Tag Archives: NTNU

Graphene Canada and its second annual conference

An Aug. 31, 2016 news item on Nanotechnology Now announces Canada’s second graphene-themed conference,

The 2nd edition of Graphene & 2D Materials Canada 2016 International Conference & Exhibition (www.graphenecanadaconf.com) will take place in Montreal (Canada): 18-20 October, 2016.

– An industrial forum with focus on Graphene Commercialization (Abalonyx, Alcereco Inc, AMO GmbH, Avanzare, AzTrong Inc, Bosch GmbH, China Innovation Alliance of the Graphene Industry (CGIA), Durham University & Applied Graphene Materials, Fujitsu Laboratories Ltd., Hanwha Techwin, Haydale, IDTechEx, North Carolina Central University & Chaowei Power Ltd, NTNU&CrayoNano, Phantoms Foundation, Southeast University, The Graphene Council, University of Siegen, University of Sunderland and University of Waterloo)
– Extensive thematic workshops in parallel (Materials & Devices Characterization, Chemistry, Biosensors & Energy and Electronic Devices)
– A significant exhibition (Abalonyx, Go Foundation, Grafoid, Group NanoXplore Inc., Raymor | Nanointegris and Suragus GmbH)

As I noted in my 2015 post about Graphene Canada and its conference, the group is organized in a rather interesting fashion and I see the tradition continues, i.e., the lead organizers seem to be situated in countries other than Canada. From the Aug. 31, 2016 news item on Nanotechnology Now,

Organisers: Phantoms Foundation [located in Spain] www.phantomsnet.net
Catalan Institute of Nanoscience and Nanotechnology – ICN2 (Spain) | CEMES/CNRS (France) | GO Foundation (Canada) | Grafoid Inc (Canada) | Graphene Labs – IIT (Italy) | McGill University (Canada) | Texas Instruments (USA) | Université Catholique de Louvain (Belgium) | Université de Montreal (Canada)

You can find the conference website here.

Construction and nanotechnology research in Scandinavia

I keep hearing about the possibilities for better (less polluting, more energy efficient, etc.) building construction materials but there never seems to be much progress.  A June 15, 2015 news item on Nanowerk, which suggests some serious efforts are being made in Scandinavia, may help to explain the delay,

It isn’t cars and vehicle traffic that produce the greatest volumes of climate gas emissions – it’s our own homes. But new research will soon be putting an end to all that!

The building sector is currently responsible for 40% of global energy use and climate gas emissions. This is an under-communicated fact in a world where vehicle traffic and exhaust emissions get far more attention.

In the future, however, we will start to see construction materials and high-tech systems integrated into building shells that are specifically designed to remedy this situation. Such systems will be intelligent and multifunctional. They will consume less energy and generate lower levels of harmful climate gas emissions.

With this objective in mind, researchers at SINTEF are currently testing microscopic nanoparticles as insulation materials, applying voltages to window glass and facades as a means of saving energy, and developing solar cells that prevent the accumulation of snow and ice.

Research Director Susie Jahren and Research Manager Petra Rüther are heading SINTEF’s strategic efforts in the field of future construction materials. They say that although there are major commercial opportunities available in the development of green and low carbon building technologies, the construction industry is somewhat bound by tradition and unable to pay for research into future technology development. [emphasis mine]

A June 15, 2015 SINTEF (Scandinavia’s largest independent research organisation) news release on the Alpha Galileo website, which originated the news item, provides an overview of the research being conducted into nanotechnology-enabled construction materials (Note: I have added some heads and ruthlessly trimmed from the text),

[Insulation]

SINTEF researcher Bente Gilbu Tilset is sitting in her office in Forskningsveien 1 in Oslo [Norway]. She and her colleagues are looking into the manufacture of super-insulation materials made up of microscopic nanospheres.

“Our aim is to create a low thermal conductivity construction material “, says Tilset. “When gas molecules collide, energy is transferred between them. If the pores in a given material are small enough, for example less than 100 nanometres in diameter, a molecule will collide more often with the pore walls than with other gas molecules. This will effectively reduce the thermal conductivity of the gas. So, the smaller the pores, the lower the conductivity of the gas”, she says.

