Tag Archives: Omid Farokhzad

Springer Nature and its ‘nano research tool’

There’s news from Springer Nature. From a June 17, 2016 announcement by Benedicte Page for The Bookseller,

Springer Nature has launched its first non-journal product since the merged company was formed last year.

Nano, which will sit within the Nature Research portfolio, pulls together structured information on nanotechnology – the manipulation of matter at the level of atoms or molecules – from high-impact journals and patents, spanning disciplines and combining key features of a database and an indexing discovery tool.

Bettina Goerner, Springer Nature m.d. for corporate markets and databases, told The Bookseller that nanoscience and nanotechnology was “so new and growing so fast” that research is spread across a wide range of literature and applications, with Nano bringing together all the relevant information.

Goerner said it was a truly “joint product development” between the two halves of the merged company. “I come from the former Springer side, and we started developing this two years ago, a serious effort on our side,” she said. “The moment we merged it was clear we now had access to experts we didn’t have before, so we reached out to the editor-in-chief of Nature Nanotechnology, and to other relevant journals in the Nature portfolio, and they got very involved and made recommendations on content.”

Goerner added: “We also have a database called SpringerMaterials and we are definitely looking at this as a portfolio and have lots of ideas. We do see finding the right information is vital, especially in fast-growing fields such as this.”

Access to Nano will be via subscription.

A June 15, 2016 Springer Nature press release provides more details,

Developed to meet the needs of researchers in academic, corporate and government environments, Nano combines the key features of a database and an abstracting and indexing discovery tool. Over 200,000 manually-curated profiles of nanomaterials and devices are available, containing information on properties, synthesis and applications. Trials are available from today.

Growing public and private investment into nanotechnology has led to an increase in research outputs, with related articles more than doubling over the past ten years. Nanotechnology is also of growing importance for a vast range of industries – from medicine to aerospace – in developing new products and applications. With nanotechnology becoming an inescapable part of people’s day-to-day lives, policymakers are paying closer attention to it, too.

This area of research, however, presents challenges. Dr. Omid Farokhzad, Associate Professor, Harvard Medical School, said: “Nanotechnology research and development has been rising on a sharp slope across virtually all scientific disciplines and industries. The result has been a rapidly growing body of information in disparate places that is not readily and efficiently accessible. Researchers need a multidisciplinary database that brings this vast body of data together in an organized and usable way in one place. Working together with other scientists to develop a research solution that can meet this need, through Nano’s External Advisory Board, has made me confident that this is a product that can deliver huge value to the research community.”

Partnership and consultation have been at the heart of Nano’s creation. William Chiuman, Director of Product Management, Nanoscience and Technology, Springer Nature, said: “We have worked closely with academia and industry throughout Nano’s development, and we’ll continue to be guided by these external experts to ensure that Nano keeps pace with this dynamic field, and provides up-to-date, curated content, that will ultimately save researchers time and significantly extend their knowledge base.”

Nano is the first non-journal product to be launched by Springer Nature since it was formed in May 2015 by the merger of Springer Science+Business Media and the majority of Macmillan Science and Education, and will be part of the Nature Research portfolio. Steven Inchcoombe, Chief Publishing Officer, Springer Nature, said: “Nano is a product of the combined skills and talents of our new organisation. It exemplifies our ethos and ultimate aim of putting the needs of the researcher at the heart of everything that we do.”

More information about Nano is available at nano.nature.com.

I haven’t been able to find a subscription rate but you can sign up for a trial (presumably free); scroll down about 80% of the way.

I have some information about the May 2015 merger of Springer with Nature in my Dec. 2, 2015 posting (scroll down about 90% of the way).

Like Goldilocks, too late for the 2013 World Science Festival and too early the 2014 USA Science & Engineering Festival

The 2013 World Science Festival in New York City just ended yesterday (June 2, 2013) and the 2014 USA Science & Engineering Festival is scheduled, for  a date approximately 10 months from now, April 26 – 27, 2013 in Washington, DC.

Congratulations to the 2013 World Science Festival organizers as they have sold out most of their shows for this year’s extravaganza. Fear not, there’s still a way to enjoy the 2013 festival’s main event in June and some of its other events during the year: read the event summaries and preview on the festival blog. There’s this June 2, 2013 summary by Julian Taub in a posting titled, Small Wonder: Imagine the Medical Miracles of Nanotechnology,

What is it like to be on the nanoscale, the size thousands of times thinner than a human hair?

