Tag Archives: Oregon State University (OSU)

Comedy club performances show how robots and humans connect via humor

Caption: Naomi Fitter and Jon the Robot. Credit: Johanna Carson, OSU College of Engineering

Robot comedian is not my first thought on seeing that image; ventriloquist’s dummy is what came to mind. However, it’s not the first time I’ve been wrong about something. A May 19, 2020 news item on ScienceDaily reveals the truth about Jon, a comedian in robot form,

Standup comedian Jon the Robot likes to tell his audiences that he does lots of auditions but has a hard time getting bookings.

“They always think I’m too robotic,” he deadpans.

If raucous laughter follows, he comes back with, “Please tell the booking agents how funny that joke was.”

If it doesn’t, he follows up with, “Sorry about that. I think I got caught in a loop. Please tell the booking agents that you like me … that you like me … that you like me … that you like me.”

Jon the Robot, with assistance from Oregon State University researcher Naomi Fitter, recently wrapped up a 32-show tour of comedy clubs in greater Los Angeles and in Oregon, generating guffaws and more importantly data that scientists and engineers can use to help robots and people relate more effectively with one another via humor.

A May 18, 2020 Oregon State University (OSU) news release (also on EurekAlert), which originated the news item, delves furthers into this intriguing research,

“Social robots and autonomous social agents are becoming more and more ingrained in our everyday lives,” said Fitter, assistant professor of robotics in the OSU College of Engineering. “Lots of them tell jokes to engage users – most people understand that humor, especially nuanced humor, is essential to relationship building. But it’s challenging to develop entertaining jokes for robots that are funny beyond the novelty level.”

Live comedy performances are a way for robots to learn “in the wild” which jokes and which deliveries work and which ones don’t, Fitter said, just like human comedians do.

Two studies comprised the comedy tour, which included assistance from a team of Southern California comedians in coming up with material true to, and appropriate for, a robot comedian.

The first study, consisting of 22 performances in the Los Angeles area, demonstrated that audiences found a robot comic with good timing – giving the audience the right amounts of time to react, etc. – to be significantly more funny than one without good timing.

The second study, based on 10 routines in Oregon, determined that an “adaptive performance” – delivering post-joke “tags” that acknowledge an audience’s reaction to the joke – wasn’t necessarily funnier overall, but the adaptations almost always improved the audience’s perception of individual jokes. In the second study, all performances featured appropriate timing.

“In bad-timing mode, the robot always waited a full five seconds after each joke, regardless of audience response,” Fitter said. “In appropriate-timing mode, the robot used timing strategies to pause for laughter and continue when it subsided, just like an effective human comedian would. Overall, joke response ratings were higher when the jokes were delivered with appropriate timing.”

The number of performances, given to audiences of 10 to 20, provide enough data to identify significant differences between distinct modes of robot comedy performance, and the research helped to answer key questions about comedic social interaction, Fitter said.

“Audience size, social context, cultural context, the microphone-holding human presence and the novelty of a robot comedian may have influenced crowd responses,” Fitter said. “The current software does not account for differences in laughter profiles, but future work can account for these differences using a baseline response measurement. The only sensing we used to evaluate joke success was audio readings. Future work might benefit from incorporating additional types of sensing.”

Still, the studies have key implications for artificial intelligence efforts to understand group responses to dynamic, entertaining social robots in real-world environments, she said.

“Also, possible advances in comedy from this work could include improved techniques for isolating and studying the effects of comedic techniques and better strategies to help comedians assess the success of a joke or routine,” she said. “The findings will guide our next steps toward giving autonomous social agents improved humor capabilities.”

The studies were published by the Association for Computing Machinery [ACM]/Institute of Electrical and Electronics Engineering’s [IEEE] International Conference on Human-Robot Interaction [HRI].

Here’s another link to the two studies published in a single paper, which were first presented at the 2020 International Conference on Human-Robot Interaction [HRI]. along with a citation for the title of the published presentation,

Comedians in Cafes Getting Data: Evaluating Timing and Adaptivity in Real-World Robot Comedy Performance by John Vilk and Naomi T Fitter. HRI ’20: Proceedings of the 2020 ACM/IEEE International Conference on Human-Robot InteractionMarch 2020 Pages 223–231 DOI: https://doi.org/10.1145/3319502.3374780

The paper is open access and the researchers have embedded an mp4 file which includes parts of the performances. Enjoy!

New semiconductor material from pigment produced by fungi?

Chlorociboria Aeruginascens fungus on a tree log. (Image: Oregon State University)

Apparently the pigment derived from the fungi you see in the above picture is used by visual artists and, perhaps soon, will be used by electronics manufacturers. From a June 5, 2018 news item on Nanowerk,

Researchers at Oregon State University are looking at a highly durable organic pigment, used by humans in artwork for hundreds of years, as a promising possibility as a semiconductor material.

Findings suggest it could become a sustainable, low-cost, easily fabricated alternative to silicon in electronic or optoelectronic applications where the high-performance capabilities of silicon aren’t required.

Optoelectronics is technology working with the combined use of light and electronics, such as solar cells, and the pigment being studied is xylindein.

A June 5, 2018 Oregon State University news release by Steve Lundeberg, which originated the news item, expands on the theme,

“Xylindein is pretty, but can it also be useful? How much can we squeeze out of it?” said Oregon State University [OSU] physicist Oksana Ostroverkhova. “It functions as an electronic material but not a great one, but there’s optimism we can make it better.”

Xylindien is secreted by two wood-eating fungi in the Chlorociboria genus. Any wood that’s infected by the fungi is stained a blue-green color, and artisans have prized xylindein-affected wood for centuries.