[Solar cells]

As part of the project “Bygningsintegrerte solceller for Norge” (Building Integrated Photovoltaics, BIPV Norway), researchers from SINTEF, NTNU, the IFE [IFE Group, privately owned company, located in Sweden] and Teknova [company created by the Nordic Institute for Studies in Innovation {NIFU}, located in Norway], are planning to look into how we can utilise solar cells as integral housing construction components, and how they can be adapted to Norwegian daylight and climatic conditions.

One of the challenges is to develop a solar cell which prevents the accumulation of snow and ice. The cells must be robust enough to withstand harsh wind and weather conditions and have lifetimes that enable them to function as electricity generators.

[Energy]

Today, we spend 90 per cent of our time indoors. This is as much as three times more than in the 1950s. We are also letting less daylight into our buildings as a result of energy considerations and construction engineering requirements. Research shows that daylight is very important to our health, well-being and biological rhythms. It also promotes productivity and learning. So the question is – is it possible to save energy and get the benefits of greater exposure to daylight?

Technologies involving thermochromic, photochromic and electrochromic pigments can help us to control how sunlight enters our buildings, all according to our requirements for daylight and warmth from the sun.

Self-healing concrete

Every year, between 40 and 120 million Euros are spent in Europe on the maintenance of bridges, tunnels and construction walls. These time-consuming and costly activities have to be reduced, and the project CAPDESIGN is aiming to make a contribution in this field.

The objective of the project is to produce concrete that can be ‘restored’ after being exposed to loads and stresses by means of self-healing agents that prevent the formation of cracks. The method involves mixing small capsules into the wet concrete before it hardens. These remain in the matrix until loads or other factors threaten to crack it. The capsules then burst and the self-healing agents are released to repair the structure.

At SINTEF, researchers are working with the material that makes up the capsule shells. The shell has to be able to protect the self-healing agent in the capsules for an extended period and then, under the right conditions, break down and release the agents in response to the formation of cracks caused by temperature, pH, or a load or stress resulting from an impact or shaking. At the same time, the capsules must not impair the ductility or the mechanical properties of the newly-mixed concrete.

You’ll notice most of the research seems to be taking place in Norway. I suspect that is due to the story having come from a joint Norwegian Norwegian University of Science and Technology (NTNU)/SINTEF, website, Gemini.no/en. Anyone wishing to test their Norwegian readings skills need only omit ‘/en’ from the URL.

Nanomechanics and Applied Nanotechnology PhD candidate position in Norway

The application deadline is March 19, 2014. Thank you to Zhiliang Zhang  for your March 6, 2014 posting on iMechanica for this information,

NTNU Nanomechanical Lab at the Norwegian University of Science and Technology (NTNU) is looking for a PhD candidate within the field of Nanomechanics-nanotechnology-enabled petroleum engineering. The position is part of a knowledge-building project financed by The Research Council of Norway and industrial partners.

The Norwegian University of Science and Technology (NTNU) in Trondheim undated announcement  provides more details,

NTNU Nanomechanical Lab at the Department of Structural Engineering is looking for a PhD candidate within the field of nanotechnology-enabled petroleum engineering. Two positions are a part of a knowledge-building project financed by The Research Council of Norway, Det norske oljeselskap ASA and Wintershall Holding GmbH. The goal of the project is to design and control nanoparticles enabling interfacial wettability alteration and enhanced flow transport in confined space towards petroleum applications through multiscale experiments and simulations. The PhD candidate will work closely with other specialists involved in the project

Applications with CV, possible publications and other scientific works, certified copies of transcripts and reference letters must be submitted electronically via www.jobbnorge.no. Mark your application with ref.no. IVT-59/14.

In case of questions, please visit http://www.ntnu.no/nml and contact Assoc. Prof. Jianying He, jianying.he@ntnu.no, 73594686; Prof. Zhiliang Zhang, zhiliang.zhang@ntnu.no, 73592530; Prof. Ole Torsæter, ole.torsater@ntnu.no, 73594941. No application should be sent to these email addresses

They’re asking for a three-year commitment and a master’s degree (or equivalent) in nanotechnology, material science, mechanical/structural engineering, or related fields and there’s no mention of language skills. Good luck!