This is what an esteemed panel, moderated by Robert Krulwich, focused on throughout Cellular Surgeons: The New Era of Nanomedicine. [emphasis mine] Peter Hoffman, a panelist who wrote a book on molecular machines making order from chaos, tried to paint a picture of a very different world. Imagine a place where gravity is a non-issue and you are constantly bombarded by high-speed particles coming from random directions. …

….

Now, scientists are trying to design their own molecular machines. How are they going to keep up with millions of years of evolution that created the machines inside our body? Metin Sitti, a professor at Carnegie Melon who works on medical nanorobots explained, “As human beings, we are now going beyond nature, as engineers, as scientists. We don’t have the same constraints it has. We have the luxury and knowledge to play with these systems.”

Sitti presented one of his creations to the panel: a robot that rolls around in a patient who swallows it, capable of performing tissue biopsies and dispensing drugs at will. The robot rolls around the stomach, controlled by a magnet from outside the body. Sitti and his team came up with the soft, biodegradable body for the robot to make it more comfortable to use. Right now they are testing the bots on pigs.

Another panelist, Harvard biomedical professor and entrepreneur Omid Farokhzad, created a nanoparticle that carries drugs and attaches to specific receptors on a tumor’s surface. The tumor then engulfs it, in Trojan Horse style, and meets its demise. The particle also disguises itself from the immune system by coating itself with water. As it journeys through your body, it veers toward tumors by sensing their leaky blood vessels.

Then, there’s this Nov. 16, 2013 preview of one of the festival’s other event series, Oliver Sacks—The Justin Bieber of Neurologists,

“The Justin Bieber of Neurologists”—that’s how NPR’s John Hockenberry, noting that the World Science Festival program, “Hallucinations with Oliver Sacks,” had sold out in a matter of hours, described the celebrated doctor and best-selling author.  Their conversation at The Cooper Union on Friday, November 9, was both humorous and compelling, and marked the debut of Sacks’ new book, Hallucinations.  The evening also kicked off the Festival’s new year-round series, Science & Story.

Sacks, renowned for investigating the odd workings of the human mind, described vivid accounts of people who see, hear, smell, even feel things that aren’t actually there. “You think it’s real but other people don’t agree with you,” Sacks explained.

Sacks has said that he regards everything he writes as being at “the intersection of the first and third person, biography and autobiography.”

The USA Science and Engineering Festival is a biannual event and the third festival debuts in April 2014. Here’s a bit of information about festival sponsor, Lockheed Martin and the festival’s beginnings, from the organization’s Dec. 5, 2012 news release,

The Festival is a signature program for Lockheed Martin, a global security and aerospace company that employs nearly 60,000 engineers, scientists, and technologists worldwide. The company co-founded the festival in 2010, helped expand the program in 2012, and serves as the founding and presenting host again in 2014.
“Lockheed Martin is a national leader in promoting science, technology, engineering and math (STEM) in our education system,” said high-tech serial entrepreneur Larry Bock and festival co-founder. “Thanks tothe leadership of Lockheed Martin and other sponsors, the festival provides students direct exposure to the most innovative employers in the field. It also allows prospective employers to demonstrate the coolest engineering and technology applications to young people firsthand, getting them excited to become tomorrow’s scientists and engineers.”
More than 500,000 people attended 2012 festival events, with over 250,000 attending the 3-day Finale Expo at the Walter E. Washington Convention Center, making it the second most attended event in the convention center’s history.

Here are the plans announced in the Dec. 2012 news release,

Festival highlights leading up to the Finale Expo in April 2014 include:
Lockheed Martin returns as presenting host sponsor
New website :www.usasciencefestival.com featuring “Role Models in Science & Engineering,” with a current focus on women and minorities
 Facebook page with more than 35,000 fans and approximately 500 new fans each day
 Throughout 2013 and early 2014:
 Lunch with a Laureate program connecting students with Nobel Prize winning scientists
 Nifty Fifty (times 3) speaker program offering more than 150 leading scientists and engineers to speak in schools, with sessions videotaped for use in classrooms worldwide
 Hundreds of satellite and affiliate events across the country
In April 2014 during the 3rd USA Science & Engineering Festival in Washington, DC:
 Nifty Fifty All Star Symposium, VIP Event and student Sneak Peek on April 24 – 25, 2014
 Finale Expo open to the public April 26 – 27, 2014, with 750+ exhibiting organizations

As always, many thanks to David Bruggeman whose May 31, 2013 posting on his Pasco Phronesis blog brought the two festivals to my attention,

The World Science Festival started on Wednesday [May 29, 2013] in New York City.  While the USA Science and Engineering Festival is growing, the World Science Festival is likely the biggest annual science festival (in scope, if not in numbers) in the U.S.  (At a minimum, the World Science Festival is definitely more all-ages than it’s younger cousin in D.C.)