The pigment is so stable that decorative products made half a millennium ago still exhibit its distinctive hue. It holds up against prolonged exposure to heat, ultraviolet light and electrical stress.

“If we can learn the secret for why those fungi-produced pigments are so stable, we could solve a problem that exists with organic electronics,” Ostroverkhova said. “Also, many organic electronic materials are too expensive to produce, so we’re looking to do something inexpensively in an ecologically friendly way that’s good for the economy.”

With current fabrication techniques, xylindein tends to form non-uniform films with a porous, irregular, “rocky” structure.

“There’s a lot of performance variation,” she said. “You can tinker with it in the lab, but you can’t really make a technologically relevant device out of it on a large scale. But we found a way to make it more easily processed and to get a decent film quality.”

Ostroverkhova and collaborators in OSU’s colleges of Science and Forestry blended xylindein with a transparent, non-conductive polymer, poly(methyl methacrylate), abbreviated to PMMA and sometimes known as acrylic glass. They drop-cast solutions both of pristine xylindein and a xlyindein-PMMA blend onto electrodes on a glass substrate for testing.

They found the non-conducting polymer greatly improved the film structure without a detrimental effect on xylindein’s electrical properties. And the blended films actually showed better photosensitivity.

“Exactly why that happened, and its potential value in solar cells, is something we’ll be investigating in future research,” Ostroverkhova said. “We’ll also look into replacing the polymer with a natural product – something sustainable made from cellulose. We could grow the pigment from the cellulose and be able to make a device that’s all ready to go.

“Xylindein will never beat silicon, but for many applications, it doesn’t need to beat silicon,” she said. “It could work well for depositing onto large, flexible substrates, like for making wearable electronics.”

This research, whose findings were recently published in MRS Advances, represents the first use of a fungus-produced material in a thin-film electrical device.

“And there are a lot more of the materials,” Ostroverkhova said. “This is just first one we’ve explored. It could be the beginning of a whole new class of organic electronic materials.”

Here’s a link to and a citation for the paper,

Fungi-Derived Pigments for Sustainable Organic (Opto)Electronics by Gregory Giesbers, Jonathan Van Schenck, Sarath Vega Gutierrez, Sara Robinson. MRS Advances https://doi.org/10.1557/adv.2018.446 Published online: 21 May 2018

This paper is behind a paywall.

Creating new manufacturing technologies with photonic sintering

There’s a nice of explanation of nanoparticle sintering, a process which is central to producing new materials, according to a Dec. 1, 2015 Oregon State University (OSU) news release (also on EurekAlert),

Engineers at Oregon State University have made a fundamental breakthrough in understanding the physics of photonic “sintering,” which could lead to many new advances in solar cells, flexible electronics, various types of sensors and other high-tech products printed onto something as simple as a sheet of paper or plastic.

Sintering is the fusing of nanoparticles to form a solid, functional thin-film that can be used for many purposes, and the process could have considerable value for new technologies.

Photonic sintering has the possible advantage of higher speed and lower cost, compared to other technologies for nanoparticle sintering.

The news release goes on to provide some technical details and information about commercialization efforts,

In the new research, OSU experts discovered that previous approaches to understand and control photonic sintering had been based on a flawed view of the basic physics involved, which had led to a gross overestimation of product quality and process efficiency.

Based on the new perspective of this process, which has been outlined in Nature Scientific Reports, researchers now believe they can create high quality products at much lower temperatures, at least twice as fast and with 10 times more energy efficiency.

Removing constraints on production temperatures, speed and cost, the researchers say, should allow the creation of many new high-tech products printed onto substrates as cheap as paper or plastic wrap.

“Photonic sintering is one way to deposit nanoparticles in a controlled way and then join them together, and it’s been of significant interest,” said Rajiv Malhotra, an assistant professor of mechanical engineering in the OSU College of Engineering. “Until now, however, we didn’t really understand the underlying physics of what was going on. It was thought, for instance, that temperature change and the degree of fusion weren’t related – but in fact that matters a lot.”

With the concepts outlined in the new study, the door is open to precise control of temperature with smaller nanoparticle sizes. This allows increased speed of the process and high quality production at temperatures at least two times lower than before. An inherent “self-damping” effect was identified that has a major impact on obtaining the desired quality of the finished film.

“Lower temperature is a real key,” Malhotra said. “To lower costs, we want to print these nanotech products on things like paper and plastic, which would burn or melt at higher temperatures. We now know that is possible, and how to do it. We should be able to create production processes that are both fast and cheap, without a loss of quality.”

Products that could evolve from the research, Malhotra said, include solar cells, gas sensors, radiofrequency identification tags, and a wide range of flexible electronics. Wearable biomedical sensors could emerge, along with new sensing devices for environmental applications.

In this technology, light from a xenon lamp can be broadcast over comparatively large areas to fuse nanoparticles into functional thin films, much faster than with conventional thermal methods. It should be possible to scale up the process to large manufacturing levels for industrial use.

This advance was made possible by a four-year, $1.5 million National Science Foundation Scalable Nanomanufacturing Grant, which focuses on transcending the scientific barriers to industry-level production of nanomaterials. Collaborators at OSU include Chih-hung Chang, Alan Wang and Greg Herman.

OSU researchers will work with two manufacturers in private industry to create a proof-of-concept facility in the laboratory, as the next step in bringing this technology toward commercial production.

Here’s a link to and a citation for the paper,

On the self-damping nature of densification in photonic sintering of nanoparticles by William MacNeill, Chang-Ho Choi, Chih-Hung Chang, & Rajiv Malhotra.  Scientific Reports 5, Article number: 14845 (2015)  doi:10.1038/srep14845 Published online: 07 October 2015

This is an open access paper.