I last wrote about Norway and its petroleum interests in a Jan. 22, 2014 post titled: Norwegians hoping to recover leftover oil with nanotechnology-enabled solutions.

Norwegians hoping to recover leftover oil with nanotechnology-enabled solutions

Sabina Griffith’s Jan. 21, 2013 article for Dailyfusion.net profiles two petroleum-themed research projects funded by the Research Council of Norway,

Two new research projects are receiving funding from the Research Council of Norway to develop nanoparticles that can dislodge leftover oil that remains trapped in reservoirs after conventional recovery has been completed.

Every percentage point of enhanced oil recovery rate represents billions in revenues.

“Nanotechnology is a generic technology with the potential for a wide variety of industrial applications,” says Aase Marie Hundere, Special Adviser at the Research Council and part of the NANO2021 program secretariat. “The petroleum industry is Norway’s largest, with vast international potential. Collaboration with the PETROMAKS 2 program provides an excellent opportunity to attract projects that involve specific users from industry.”

A Jan. 17, 2014 Research Council of Norway news release by Claude R. Olsen/Else Lie. Translation: Darren McKellep/Carol B. Eckmann describes first one project and its proponents,

Plugging errant water paths with gel

One of the problems with reservoirs that have been producing petroleum for an extended period is that the water injected flushes less and less oil out. Eventually the injected water is wasted, flowing through the same water-saturated zones rather than being diverted through new areas still containing mobile oil.

SINTEF [Scandinavia’s largest independent research organization] Petroleum Research is heading a project to develop chemical systems that can seal off these zones by sending a solution of nanoparticles and polymers down into the reservoir to the areas where the operator wants to prevent water from flowing. Once they are in position the particles, together with the polymers, will form a gelatinous structure (a gel) that prevents water from flowing through.
It may take the particles weeks or months to make their way through the reservoir, so the project researchers will have to figure out how to keep the gel from forming before the particles have reached their intended destination.

Another critical point will be to discover how the particles are transported through the porous rock: Will they slip through easily to their destination or get caught up in the pore walls along the way?

Together with NTNU, the University of Kansas and a number of petroleum companies, SINTEF will investigate two alternative solutions. Both are based on silica nanoparticles whose surface has been engineered to bind polymers together and form a gel. Developed by SINTEF Materials and Chemistry, the nanoparticles are similar to those used in certain products by Norwegian paint producer Jotun and in other products.

In the first alternative, chemicals will be used to deactivate the surface of the nanoparticles – keeping them passive for weeks or even months – before being activated to bind the polymers together at their destination point.

In the second alternative, active nanoparticles will be packaged into larger nanoparticles that transport them to the point where they are to be released in order to form the gel. The smaller particles will be produced by SINTEF. The University of Kansas has developed the transport particles and is already testing them in field experiments at North American oil reservoirs.

Project manager Torleif Holt of SINTEF Petroleum Research sees great potential for the technology, if successful.

“In the course of our three-and-a-half-year project period, we hope to have learned enough to know whether this method is viable,” he explains. “We would then able to estimate the quantities of nanoparticles needed and have some idea about when this is a financially feasible option.”

Here’s an image of trapped oil, gas, and water,

Functionalised particles to speed up oil flow While the SINTEF project focuses on plugging holes, the NTNU-led project is looking to speed up the flow of oil. Much of a reservoir’s oil remains trapped in small rock pores. NTNU researchers will be customising nanoparticles that can help to dislodge this oil and dramatically increase the amount of oil that can be recovered.  One method will utilise “Janus particles”, which feature a special surface of two different hemispheres: one is hydrophilic (attracted to water), the other hydrophobic (attracted to oil). Down in the reservoir, where both oil and water are found, the nanoparticles will spin like wheels and push the oil forward. “This is an early-stage project,” says project manager Jianying He, an associate professor at the NTNU Nanomechanical Lab. “But the idea is very exciting and has major potential for raising the recovery rate of Norwegian oil.” The petroleum companies Det norske and Wintershall are signed on as partners, and project researchers will be communicating with Statoil as well. The University of Houston is the research partner. The second method involves changing the surface charge of nanoparticles to make them capable of slipping between a reservoir’s oil and rock. If development proceeds as planned, Professor He estimates that the nanoparticles will be on the market in roughly seven years. She sees two challenges to using nanoparticles for enhanced recovery: HSE and production capacity. HSE should not be problematic in this case, as studies show that silica-based particles are not hazardous to the environment. Production capacity, however, may prove to be an obstacle to large-scale utilisation of nanoparticles. Petroleum companies would need millions of tonnes of nanoparticles daily. Currently there is no facility that can produce such quantities.  [downloaded from http://www.forskningsradet.no/en/Newsarticle/Nanotechnology_to_recover_stubborn_oil/1253992231414/p117731575391]