There is the Science Rendezvous festival here in Canada, an event I described as peculiarly Canadian in my May 10, 2013 posting. It seems of an entirely different order than these two in the US.

Russia’s nanotechnology efforts falter?

The title for Leonid Bershidksy’s May 16, 2013 Bloomberg.com article, Power Grab Trumps Nanotechnology in Putin’s Russia, casts an ominous shadow over Rusnano’s situation (Note: Links have been removed),

The projects, known as Rusnano and Skolkovo, were meant to propel Russia’s raw-material economy into the technology age. They involved multibillion-dollar government investments, the first in nanotechnology and the second in a new city that would become Russia’s answer to Silicon Valley. They were supposed to provide the infrastructure and stability required to attract large amounts of foreign investment.

Now, both have become targets in Putin’s campaign to demonstrate that he’s being tough on corruption and mismanagement of government funds. As a result, their chances of succeeding are looking increasingly remote.

Trouble came in April [2013], when the Accounting Chamber, a body charged with auditing government spending, accused Rusnano of inefficient management in a report that received ample coverage on state-owned TV. It said that Rusnano had transferred about $40 million to shell companies and pointed out that a silicon factory in which Rusnano invested about $450 million was not functioning and was about to be declared insolvent. The report also highlighted the state company’s 2012 losses of 2.5 billion rubles ($80 million) and the 24.4-billion-ruble (about $800 million) in reserves Rusnano had formed against potential losses from risky ventures.

Anatoly Medetsky’s Apr. 29, 2013 article for The Moscow Times provides more insight into the situation,

The government’s Audit Chamber on Friday [April 26, 2013] accused state-owned Rusnano of multiple infractions in a blow to the high-tech corporation’s chief, Anatoly Chubais.

The chamber’s critical conclusions followed President Vladimir Putin’s reproof of the company during a live call-in show the previous day.

Auditors made their statement after examining Rusnano’s records in response to a request by Chubais’ political nemesis, the Communist Party.

“The audit’s materials attest that Rusnano’s performance was inappropriate to attain the goals that it was entrusted with, which are the development of the national nano industry,” the Audit Chamber said in a statement.

Auditor Sergei Agaptsov said separately that Rusnano is unlikely to achieve the goal of 300 billion rubles in annual sales of nano-tech products by the companies it co-owns in 2015 — the target that the government set for the company, Interfax reported.

I’m sorry to read about Rusnano’s difficulties especially in light my first piece about it where I compared the Canadian effort unfavourably to, what was then, a relatively new and promising organization in my Apr. 14, 2009 posting. About seventeen months later, officials with Rusnano signed a memorandum of understanding with John Varghese, CEO and Managing Partner of Toronto based venture capital firm, VentureLink Funds as noted in my Sept. 14, 2010 posting. Nothing further seemed to come of that agreement.

I have one last thought about Rusnano’s current travails, will they have an impact on US commercialization efforts? In my Oct. 28, 2011 posting where I was contrasting nanotechnology commercialization efforts by the US, Spain, and Rusnano, I mentioned this deal Rusnano had made with two US nanomedicine companies,

Then RUSNANO announced its investments in Selecta Biosciences and BIND Biosiences, from the Oct. 27, 2011 news item on Nanowerk,

BIND Biosciences and Selecta Biosciences, two leading nanomedicine companies, announced today that they have entered into investment agreements with RUSNANO, a $10-billion Russian Federation fund that supports high-tech and nanotechnology advances. [emphasis mine]

RUSNANO is co-investing $25 million in BIND and $25 million in Selecta, for a total RUSNANO investment of $50 million within the total financing rounds of $94.5 million in the two companies combined. …

The proprietary technology platforms of BIND and Selecta originated in laboratories at Harvard Medical School directed by Professor Omid Farokhzad, MD, and in laboratories at MIT directed by Professor Robert Langer, ScD, a renowned scientist who is a recipient of the US National Medal of Science, the highest US honor for scientists, and is an inventor of approximately 850 patents issued or pending worldwide. Drs. Langer and Farokhzad are founders of both companies.

