Tag Archives: oil spill cleanup

Technology for mopping up oil spills

It’s a little disheartening to write about technology for mopping up oils spills as there doesn’t to be much improvement in the situation as Adele Peters notes in her June 4, 2021 article (A decade after Deepwater Horizon, we’re still cleaning up oil spills the same way) for Fast Company (Note: Links have been removed),

Off the coastline of Sri Lanka, where a burning cargo ship has been spilling toxic chemicals and plastic pellets over the past two weeks, the government is preparing for the next possible stage of the disaster: As the ship sinks, it may also spill some of the hundreds of tons of oil in its fuel tanks.

The government is readying oil dispersants, booms, and oil skimmers, all tools that were used in the massive Deepwater Horizon oil spill in the Gulf of Mexico in 2010. They didn’t work perfectly then—more than 1,000 miles of shoreline were polluted—and more than a decade later, they’re still commonly used. But solutions that might work better are under development, including reusable sponges that can suck up oil both on the surface and underwater.

Dispersants, one common tool now, are chemicals designed to break up the oil into tiny droplets so that, in theory, microorganisms in the water can break down the oil more easily. But at least one study found that dispersant could harm those organisms. Deep-sea coral also appears to suffer more from the mix of dispersant and oil than oil alone. Booms are designed to contain oil on the surface so it can be scraped off with a skimmer, but that only works if the water’s relatively calm, and it doesn’t deal with oil below the surface. The oil on the surface can also be burned, but it creates a plume of thick black smoke. “That does get rid of the oil from the water, but then it turns a water pollution problem into an air pollution problem,” says Seth Darling, a senior scientist at Argonne National Laboratory who developed an alternative called the Oleo Sponge [emphasis mine].

… a team from two German universities that developed a system of wood chips that can be dropped in the water to collect oil even in rough weather, when current tools don’t work well. The system is ready for deployment if a spill happens in the Baltic Sea. Another earlier-stage solution proposes using a robot to detect and capture oil.

I’m glad to see at least one new oil spill cleanup technology being readied for deployment in Peters’ June 4, 2021 article, we should be preparing for more spills as the Arctic melts and plans are made to develop new shipping routes.

Amongst other oil spill cleanup technologies, Peters mentions the ‘Oleo Sponge’, which was featured here in a March 30, 2017 posting when researchers were looking for investors to commercialize the product. According to Peters the oleo sponge hasn’t yet made it to market; it’s a fate many of these technologies are destined to meet. Meanwhile, scientists continue to develop new methods and techniques for mopping up oil spills as safely as possible. For example, there’s an oil spill sucking robot mentioned in my October 30, 2020 posting, which features yet another article by Peters.

In the summer of 2020 there were two major oil spills, one in the Russian Arctic and one in an ecologically sensitive area near Mauritius. For more about those events, there’s an August 14, 2020 posting, which starts with news of an oil spill technology featuring dog fur and then focuses primarily on the oil spill in the Russian Arctic with a brief mention of the spill near Mauritius in June 2020 (scroll down to the ‘Exceptionally warm weather’ subhead and see the paragraph above it for the mention and a link to a story).

Clean up oil spills with a smart sponge?

I love the part with the magnet,

All of the main points are made in the video but for those who like text, there’s a May 28, 2020 news item on phys.org describing this new smart sponge for cleaning up oil spills (Note: Links have been removed),

A Northwestern University-led [Chicago, Illinois, US] team has developed a highly porous smart sponge that selectively soaks up oil in water.

With an ability to absorb more than 30 times its weight in oil, the sponge could be used to inexpensively and efficiently clean up oil spills without harming marine life. After squeezing the oil out of the sponge, it can be reused many dozens of times without losing its effectiveness.

“Oil spills have devastating and immediate effects on the environment, human health and economy,” said Northwestern’s Vinayak Dravid, who led the research. “Although many spills are small and may not make the evening news, they are still profoundly invasive to the ecosystem and surrounding community. Our sponge can remediate these spills in a more economic, efficient and eco-friendly manner than any of the current state-of-the-art solutions.”

A May 28, 2020 Northwestern University news release (also on EurekAlert), which originated the news item, reveals (as did the video) the characteristics that make this smart sponge particularly interesting,

Oil spill clean-up is an expensive and complicated process that often harms marine life and further damages the environment. Currently used solutions include burning the oil, using chemical dispersants to breakdown oil into very small droplets, skimming oil floating on top of water and/or absorbing it with expensive, unrecyclable sorbents.