Microscope image of reservoir rock. The rock pores (shown in blue) may contain trapped oil, gas and water. Nanoparticles can be used to recover more of the residual oil. (Photo: Ingrid Anne Munz) [downloaded from http://www.forskningsradet.no/en/Newsarticle/Nanotechnology_to_recover_stubborn_oil/1253992231414/p117731575391]

The news release then describes the other project and its proponents,

Functionalised particles to speed up oil flow

While the SINTEF project focuses on plugging holes, the NTNU [Norges teknisk-naturvitenskapelige universitet; Norwegian University of Science and Technology]-led project is looking to speed up the flow of oil. Much of a reservoir’s oil remains trapped in small rock pores. NTNU researchers will be customising nanoparticles that can help to dislodge this oil and dramatically increase the amount of oil that can be recovered.

One method will utilise “Janus particles”, which feature a special surface of two different hemispheres: one is hydrophilic (attracted to water), the other hydrophobic (attracted to oil). Down in the reservoir, where both oil and water are found, the nanoparticles will spin like wheels and push the oil forward.

“This is an early-stage project,” says project manager Jianying He, an associate professor at the NTNU Nanomechanical Lab. “But the idea is very exciting and has major potential for raising the recovery rate of Norwegian oil.”

The petroleum companies Det norske and Wintershall are signed on as partners, and project researchers will be communicating with Statoil as well. The University of Houston is the research partner.

The second method involves changing the surface charge of nanoparticles to make them capable of slipping between a reservoir’s oil and rock.

If development proceeds as planned, Professor He estimates that the nanoparticles will be on the market in roughly seven years. She sees two challenges to using nanoparticles for enhanced recovery: HSE  [health, safety, and environment?] and production capacity. HSE should not be problematic in this case, as studies show that silica-based particles are not hazardous to the environment.

Production capacity, however, may prove to be an obstacle to large-scale utilisation of nanoparticles. Petroleum companies would need millions of tonnes of nanoparticles daily. Currently there is no facility that can produce such quantities.

I had no idea Norway was so dependent on the petroleum industry. As for the nanoparticles referred to throughout the descriptions for both projects, I’d love to know more about them.

Bioprospecting yields sunscreen ingredient fromTrondheim Fjord microorganism

Norwegian business, Promar, has taken out patents based on research showing that a bacterium living in the Trondheim Flord has a trait much prized by makers of sunscreens, from an Aug. 6, 2013 news item on ScienceDaily,

Norwegian researchers have recently discovered a microorganism with very special properties — a bacteria living in Trondheim Fjord with the Latin name Micrococcus luteus. It possesses a trait which is rare and highly sought-after by medical science and the cosmetics industry — a pigment which can absorb long-wavelength UV radiation (in the range 350-475 nanometres).

The researchers are from SINTEF (Norwegian: Stiftelsen for industriell og teknisk forskning), which bills itself as the largest independent research organization in Scandinavia. Their July 25, 2013 news release by Christina Benjaminsen, which originated the news item, explains why this discovery is causing some excitement,

Long-wavelength UV radiation is linked to many forms of skin cancer and malignant melanomas. Currently, there are no sunscreens on the market able to filter out this type of radiation.

However, the Norwegian company Promar AS has taken out patents for both the manufacture and use in future sunscreens of a light-filtering substance extracted from this bacterium. This has been achieved with the help of researchers at SINTEF.