Ripple effects, eh? Rusnano was very active internationally.

ETA June 14, 2013:  Nanowerk has a June 13, 2013 news item, which updates the situation with the news that Rusnano has opted out of presenting an ‘initial public offering’, aka, listing itself on a stock exchange in 2015 and will instead attract private investment.

Inflammation isn’t all bad but sometimes you need to reduce it with nanomedicines

Researchers from Brigham and Women’s Hospital (BWH), Columbia University Medical Center, Icahn School of Medicine at Mount Sinai, and Massachusetts Institute of Technology (MIT) have published about a study about their use of nano-sized particles to release therapeutic drugs that are designed to relieve chronic inflammation. From the Mar. 18, 2013 news release on EurekAlert,

Inflammation is the body’s natural defense mechanism against invading organisms and tissue injury. In acute inflammation, the pathogen or inflammatory mediators are cleared away and homeostasis is reached, however in chronic inflammatory states, this resolving response is impaired, leading to chronic inflammation and tissue damage. It is now widely believed that an impaired resolution of inflammation is a major contributing factor to the progression of a number of devastating diseases such as atherosclerosis, arthritis, and neurodegenerative diseases, in addition to cancer. Since the level of inflammation in these diseases is very high—targeted therapeutic solutions are required to help keep inflammation contained.

A new study from researchers at Brigham and Women’s Hospital (BWH), Columbia University Medical Center, Icahn School of Medicine at Mount Sinai, and Massachusetts Institute of Technology presents the development of tiny nanomedicines in the sub 100 nm range (100,000 times smaller than the diameter of a human hair strand) that are capable of encapsulating and releasing an inflammation-resolving peptide drug. The authors showed that these nanoparticles are potent pro-resolving nanomedicines, capable of selectively homing to sites of tissue injury in mice, and releasing their therapeutic payload in a controlled manner over time. Uniquely, these nanoparticles are designed to target the extracellular microenvironment of inflamed tissues. The particles then slowly release their potent inflammation-resolving payload such that it can diffuse through the inflamed tissue. There the drug binds to receptors on the plasma membrane of activated white blood cells and causes them to become more quiescent.

The research will be published some time this week (week of Mar. 18, 2013) by the Proceedings of the National Academy of Science. The news release offers more detail about the work,

“The beauty of this approach is that it takes advantage of nature’s own design for preventing inflammation-induced damage, which, unlike many other anti-inflammatory strategies, does not compromise host defense and promotes tissue repair,” said Ira Tabas, MD, PhD, physician-scientist at Columbia University Medical Center and co-senior author of this study.

“The development of self-assembled targeted nanoparticles which are capable of resolving inflammation has broad application in medicine including the treatment of atherosclerosis,” said Omid Farokhzad, MD, physician-scientist at BWH, and a co-senior author of this study.

Polymers consisting of three chains attached end-to-end were developed as building blocks for the engineering of self-assembled targeted nanoparticles; one chain enabled the entrapment and controlled release of the therapeutic payload, in this case a peptide which mimics the pro-resolving properties of the Annexin A1 protein. Another chain conferred stealth properties to the nanoparticles, enabling their long-circulation after systemic administration. Yet a third chain gave homing capability to the nanoparticles to target the collagen IV protein to the vascular wall. As such these nanoparticles are capable of selectively sticking to injured vasculature allowing their therapeutic anti-inflammatory cargo to be released where it is needed to effectively promote inflammation resolution in a deliberate and targeted manner.

“These targeted polymeric nanoparticles are capable of stopping neutrophils, which are the most abundant form of white blood cells, from infiltrating sites of disease or injury at very small doses. This action stops the neutrophils from secreting further signaling molecules which can lead to a constant hyper-inflammatory state and further disease complications,” said Nazila Kamaly, PhD, a postdoctoral fellow at BWH and co-lead author of this study.