“Each approach has its own drawbacks and none are sustainable solutions,” Nandwana [Vikas Nandwana, a senior research associate in Dravid’s laboratory] said. “Burning increases carbon emissions and dispersants are terribly harmful for marine wildlife. Skimmers don’t work in rough waters or with thin layers of oil. And sorbents are not only expensive, but they generate a huge amount of physical waste — similar to the diaper landfill issue.”

The Northwestern solution bypasses these challenges by selectively absorbing oil and leaving clean water and unaffected marine life behind. The secret lies in a nanocomposite coating of magnetic nanostructures and a carbon-based substrate that is oleophilic (attracts oil), hydrophobic (resists water) and magnetic. The nanocomposite’s nanoporous 3D structure selectively interacts with and binds to the oil molecules, capturing and storing the oil until it is squeezed out. The magnetic nanostructures give the smart sponge two additional functionalities: controlled movement in the presence of an external magnetic field and desorption of adsorbed components, such as oil, in a simulated and remote manner.

The OHM (oleophilic hydrophobic magnetic) nanocomposite slurry can be used to coat any cheap, commercially available sponge. The researchers applied a thin coating of the slurry to the sponge, squeezed out the excess and let it dry. The sponge is quickly and easily converted into a smart sponge (or “OHM sponge”) with a selective affinity for oil.

Vinayak and his team tested the OHM sponge with many different types of crude oils of varying density and viscosity. The OHM sponge consistently absorbed up to 30 times its weight in oil, leaving the water behind. To mimic natural waves, researchers put the OHM sponge on a shaker submerged in water. Even after vigorous shaking, the sponge release less than 1% of its absorbed oil back into the water.

“Our sponge works effectively in diverse and extreme aquatic conditions that have different pH and salinity levels,” Dravid said. “We believe we can address a giga-ton problem with a nanoscale solution.”

“We are excited to introduce such smart sponges as an environmental remediation platform for selectively removing and recovering pollutants present in water, soil and air, such as excess nutrients, heavy metal contaminants, VOC/toxins and others,” Nandwana said. “The nanostructure coating can be tailored to selectively adsorb (and later desorb) these pollutants.”

The team also is working on another grade of OHM sponge that can selectively absorb (and later recover) excess dissolved nutrients, such as phosphates, from fertilizer runoff and agricultural pollution. Stephanie Ribet, a Ph.D. candidate in Dravid’s lab and paper coauthor is pursuing this topic. The team plans to develop and commercialize OHM technology for environmental clean-up.

Bravo to professor Vinayak Dravid and his team. I’m sure I’m not alone in wishing you and your team the best of luck as you continue to develop this remediation technology.

Here’s a link to and a citation for the paper,

OHM Sponge: A Versatile, Efficient, and Ecofriendly Environmental Remediation Platform by Vikas Nandwana, Stephanie M. Ribet, Roberto D. Reis, Yuyao Kuang, Yash More, and Vinayak P. Dravid. Ind. Eng. Chem. Res. 2020, XXXX, XXX, XXX-XXX DOI: https://doi.org/10.1021/acs.iecr.0c01493 Publication Date:May 12, 2020 Copyright © 2020 American Chemical Society

This paper is behind a paywall.

Oil spill cleanup nanotechnology-enabled solution from A*STAR

A*STAR (Singapore’s Agency for Science Technology and Research) has developed a new technology for cleaning up oil spills according to an Oct. 11, 2016 news item on Nanowerk,

Oceanic oil spills are tough to clean up. They dye feathers a syrupy sepia and tan fish eggs a toxic tint. The more turbulent the waters, the farther the slick spreads, with inky droplets descending into the briny deep.

Now technology may be able to succeed where hard-working volunteers have failed in the past. Researchers at the A*STAR Institute of Bioengineering and Nanotechnology (IBN) are using nanotechnology to turn an oil spill into a floating mass of brown jelly that can be scooped up before it can make its way into the food chain.

“Nanoscience makes it possible to tailor the essential structures of materials at the nanometer scale to achieve specific properties,” says chemist Yugen Zhang at IBN, who is developing some of the technologies. “Structures and materials in the nanometer size range often take on distinctive properties that are not seen in other size ranges,” adds Huaqiang Zeng, another chemist at IBN.