Researchers at SINTEF have what amounts to a library of microorganisms after years of bioprospecting (exploring for organisms with traits useful in industrial applications), from the SINTEF nrews release,

The backdrop to this project involved activities taking place at SINTEF and NTNU [Norwegian University of Science and Technology] by which we collected a variety of different microorganisms from the water surface in Trondheim Fjord. These organisms had one thing in common. They possessed a variety of naturally-occurring light-absorbing pigments. “This is why they are very colourful”, says Trygve Brautaset, Project and Research Manager at SINTEF. The end result was an entire “library” of such microorganisms.

At about the same time, the Norwegian company Promar AS had been working on the idea of manufacturing a substance with a property lacking in sunscreen products currently on the market – the ability to filter out long-wavelength UV radiation.

This is why SINTEF and NTNU were contracted to look for a pigment with this trait. After investigating hundreds of different bacteria, the researchers found Mirococcus luteus in “the library”. It ticked all the boxes. The microscopic organism, no bigger than 1-2 micrometres across, was found to contain a particular carotenoid, known to organic chemists as sarcinaxanthin. This pigment absorbs sunlight at just the wavelength which Promar wanted to provide protection against. By adding sarcinaxanthin to sunscreen, harmful solar radiation is absorbed by the cream before it reaches the skin. However, commercial production of the carotenoid required some tricky genetic engineering.

The process of isolating the particular pigment took two years, from the SINTEF news release,

Firstly, the pigments produced by the bacteria had to be characterized using a variety of chemical techniques designed to identify the desired sarcinaxanthin carotenoid. Subsequently, the genes used by the bacterium to synthesise sarcinaxanthin had to be isolated. Finally, the research team had to transfer all the genes into a host bacterium. The aim was to create an artificial bacterium able to produce sarcinaxanthin sufficiently effectively to be of commercial interest.

“After about two years’ intensive work SINTEF had the first examples of this bacterium ready”, says Brautaset. “We have now synthesised a sarcinaxanthin-producing bacterium which can be cultivated.

We will now be carrying out tests to see if we can produce it in so-called fermenters (cultivation tanks) in the laboratory. This represents an excellent method for the effective production of sarcinaxanthin in volumes large enough to make industrial applications possible”, he says.

UVAblue is the commercial name that’s been given to this new synthetically derived version of sarcinaxanthi. This new substance has aroused much interest,

… “We have been in France talking to many of the world’s largest cosmetics manufacturers”, he says. “Everyone we talked to was very interested in making use of this type of sunscreen factor in their products”, says Goksøyr [Managing Director Audun Goksøyr at Promar AS].

Among the reasons for this is that the cells which generate malignant melanomas are located deep in the skin. It is primarily long-wavelength UV radiation which penetrates to these cells when we sunbathe. By preventing this radiation from penetrating the skin will be an excellent way of averting the development of this highly lethal form of cancer. It will also act as an anti-wrinkle agent.

You can find out more about UVAblue at its eponymous website. ETA Aug. 13, 2013 1230 pm PDT: I’ve removed a citation for and a link to a paper that was incorrectly placed here.

Just in time for a northern hemisphere summer, electrocute your salad dressings instead of shaking them

Norwegian University of Science and Technology researchers have found they can use electricity to control droplets, from the July 5, 2013 news release on EurekAlert,

You’ve seen Hollandaise sauce or mayonnaise that has separated, or that shiny layer of oil that forms on top of skin cream. This mixture of water and oil is called an emulsion, but it can be difficult to keep emulsions from separating. A special substance called an emulsifier is used to keep the mixture stable and prevent separation.

This is an ongoing problem for the food and medical industries, as well as for oil recovery. In fact, the petroleum industry also has to deal with the opposite problem, which is to separate oil that is pumped up from a well in a mix of water and gas.

Now, researchers from the Norwegian University of Science and Technology (NTNU) have found a new method to control how drops of oil behave, using electricity. The results were published in late June [2013] in Nature Communications.

Here’s how the researchers produced the emulsion effect (from the news release),

The researchers used micrometer-sized particles of clay and silicone oil droplets for their experiment. First, the clay particles coated the droplet, but when the voltage was turned on, the clay particles made a ring around the drop. By controlling the strength of the electrical voltage, researchers can control how the particles accumulate in the ring, much like the way your eye controls how much the pupil opens in response to light.