“Nanoparticles that selectively bind to injured vasculature could have a profound impact in prevalent diseases, such as atherosclerosis, where damaged or comprised vasculature underlie the pathology. This work offers a novel targeted nanomedicine to the burgeoning field of inflammation-resolution, a field previously pioneered by BWH’s Dr. Charles Serhan,” said Gabrielle Fredman, PhD, a post-doctoral fellow at Columbia University Medical Center and co-lead author of this study.

These new developments have led the researchers to start investigating the potential of these pro-resolving nanomedicines for their effects on shrinking atherosclerotic plaques, and these studies are currently underway.

This news release does not offer any information as to what type of studies might be underway. My guess is that we are still years away from human clinical trials. Azonano also features this work in a Mar. 19, 2013 news item.

Forbes magazine and US science culture

Forbes magazine, which is based in the US but now has editions produced in many countries, describes its focus as business and finance. So, it might seem a little unexpected to find a list of rising stars in the fields of science and health until one remembers the current fascination, worldwide, with innovation which often seems to mean science research which can be commercialized.

Forbes has just published its list of ’30 under 30′ rising stars in the fields of Science and Health Care. Pedro Valencia, who studied with and worked in Robert Langer’s lab at the Massachusetts Institute of Technology (MIT), was one of the 30 cited in the 2012 list. From the Dec. 27, 2012 news item on Azonano,

Valencia was cited for figuring out “how to more quickly synthesize nanoparticles that can be used to make drugs more effective and less toxic and to put multiple drugs inside the same nanotech medicine. This has resulted in many top-notch scientific publications and the formation of a start-up, Blend Therapeutics.”

Valencia was the recipient of the NSF Graduate Fellowship. He was co-advised by Professor Langer and Dr. Omid Farokhzad of the Brigham Women’s Hospital – Harvard Medical School.

Langer and Farokhzad were mentioned in my Oct. 28, 2011 posting about nanotechnology commercialization efforts,

… BIND Biosciences and Selecta Biosciences, two leading nanomedicine companies, announced today that they have entered into investment agreements with RUSNANO, a $10-billion Russian Federation fund that supports high-tech and nanotechnology advances.

RUSNANO is co-investing $25 million in BIND and $25 million in Selecta, for a total RUSNANO investment of $50 million within the total financing rounds of $94.5 million in the two companies combined. …

The proprietary technology platforms of BIND and Selecta originated in laboratories at Harvard Medical School directed by Professor Omid Farokhzad, MD, and in laboratories at MIT directed by Professor Robert Langer, ScD, a renowned scientist who is a recipient of the US National Medal of Science, the highest US honor for scientists, and is an inventor of approximately 850 patents issued or pending worldwide. Drs. Langer and Farokhzad are founders of both companies. [Farokhzad was featured in a recent Canadian Broadcasting Corporation {CBC}, Nature of Things, television episode about nanomedicine, titled More than human.] Professor Ulrich von Andrian, MD, PhD, head of the immunopathology laboratory at Harvard Medical School, is a founder of Selecta.

It is fascinating to observe not only the linkages between business and science/health but also the way in which those linkages contribute to a larger ‘science culture’, which includes science festivals, science-oriented popular culture, science talks for just a few examples.

Nanotechnology reaches its adolescence?

They (American Association for the Advancement of Science [AAAS], the American Chemical Society [ACS], and the Georgetown University Program on Science in the Public Interest) will be hosting a discussion, Nanotechnology in the 2010s: The Teen Years, on Nov. 21, 2011 in Washington, DC.

This is part of a series, Science & Society: Global Challenges, hosted at the AAAS auditorium at 1200 New York Avenue. The reception starts at 5 pm EST, and the discussion begins at 6:00 pm and finishes at 7:30 pm. You do need to RSVP if you are attending at the AAAS  ‘Global Challenges’ webpage, which specifies, No powerpoint. No notes. Just candid conversations …

I did get a copy of the media release from the ACS, which you can view here in the Nov. 15, 2011 news item on Nanowerk.

From the media release, here’s a list of the expert discussants,

Experts:   Pedro Alvarez, Department of Civil and
Environmental Engineering, Rice  University

                    Omid Farokhzad, Brigham and Women’s
Hospital, Harvard Medical School

                    Debra Kaiser, Ceramics Division, National
Institute of Standards and Technology (NIST)

Host:         David Kestenbaum, NPR [National Public
Radio]

Here are the questions they will be discussing (from the ACS media release),

Since the 1990s, nanotechnology has been lauded as the key to transforming a wide array of innovative fields from biomedicine and electronics to energy, textiles and transportation, inspiring the National Nanotechnology Initiative (NNI) in 2000.