An Oct. 11, 2016 A*STAR press release, which originated the news item, describes some of problematic solutions before describing the new technology,

There are many approaches to cleaning an oil spill, and none are completely effective. Fresh, thick grease can be set ablaze or contained by floating barriers for skimmers to scoop out. The slick can also be inefficiently hardened, messily absorbed, hazardously dispersed, or slowly consumed by oil-grazing bacteria. All of these are deficient on a large scale, especially in rough waters.

Organic molecules with special gelling abilities offer a cheap, simple and environmentally friendly alternative for cleaning up the mess. Zeng has developed several such molecules that turn crude oil into jelly within minutes.

To create his ‘supergelators’, Zeng designed the molecules to associate with each other without forming physical bonds. When sprayed on contaminated seawater, the molecules immediately bundle into long fibers between 40 and 800 nanometers wide. These threads create a web that traps the interspersed oil in a giant blob that floats on the water’s surface. The gunk can then be swiftly sieved out of the ocean. Valuable crude oil can later be reclaimed using a common technique employed by petroleum refineries called fractional distillation.

Zeng tested the supergelators on four types of crude oil with different densities, viscosities and sulfur levels in a small round dish. The results were impressive. “The supergelators solidified both freshly spilled crude oil and highly weathered crude oil 37 to 60 times their own weight,” says Zeng. The materials used to produce these organic molecules are cheap and non toxic, which make them a commercially viable solution for managing accidents out at sea. Zeng hopes to work with industrial partners to test the nanomolecules on a much larger scale.

Zeng and his colleagues have developed other other ‘water’ applications as well,

Unsalty water

Scientists at IBN are also using nanoscience to remove salt from seawater and heavy metals from contaminated water.

With dwindling global fresh and ground water reserves, many countries are looking to desalination as a viable source of drinking water. Desalination is expected to meet 30 per cent of the water demand of Singapore by 2060, which will mean tripling the country’s current desalination capacity. But desalination demands huge energy consumption and reverse osmosis, the mainstream technology it depends on, has a relatively high cost. Reverse osmosis works by using extreme pressures to squeeze water molecules through tightly knit membranes.

An emerging alternative solution mimics the way proteins embedded in cell membranes, known as aquaporins, channel water in and out. Some research groups have even created membranes made of fatty lipid molecules that can accommodate natural aquaporins. Zeng has developed a cheaper and more resilient replacement.

His building blocks consist of helical noodles with sticky ends that connect to form long spirals. Water molecules can flow through the 0.3 nanometer openings at the center of the spirals, but all the other positively and negatively charged ions that make up saltwater are too bulky to pass. These include sodium, potassium, calcium, magnesium, chlorine and sulfur oxide. “In water, all of these ions are highly hydrated, attached to lots of water molecules, which makes them too large to go through the channels,” says Zeng.

The technology could lead to global savings of up to US$5 billion a year, says Zeng, but only after several more years of testing and tweaking the lipid membrane’s compatibility and stability with the nanospirals. “This is a major focus in my group right now,” he says. “We want to get this done, so that we can reduce the cost of water desalination to an acceptable level.”

Stick and non-stick

Nanomaterials also offer a low-cost, effective and sustainable way to filter out toxic metals from drinking water.

Heavy metal levels in drinking water are stringently regulated due to the severe damage the substances can cause to health, even at very low concentrations. The World Health Organization requires that levels of lead, for example, remain below ten parts per billion (ppb). Treating water to these standards is expensive and extremely difficult.

Zhang has developed an organic substance filled with pores that can trap and remove toxic metals from water to less than one ppb. Each pore is ten to twenty nanometers wide and packed with compounds, known as amines that stick to the metals.

Exploiting the fact that amines lose their grip over the metals in acidic conditions, the valuable and limited resource can be recovered by industry, and the polymers reused.

The secret behind the success of Zhang’s polymers is the large surface area covered by the pores, which translates into more opportunities to interact with and trap the metals. “Other materials have a surface area of about 100 square meters per gram, but ours is 1,000 square meters per gram,” says Zhang. “It is 10 times higher.”

Zhang tested his nanoporous polymers on water contaminated with lead. He sprinkled a powdered version of the polymer into a slightly alkaline liquid containing close to 100 ppb of lead. Within seconds, lead levels reduced to below 0.2 ppb. Similar results were observed for cadmium, copper and palladium. Washing the polymers in acid released up to 93 per cent of the lead.