The method could also be used to control the emulsion’s properties with electricity. Its features could thus be turned on and off quickly, without adding new chemicals.

Naturally, there’s talk of patents (from the news release),

Fossum [Jon Otto Fossum, a professor in the Department of Physics at the university] says the experiment is basic research in physics, and offers a number of possibilities across disciplines. The research group has thought of several different applications for their finding that they may consider filing patents for, but they do not want to discuss specifics.

“The physical or chemical control of emulsions is very important for many areas of technology and for many different applications,” said Fossum.

Fossum says next step is to expand their understanding of what the experiment illustrates, and to perform more laboratory experiments with particles other than clay, and with other types of fluids. At the same time, the researchers are exploring some of the ideas they have about how their technique can be applied.

You can find the paper here,

Active structuring of colloidal armour on liquid drops by Paul Dommersnes, Zbigniew Rozynek, Alexander Mikkelsen, Rene Castberg, Knut Kjerstad, Kjetil Hersvik, & Jon Otto Fossum. Nature Communications 4, Article number: 2066 doi:10.1038/ncomms3066 Published 28 June 2013.

This article is open access.

Graphene, replacing silicon, and epitaxial growth

Researchers in Norway have created a semiconductor on a graphene substrate—absolutely no silicon in the substrate. From the Sept. 28, 2012 news item on Nanowerk,

Norwegian researchers are the world’s first to develop a method for producing semiconductors from graphene. This finding may revolutionise the technology industry.
The method involves growing semiconductor-nanowires on graphene. To achieve this, researchers “bomb” the graphene surface with gallium atoms and arsenic molecules, thereby creating a network of minute nanowires.
The result is a one-micrometre thick hybrid material which acts as a semiconductor. By comparison, the silicon semiconductors in use today are several hundred times thicker. The semiconductors’ ability to conduct electricity may be affected by temperature, light or the addition of other atoms.

The Research Council of Norway’s Sept.28, 2012 news release, which originated the news item, offers this,

Graphene is the thinnest material known, and at the same time one of the strongest. It consists of a single layer of carbon atoms and is both pliable and transparent. The material conducts electricity and heat very effectively. And perhaps most importantly, it is very inexpensive to produce.

“Given that it’s possible to make semiconductors out of graphene instead of silicon, we can make semiconductor components that are both cheaper and more effective than the ones currently on the market,” explains Helge Weman of the Norwegian University of Science and Technology (NTNU). Dr Weman is behind the breakthrough discovery along with Professor Bjørn-Ove Fimland.

“A material comprising a pliable base that is also transparent opens up a world of opportunities, one we have barely touched the surface of,” says Dr Weman. “This may bring about a revolution in the production of solar cells and LED components. Windows in traditional houses could double as solar panels or a TV screen. Mobile phone screens could be wrapped around the wrist like a watch. In short, the potential is tremendous.”

The researchers have patented this work and founded a startup company, CrayoNano. They provide a video animation of the process,

The narrator mentions epataxial growth and the gallium arsenide nanowires being grown on the graphene substrate. For anyone not familiar with ‘epataxial growth’, I found a definition in another Sept. 28, 2012 news item about graphene research on Nanowerk,

One of the best ways of producing high quality graphene is to grow it epitaxially (in layers) from crystals of silicon carbide. For use in electronic devices, it is important to be able to count the number of graphene layers that are grown, as single and double layers of graphene have different electrical properties.

This research out of the UK is based on using silicon as a substrate and you can find out more (excerpted from the  news item about the National Physical Laboratory’s graphene research on Nanowerk),

Recent National Physical Laboratory research, published in the Journal of Applied Physics (“Identification of epitaxial graphene domains and adsorbed species in ambient conditions using quantified topography measurements” [open access]), looked at different topography approaches of determining graphene thickness and investigated the factors that can influence the accuracy of the results, such as atmospheric water and other adsorbates on the graphene surface.

Getting back to graphene substrates, the Research Council of Norway’s news release provides the reminder that this research is about business,

The researchers will now begin to create prototypes directed towards specific areas of application. They have been in contact with giants in the electronics industry such as Samsung and IBM. “There is tremendous interest in producing semiconductors out of graphene, so it shouldn’t be difficult to find collaborative partners,” Dr Weman adds.