Now in the 2010s, is nanotechnology coming of age? Is the anticipated explosion of new products such as lighting, electronic displays, pharmaceuticals, solar photovoltaic cells and water treatment systems coming to fruition, or is NNI still in its research and development infancy? How should the United States allocate funds for research with such a strong potential to deliver economic innovations? These questions and others will be addressed Monday, Nov. 21, as part of the 2011 Science & Society: Global Challenges Discussion Series.

The ACS podcasts these discussions but you may have to wait a few weeks before viewing the nanotechnology discussion. The most recent available podcast of a Global Challenges discussion is the Oct. 3, 2011 discussion about Cyber Attack. The Oct. 24 discussion about Fukushima and the Nov. 7 discussion about Infectious Diseases have not been posted as of 11 am PST, Nov. 16, 2011.

Omid Farokhzad, one of the Global Challenges nanotechnology experts, was last mentioned on this blog in conjunction with a deal his companies (BIND and Selecta) made with RUSNANO (Russian Nanotechnologies Corporation) in my Oct. 28, 2011 posting. He was also featured in part 2 (More than Human, which is available for viewing online) of The Nano Revolution series broadcast, Oct. 20, 2011, by the Canadian Broadcasting Corporation as part of The Nature of Things programming. I did comment on the episode in my Oct. 26, 2011 posting but did not mention Farokhzad.

Commercializing nano: US, Spain, and RUSNANO

Late September 2011 saw the Nanomanufacturing Summit 2011 and 10th Annual NanoBusiness conference take place in Boston, Massachusetts (my Sept. 21, 2011 posting). Dr. Scott Rickert (President and CEO of Nanofilm) writing for Industry Week noted this about the events in his Oct. 14, 2011 posting,

I witnessed an American revolution catch fire in Boston, and I feel like a latter-day Paul Revere. “The nanotech economy is coming, the nanotech economy is coming!” and that’s good news for the U.S. — and you — because we’re at the epicenter.

Let’s start with commercialization. Ten years ago, when I walked into the inaugural version of this conference, I was one of the few with money-making nanotechnology products on the market. This time? The sessions were packed with executives from multi-million dollar businesses, and the chatter was about P&L as much as R&D. Nano-companies are defying Wall Street woes and going public. And even academics were talking about business plans, not prototypes.

Dozens of companies from Europe, Asia and the Middle East were at the conference. Their goal was tapping into the American know-how for making science into business.

Seems a little euphoric, doesn’t he? It’s understandable for anyone who’s worked long and hard at an activity that’s considered obscure by great swathes of the population and finally begins to see substantive response. (Sidebar: Note the revolutionary references for a conference taking place in what’s considered the birthplace of the American Revolution.)

Speakers at MIT’s (Massachusetts Institute of Nanotechnology) EmTech event held in Spain on Oct. 26-27, 2011 were are a bit more measured, excerpted from the Oct. 27, 2011 posting featuring highlights from the conference by Cal Pierce for Opinno,

Javier García Martínez, founder of Rive Technology and Tim Harper, founder of Cientifica.com presented their view of how nanotechnology will transform our world.

Harper took the stage first.

“We have spent $67 billion on nanotechnology research this decade, so you can imagine this must be an important field,” he said.

Harper believes that nanotechnology is the most important technology that humans have developed in the past 5,000 years. However, he spoke about the difficulties in developing nanotechnology machinery in that we cannot simply shrink factories down to nano-scales. Rather, Harper said we need to look to cells in nature as they have been using nanotechnology for billions of years.

….

Harper spoke about the dire need to use nanotechnology to develop processes that replace scarce resources. However, the current economic climate is hindering these critical innovations.

Javier Garcia then spoke.

“Graphene, diamond and other carbon structures are the future of 21st-century nanotechnology,” he said.

Garcia says that the next challenge is commercialization. There are thousands of scientific articles about nanotechnology published every year which are followed by many patents, he explained. However, he reflected on Cook’s ideas about funding.

“There is still not a nanotechnology industry like there is for biotechnology,” he said.

