Tag Archives: Organization for Economic Cooperation and Development

Nanomaterials and safety: Europe’s non-governmental agencies make recommendations; (US) Arizona State University initiative; and Japan’s voluntary carbon nanotube management

I have three news items which have one thing in common, they concern nanomaterials and safety. Two of these of items are fairly recent; the one about Japan has been sitting in my drafts folder for months and I’m including it here because if I don’t do it now, I never will.

First, there’s an April 7, 2014 news item on Nanowerk (h/t) about European non-governmental agencies (CIEL; the Center for International Environmental Law and its partners) and their recommendations regarding nanomaterials and safety. From the CIEL April 2014 news release,

CIEL and European partners* publish position paper on the regulation of nanomaterials at a meeting of EU competent authorities

*ClientEarth, The European Environmental Bureau, European citizen’s Organization for Standardisation, The European consumer voice in Standardisation –ANEC, and Health Care Without Harm, Bureau of European Consumers

… Current EU legislation does not guarantee that all nanomaterials on the market are safe by being assessed separately from the bulk form of the substance. Therefore, we ask the European Commission to come forward with concrete proposals for a comprehensive revision of the existing legal framework addressing the potential risks of nanomaterials.

1. Nanomaterials are different from other substances.

We are concerned that EU law does not take account of the fact that nano forms of a substance are different and have different intrinsic properties from their bulk counterpart. Therefore, we call for this principle to be explicitly established in the REACH, and Classification Labeling and Packaging (CLP) regulations, as well as in all other relevant legislation. To ensure adequate consideration, the submission of comprehensive substance identity and characterization data for all nanomaterials on the market, as defined by the Commission’s proposal for a nanomaterial definition, should be required.

Similarly, we call on the European Commission and EU Member States to ensure that nanomaterials do not benefit from the delays granted under REACH to phase-in substances, on the basis of information collected on their bulk form.

Further, nanomaterials, due to their properties, are generally much more reactive than their bulk counterpart, thereby increasing the risk of harmful impact of nanomaterials compared to an equivalent mass of bulk material. Therefore, the present REACH thresholds for the registration of nanomaterials should be lowered.

Before 2018, all nanomaterials on the market produced in amounts of over 10kg/year must be registered with ECHA on the basis of a full registration dossier specific to the nanoform.

2. Risk from nanomaterials must be assessed

Six years after the entry into force of the REACH registration requirements, only nine substances have been registered as nanomaterials despite the much wider number of substances already on the EU market, as demonstrated by existing inventories. Furthermore, the poor quality of those few nano registration dossiers does not enable their risks to be properly assessed. To confirm the conclusions of the Commission’s nano regulatory review assuming that not all nanomaterials are toxic, relevant EU legislation should be amended to ensure that all nanomaterials are adequately assessed for their hazardous properties.

Given the concerns about novel properties of nanomaterials, under REACH, all registration dossiers of nanomaterials must include a chemical safety assessment and must comply with the same information submission requirements currently required for substances classified as Carcinogenic, Mutagenic or Reprotoxic (CMRs).

3. Nanomaterials should be thoroughly evaluated

Pending the thorough risk assessment of nanomaterials demonstrated by comprehensive and up-to-date registration dossiers for all nanoforms on the market, we call on ECHA to systematically check compliance for all nanoforms, as well as check the compliance of all dossiers which, due to uncertainties in the description of their identity and characterization, are suspected of including substances in the nanoform. Further, the Community Roling Action Plan (CoRAP) list should include all identified substances in the nanoform and evaluation should be carried out without delay.

4. Information on nanomaterials must be collected and disseminated

All EU citizens have the right to know which products contain nanomaterials as well as the right to know about their risks to health and environment and overall level of exposure. Given the uncertainties surrounding nanomaterials, the Commission must guarantee that members of the public are in a position to exercise their right to know and to make informed choices pending thorough risk assessments of nanomaterials on the market.

Therefore, a publicly accessible inventory of nanomaterials and consumer products containing nanomaterials must be established at European level. Moreover, specific nano-labelling or declaration requirements must be established for all nano-containing products (detergents, aerosols, sprays, paints, medical devices, etc.) in addition to those applicable to food, cosmetics and biocides which are required under existing obligations.

