00 am to 4:00 pm     Science Funfest is an open house event that takes place at Natural Resources Canada’s Booth Street Complex, at the corner of Carling Avenue and Booth Street in Ottawa. It’s a wonderful opportunity for children and anyone interested in science to engage in presentations and gain hands on science experience by participating in activities that will showcase the importance of science in a fun and interactive way. Last year’s event featured approximately 70 interactive exhibits on subjects ranging from ‘Slime’ to ‘Canada’s Forest Insects’.

Toronto     Science Literacy Week     Gerstein Science Information Centre, University of Toronto     September 22-28, 2014   [emphasis mine]  Science literacy week is a city wide effort to provide access to some of the best science communicators of all time.  Through book displays, links to online content, documentary screenings and lecture series, the aim is to showcase how captivating science really is.    The science literacy week’s goal is to give people the opportunity to marvel at the discoveries and developments of the last few centuries of scientific thought.

Québec

Sherbrooke     Conférence “La crystallographie : art, science et chocolat!” Par Alexis Reymbault     Musée de la nature et des sciences de Sherbrooke     October 22, 2014     French only.

Saskatchewan

Saskatoon     See the Light: Open House at the Canadian Light Source     Canadian Light Source, 44 Innovation Blvd.     Saturday, October 18, 2014, 9-11:30 am and 1-4 pm     Tour the synchrotron and talk with young researchers and see where and how they use the synchrotron to study disease. Advance registration required: http://fluidsurveys.usask.ca/s/CLS/

At this point, there seem to be fewer events than usual but that may be due to a problem the organizer (Canada’s Science and Technology Museums Corporation) has been dealing with since Sept. 11, 2014. That day, they had to close the country’s national Science and Technology Museum due to issues with airbourne mould (Sept. 11, 2014 news item on the Globe and Mail website). As for what Toronto’s Science Literacy Week 2014, which took place during September, is doing on a listing of October events is a mystery to me unless this is an attempt to raise awareness for the 2015 event mentioned on the Science Literacy Week 2014  webpage.

Transatlantic Science Week (Oct. 26 – 29, 2014), which is three days not a week, is being held in Toronto, Ontario and it extends (coincidentally or purposefully) Canada’s National Science and Technology Week (Oct. 17 – 26, 2014). Here’s more about Transatlantic Science Week from a UArctic (University of the Arctic) Sept. 12, 2014 blog posting (Note 1: UArctic announced the dates as Oct. 27 – 29, 2014 as opposed to the dates from the online registration website for the event; Note 2: Despite the error with the dates the information about the week is substantively the same as the info. on the registration webpage)

The Transatlantic Science Week is an annual trilateral science and innovation conference that promotes the collaboration between research, innovation, government, and business in Canada, the United States and Norway.  Held in Toronto, Canada, this year’s theme focuses on “The Arctic: Societies, Sustainability, and Safety”.

The Transatlantic Science Week 2014 will examine challenges and opportunities in the Arctic through three specialized tracks: (1) Arctic climate science, (2) Arctic safety and cross border knowledge, and (3) Arctic research-based industrial development and resource management. Business opportunities in the Arctic is an essential part of the program.

The evernt [sic] provides a unique arena to facilitate critical dialogue and initiate new collaboration between key players with specific Arctic knowledge.

You can find more information about the programme and other meeting details here but you can no longer register online, all new registrations will be done onsite during the meeting.