With many companies keen to scale these technologies for real-world applications, it won’t be long before nanoscience treats the Earth for its many maladies.

I wonder if the researchers have found industrial partners (who could be named) to bring these solutions for oil spill cleanups, desalination, and water purification to the market.

‘Smart dress’ for oil-degrading bacteria (marine oil spill remediation)

This July 22, 2016 news item (on Nanowerk) about bacteria and marine oil spill remediation was a little challenging (for me) to read (Note: A link has been removed),

Bionanotechnology research is targeted on functional structures synergistically combining macromolecules, cells, or multicellular assemblies with a wide range of nanomaterials. Providing micrometer-sized cells with tiny nanodevices expands the uses of the cultured microorganisms and requires nanoassembly on individual live cells (“Nanoshell Assembly for Magnet-Responsive Oil-Degrading Bacteria”).

Surface engineering functionalizes the cell walls with polymer layers and/or nanosized particles and has been widely employed to modify the intrinsic properties of microbial cells. Cell encapsulation allows fabricating live microbial cells with magnetic nanoparticles onto cell walls, which mimics natural magnetotactic bacteria.

For this study researchers from Kazan Federal University and Louisiana Tech University chose Alcanivorax borkumensis marine bacteria as a target microorganism for cell surface engineering with magnetic nanoparticles for the following reasons: (1) these hydrocarbon-degrading bacteria are regarded as an important tool in marine oil spill remediation and potentially can be used in industrial oil-processing bioreactors, therefore the external magnetic manipulations with these cells seems to be practically relevant; (2) A. borkumensis are marine Gram-negative species having relatively fragile and thin cell walls, which makes cell wall engineering of these bacteria particularly challenging.

Rendering oil-degrading bacteria with artificially added magnetic functionality is important to attenuate their properties and to expand their practical use.

[downloaded from http://pubs.acs.org/doi/abs/10.1021/acs.langmuir.6b01743]

[downloaded from http://pubs.acs.org/doi/abs/10.1021/acs.langmuir.6b01743]

A July 22, 2016 Kazan Federal University (Russia) press release (also on EurekAlert), which originated the news item, has more detail about the research,

Cell surface engineering was performed using polycation-coated magnetic nanoparticles, which is a fast and straightforward process utilizing the direct deposition of positively charged iron oxide nanoparticles onto microbial cells during a brief incubation in excessive concentrations of nanoparticles. Gram-negative bacteria cell walls are built from the thin peptidoglycan layer sandwiched between the outer membrane and inner plasma membrane, with lipopolysaccharides rendering the overall negative cell charge, therefore cationic particles will attach to the cell walls due to electrostatic interactions.

Rod-like 0.5-μm diameter Gram-negative bacteria A. borkumensis were coated with 70?100 nm [sic] magnetite shells. The deposition of nanoparticles was performed with extreme care to ensure the survival of magnetized cells.

The development of biofilms on hydrophobic surface is a very important feature of A. borkumensis cells because this is how these cells attach to the oil droplets in natural environments. Consequently, any cell surface modification should not reduce their ability to attach and proliferate as biofilms. Here, at all concentrations of PAH- magnetite nanoparticles investigated, authors of the study detected the similar biofilm growth patterns. Overall, the magnetized cells were able to proliferate and exhibited normal physiological activity.

The next generations of the bacteria have a tendency to remove the artificial shell returning to the native form. Such magnetic nanoencapsulation may be used for the A. borkumensis transportation in the bioreactors to enhance the spill oil decomposition at certain locations.

If I read this rightly, the idea, in future iterations of this research, is to destroy the oil once it’s been gathered by the biofilm. This seems a different approach where other oil spill remediation techniques have hydrophobic/oleophilic sponges absorbing the oil, which could potentially be used in the future. There are carbon nanotube sponges (my April 17, 2012 posting) and boron nitride sponges (my Dec. 7, 2015 posting).

Here’s a link to and a citation for the paper,

Nanoshell Assembly for Magnet-Responsive Oil-Degrading Bacteria by Svetlana A. Konnova, Yuri M. Lvov, and Rawil F. Fakhrullin. Langmuir, Article ASAP DOI: 10.1021/acs.langmuir.6b01743 Publication Date (Web): June 09, 2016

Copyright © 2016 American Chemical Society

This paper is behind a paywall.