5. REACH enforcement activities should tackle nanomaterials

REACH’s fundamental principle of “no data, no market” should be thoroughly implemented. Therefore, nanomaterials that are on the market without a meaningful minimum set of data to allow the assessment of their hazards and risks should be denied market access through enforcement activities. In the meantime, we ask the EU Member States and manufacturers to use a precautionary approach in the assessment, production, use and disposal of nanomaterials

This comes on the heels of CIEL’s March 2014 news release announcing a new three-year joint project concerning nanomaterials and safety and responsible development,

Supported by the VELUX foundations, CIEL and ECOS (the European Citizen’s Organization for Standardization) are launching a three-year project aiming to ensure that risk assessment methodologies and risk management tools help guide regulators towards the adoption of a precaution-based regulatory framework for the responsible development of nanomaterials in the EU and beyond.

Together with our project partner the German Öko-Institut, CIEL and ECOS will participate in the work of the standardization organizations Comité Européen de Normalisation and International Standards Organization, and this work of the OECD [Organization for Economic Cooperation and Development], especially related to health, environmental and safety aspects of nanomaterials and exposure and risk assessment. We will translate progress into understandable information and issue policy recommendations to guide regulators and support environmental NGOs in their campaigns for the safe and sustainable production and use of nanomaterials.

The VILLUM FOUNDATION and the VELUX FOUNDATION are non-profit foundations created by Villum Kann Rasmussen, the founder of the VELUX Group and other entities in the VKR Group, whose mission it is to bring daylight, fresh air and a better environment into people’s everyday lives.

Meanwhile in the US, an April 6, 2014 news item on Nanowerk announces a new research network, based at Arizona State University (ASU), devoted to studying health and environmental risks of nanomaterials,

Arizona State University researchers will lead a multi-university project to aid industry in understanding and predicting the potential health and environmental risks from nanomaterials.

Nanoparticles, which are approximately 1 to 100 nanometers in size, are used in an increasing number of consumer products to provide texture, resiliency and, in some cases, antibacterial protection.

The U.S. Environmental Protection Agency (EPA) has awarded a grant of $5 million over the next four years to support the LCnano Network as part of the Life Cycle of Nanomaterials project, which will focus on helping to ensure the safety of nanomaterials throughout their life cycles – from the manufacture to the use and disposal of the products that contain these engineered materials.

An April 1, 2014 ASU news release, which originated the news item, provides more details and includes information about project partners which I’m happy to note include nanoHUB and the Nanoscale Informal Science Education Network (NISENet) in addition to the other universities,

Paul Westerhoff is the LCnano Network director, as well as the associate dean of research for ASU’s Ira A. Fulton Schools of Engineering and a professor in the School of Sustainable Engineering and the Built Environment.

The project will team engineers, chemists, toxicologists and social scientists from ASU, Johns Hopkins, Duke, Carnegie Mellon, Purdue, Yale, Oregon’s state universities, the Colorado School of Mines and the University of Illinois-Chicago.

Engineered nanomaterials of silver, titanium, silica and carbon are among the most commonly used. They are dispersed in common liquids and food products, embedded in the polymers from which many products are made and attached to textiles, including clothing.

Nanomaterials provide clear benefits for many products, Westerhoff says, but there remains “a big knowledge gap” about how, or if, nanomaterials are released from consumer products into the environment as they move through their life cycles, eventually ending up in soils and water systems.

“We hope to help industry make sure that the kinds of products that engineered nanomaterials enable them to create are safe for the environment,” Westerhoff says.

“We will develop molecular-level fundamental theories to ensure the manufacturing processes for these products is safer,” he explains, “and provide databases of measurements of the properties and behavior of nanomaterials before, during and after their use in consumer products.”

Among the bigger questions the LCnano Network will investigate are whether nanomaterials can become toxic through exposure to other materials or the biological environs they come in contact with over the course of their life cycles, Westerhoff says.

The researchers will collaborate with industry – both large and small companies – and government laboratories to find ways of reducing such uncertainties.

Among the objectives is to provide a framework for product design and manufacturing that preserves the commercial value of the products using nanomaterials, but minimizes potentially adverse environmental and health hazards.

In pursuing that goal, the network team will also be developing technologies to better detect and predict potential nanomaterial impacts.