Finally, Garcia said successful nanotechnology companies need to build strong partnerships, have strong intellectual property rights and create a healthy balance between creativity and focus. Government will also play a role with simplified bureaucracy and tax credits.

Hang on, it gets a little more confusing when you add in the news from Russia (from Dexter Johnson’s Oct. 26, 2011 posting titled, Russia Claims Revenues of One-Third-of–a-Billion Dollars in Nanotech This Year on his Nanoclast blog on the Institute for Electrical and Electronics Engineering [IEEE] website),

One of the first bits of interesting news to come out of the meeting is that: “In 2011, Rusnano has earned about 10 billion rubles ($312 million) on manufacturing products using nanotechnology — nearly half of the state corporation’s total turnover.”

We should expect these estimates to be fairly conservative, however, ever since Anatoly Chubais, RusNano’s chief, got fed up with bogus market numbers he was seeing and decided that RusNano was going to track its own development.

I have to say though, no matter how you look at it, over $300 million in revenues is pretty impressive for a project that has really only existed for three years.

Then RUSNANO announced its investments in Selecta Biosciences and BIND Biosiences, from the Oct. 27, 2011 news item on Nanowerk,

BIND Biosciences and Selecta Biosciences, two leading nanomedicine companies, announced today that they have entered into investment agreements with RUSNANO, a $10-billion Russian Federation fund that supports high-tech and nanotechnology advances.

RUSNANO is co-investing $25 million in BIND and $25 million in Selecta, for a total RUSNANO investment of $50 million within the total financing rounds of $94.5 million in the two companies combined. …

The proprietary technology platforms of BIND and Selecta originated in laboratories at Harvard Medical School directed by Professor Omid Farokhzad, MD, and in laboratories at MIT directed by Professor Robert Langer, ScD, a renowned scientist who is a recipient of the US National Medal of Science, the highest US honor for scientists, and is an inventor of approximately 850 patents issued or pending worldwide. Drs. Langer and Farokhzad are founders of both companies. [Farokhzad was featured in a recent Canadian Broadcasting Corporation {CBC}, Nature of Things, television episode about nanomedicine, titled More than human.] Professor Ulrich von Andrian, MD, PhD, head of the immunopathology laboratory at Harvard Medical School, is a founder of Selecta.

Selecta pioneers new approaches for synthetically engineered vaccines and immunotherapies. Selecta’s lead drug candidate, SEL-068, is entering human clinical studies as a vaccine for smoking cessation and relapse prevention. Other drug development programs include universal human papillomavirus (HPV) vaccine, universal influenza vaccine, malaria vaccine, and type 1 diabetes therapeutic vaccine.

BIND develops targeted therapeutics, called Accurins™, that selectively accumulate at the site of disease to dramatically enhance effectiveness for treating cancer and other diseases. BIND’s lead candidate, BIND-014, is in human clinical trials as a targeted therapy for cancer treatment. BIND’s development pipeline also includes a range of cancer treatments and drugs for anti-inflammatory and cardiovascular conditions.

Here’s an excerpt from Dexter Johnson’s Oct. 28, 2011 posting where he muses on this development,

It seems the last decade of the US—along with parts of Europe and Asia—pouring money into nanotechnology research, which led to a few fledgling nanotechnology-based businesses, is finally paying off…for Russia.

In the case of these two companies, I really don’t know to what extent their initial technology was funded or supported by the US government and I wouldn’t begrudge them a bit if it was significant. Businesses need capital just to get to production and then later to expand. It hardly matters where it comes from as long as they can survive another day.

Dexter goes on to note that RUSNANO is not the only organization investing major money to bring nanotechnology-enabled products to the next stage of commercialization; this is happening internationally.

Meanwhile, Justin Varilek posts this (Nanotech Enthusiasm Peaks) for the Moscow Times on Oct. 28, 2011,

In nanotechnology, size matters. But federal funding for the high-tech field has tapered off in Russia, flattening out at $1.88 billion per year through 2015 and losing ground in the race against the United States and Germany.

If this were a horse race, nanotechnology-enabled products are in the final stretches toward the finish line (commercialization) and it’s still anyone’s horse race.

Note: I didn’t want to interrupt the flow earlier to include this link to the EmTech conference in Spain. And, I did post a review (Oct. 26, 2011) of More than Human, which did not mention Farokhzad by name, the second episode in a special three-part series being broadcast as part of the Nature of Things series on CBC.