A carbon nanotube ‘bridge’ for nerves

Italian researchers have developed a three-dimensional carbon nanotube sponge (or bridge) that could be used in conjunction with neural explants according to a July 15, 2016 SISSA press release (also on EurekAlert), which describes the work,

A complex study, lasting several years and involving work groups with specialties in various fields, has shown that a new material (a three-dimensional sponge made of carbon nanotubes) supports the growth of nerve fibers, bridging segregated neural explants and providing a functional re-connection. The study, which was coordinated by the International School for Advanced Studies (SISSA) in Trieste, in collaboration with the University of Rome Tor Vergata and the University of Trieste, also observed biocompatibility in vivo of the material, demonstrating that implanting it into  the brain of small rodents does not cause large scars or a marked immune response.

“Under the microscope, it looks like a knotted tangle of tubes. It was initially studied by Maurizio De Crescenzi’s team at the University of Rome Tor Vergata for cleaning up spilled hydrocarbons in the sea,” explains Laura Ballerini, SISSA Professor and coordinator of the recently-published study. It was Maurizio Prato’s intuition, however, that pushed them to investigate the possibility of applying such a material to nerve tissue. The idea of developing the hybrids of neurons and nano-materials was the result of a long-term project and collaboration between Prato (University of Trieste) and Ballerini’s (SISSA) groups.

In the present study, Ballerini and her team first investigated the material’s reaction to nerve tissue in vitro. “We explanted two spinal cord segments and cultured them together but separated by 300 microns,” says Sadaf Usmani, a PhD student at the School and first author of the study. “In those conditions, without any scaffolds reconstructing the space between the two explants, we observed growth of nerve fibers which extended in a straight bundles in any direction, but not necessarily towards the other tissue. If we insert a small piece of the carbon sponge into the space between the two, however, we see dense growth of nerve fibers that fill the structure and intertwine with the other sample.”

“Observing fiber reaching the contralateral explant is not enough, however,” points out University of Trieste researcher and one of the authors of the study, Denis Scaini. “You have to show that there is a functional connection between the two populations of neurons.” For this, SISSA Professor, David Zoccolan and his team’s contribution was crucial. “With signal analysis techniques they had already developed, we were able to demonstrate two things: first, that spontaneous nervous activity in the two samples was actually correlated, indicating a connection, that was not there when the sponge was absent, and second,, that by applying an electrical signal to one of the samples, the activity of the second sample could be triggered, but only when the nanotubes were present.”

Tests for Biocompatibility

The results in the lab were extremely positive. But this was not sufficient for Ballerini and her colleagues. “In order to continue to invest additional energy and resources to the study for potential applications, is crucial to test if the material is accepted by living organisms without negative consequences,” says Ballerini.

To perform these tests, Ballerini’s team worked closely with SISSA Post-Doc researcher, and member of Zoccolan’s team, Federica Rosselli. “We implanted small portions of the material into the brain of healthy rodents. After four weeks, we observed that the material was well tolerated. There were limited scars, as well as low immune responses, some biological indicators even showed that there could be positive implications. There was also a progressive invasion of neurons within the sponge. The rats were vital and healthy during the entire four weeks,” says Usmani.

“In conclusion,” says Ballerini, “the excellent results at the structural and functional level in vitro and in vivo showed biocompatibility are encouraging us to continue this line of research. These materials could be useful for covering electrodes used for treating movement disorders like Parkinson’s because they are well accepted by tissue, while the implants being used today become less effective over time because of scar tissue. We hope this encourages other research teams with multidisciplinary expertise to expand this type of study even further.”

Here’s a link to and a citation for the paper,

3D meshes of carbon nanotubes guide functional reconnection of segregated spinal explants by Sadaf Usmani, Emily Rose Aurand, Manuela Medelin, Alessandra Fabbro, Denis Scaini, Jummi Laishram, Federica B. Rosselli, Alessio Ansuini, Davide Zoccola1, Manuela Scarselli, Maurizio De Crescenzi, Susanna Bosi, Maurizio Prato, and Laura Ballerini. Science Advances  15 Jul 2016: Vol. 2, no. 7, e1600087 DOI: 10.1126/sciadv.1600087 Published 01 July 2016

This paper is open access.

H/t July 15, 2016 news item on phys.org.