The researchers are hoping to have the new semiconductor hybrid materials on the commercial market in roughly five years.

Dexter Johnson in a Sept. 28, 2012 posting on his Nanoclast blog, which is hosted by the IEEE (Institute of Electrical and Electronics Engineers), provides some business perspective,

Weman notes: “Companies like IBM and Samsung are driving this development in the search for a replacement for silicon in electronics as well as for new applications, such as flexible touch screens for mobile phones. Well, they need not wait any more. Our invention fits perfectly with the production machinery they already have. We make it easy for them to upgrade consumer electronics to a level where design has no limits.”

As magnanimous as Weman’s invitation sounds, one can’t help but think it comes from concern. The prospect of a five-year-development period before a product gets to market might be somewhat worrying for a group of scientists who just launched a new startup. A nice licensing agreement from one of the big electronics companies must look appealing right about now.

Norwegians weigh in with research into wood nanocellulose healing application

It’s not just the Norwegians but they certainly seem to be leading the way on the NanoHeal project. Here’s a little more about the intricacies of healing wounds and why wood nanocellulose is being considered for wound healing, from the Aug. 23, 2012 news item on Nanowerk,

Wound healing is a complicated process consisting of several different phases and a delicate interaction between different kinds of cells, signal factors and connective tissue substance. If the wound healing does not function optimally, this can result in chronic wounds, cicatrisation or contractures. By having an optimal wound dressing such negative effects can be reduced. A modern wound dressing should be able to provide a barrier against infection, control fluid loss, reduce the pain during the treatment, create and maintain a moist environment in the wound, enable introduction of medicines into the wound, be able to absorb exudates during the inflammatory phase, have high mechanical strength, elasticity and conformability and allow for easy and painless release from the wound after use.

Nanocellulose is a highly fibrillated material, composed of nanofibrils with diameters in the nanometer scale (< 100 nm), with high aspect ratio and high specific surface area (“Cellulose fibres, nanofibrils and microfibrils: The morphological sequence of MFC components from a plant physiology and fibre technology point of view” [open access article in Nanoscale Research Letters]). Cellulose nanofibrils have many advantageous properties, such as high strength and ability to self-assembly.

Recently, the suitability of cellulose nanofibrils from wood for forming elastic cryo-gels has been demonstrated by scientists from Paper and Fibre Research Institute (PFI) and Lund University (“Cross-linking cellulose nanofibrils for potential elastic cryo-structured gels”  [open access in Nanoscale Research Letters). Cryogelation is a technique that makes it possible to engineer 3-D structures with controlled porosity. A porous structure with interconnected pores is essential for use in modern wound healing in which absorption of exudates, release of medicines into the wound or exchange of cells are essential properties.

The Research Council of Norway recently awarded a grant to the NanoHeal project, from the project page on the PFI (Pulp and Fibre Research Institute) website,

This multi-disciplinary research programme will develop novel material solutions for use in advanced wound healing based on nanofibrillated cellulose structures. This proposal requires knowledge on the effective production and application of sustainable and innovative micro- and nanofibres based on cellulose. The project will assess the ability of these nanofibres to interact with complementary polymers to form novel material structures with optimised adhesion and moulding properties, absorbance, porosity and mechanical performance.  The NanoHeal proposal brings together leading scientists in the fields of nanocellulose technology, polymer chemistry, printing and nanomedicine, to produce biocompatible and biodegradable natural polymers that can be functionalized for clinical applications. As a prototype model, the project will develop materials for use in wound healing. However, the envisaged technologies of synthesis and functionalization will have a diversity of commercial and industrial applications.

The project is funded by the Research Council of Norway/NANO2021, and is a cooperation between several leading R&D partners.

  • PFI
  • NTNU [Norwegian University of Science and Technology], Faculty of medicine
  • Cardiff University
  • Swansea University
  • Lund University
  • AlgiPharma

Project period: 2012-2016

I wonder when I’m going to start hearing about Canadian research into wood nanocellulose  (nanocrystalline cellulose or otherwise) applications.