Beyond that, the LCnano Network also plans to increase awareness about efforts to protect public safety as engineered nanomaterials in products become more prevalent.

The grant will enable the project team to develop educational programs, including a museum exhibit about nanomaterials based on the LCnano Network project. The exhibit will be deployed through a partnership with the Arizona Science Center and researchers who have worked with the Nanoscale Informal Science Education Network.

The team also plans to make information about its research progress available on the nanotechnology industry website Nanohub.org.

“We hope to use Nanohub both as an internal virtual networking tool for the research team, and as a portal to post the outcomes and products of our research for public access,” Westerhoff says.

The grant will also support the participation of graduate students in the Science Outside the Lab program, which educates students on how science and engineering research can help shape public policy.

Other ASU faculty members involved in the LCnano Network project are:

• Pierre Herckes, associate professor, Department of Chemistry and Biochemistry, College of Liberal Arts and Sciences
• Kiril Hristovski, assistant professor, Department of Engineering, College of Technology and Innovation
• Thomas Seager, associate professor, School of Sustainable Engineering and the Built Environment
• David Guston, professor and director, Consortium for Science, Policy and Outcomes
• Ira Bennett, assistant research professor, Consortium for Science, Policy and Outcomes
• Jameson Wetmore, associate professor, Consortium for Science, Policy and Outcomes, and School of Human Evolution and Social Change

I hope to hear more about the LCnano Network as it progresses.

Finally, there was this Nov. 12, 2013 news item on Nanowerk about instituting  voluntary safety protocols for carbon nanotubes in Japan,

Technology Research Association for Single Wall Carbon Nanotubes (TASC)—a consortium of nine companies and the National Institute of Advanced Industrial Science and Technology (AIST) — is developing voluntary safety management techniques for carbon nanotubes (CNTs) under the project (no. P10024) “Innovative carbon nanotubes composite materials project toward achieving a low-carbon society,” which is sponsored by the New Energy and Industrial Technology Development Organization (NEDO).

Lynn Bergeson’s Nov. 15, 2013 posting on nanotech.lawbc.com provides a few more details abut the TASC/AIST carbon nanotube project (Note: A link has been removed),

Japan’s National Institute of Advanced Industrial Science and Technology (AIST) announced in October 2013 a voluntary guidance document on measuring airborne carbon nanotubes (CNT) in workplaces. … The guidance summarizes the available practical methods for measuring airborne CNTs:  (1) on-line aerosol measurement; (2) off-line quantitative analysis (e.g., thermal carbon analysis); and (3) sample collection for electron microscope observation. …

You can  download two protocol documents (Guide to measuring airborne carbon nanotubes in workplaces and/or The protocols of preparation, characterization and in vitro cell based assays for safety testing of carbon nanotubes), another has been published since Nov. 2013, from the AIST’s Developing voluntary safety management techniques for carbon nanotubes (CNTs): Protocol and Guide webpage., Both documents are also available in Japanese and you can link to the Japanese language version of the site from the webpage.

Ecotoxicology and environmental fate of manufactured nanomaterials—testing guidelines from Organization for Economic Cooperation and Development (OECD)

The Organization for Economic Cooperation and Development (OECD) has released guidelines for testing manufactured nanomaterials according to a March 11, 2014 news item on Nanowerk,

As part of its Programme on the Safety of Manufactured Nanomaterials, and in particular work on the testing and assessment of manufactured nanomaterials, OECD initiated a series of expert meetings to improve the applicability of the OECD Test Guidelines to nanomaterials. With this in mind, the Working Party on Manufactured Nanomaterials agreed to address the ecotoxicology and environmental fate of manufactured nanomaterials.

The OECD Expert Meeting on Ecotoxicology and Environmental Fate took place on 29th-31st January 2013 in Berlin, Federal Press Office. The event was hosted by the German delegation and funded by the German Federal Ministry of the Environment, Nature Conservation and Nuclear Safety (BMU) as well as the United States Environment Protection Agency (US EPA).

Three documents were published one of which being a preview,

The OECD expert meeting on ecotoxicology and environmental fate — Towards the development of improved OECD guidelines for the testing of nanomaterials by Dana Kühnel and Carmen Nickel. Science of The Total Environment Volume 472, 15 February 2014, Pages 347–353 http://dx.doi.org/10.1016/j.scitotenv.2013.11.055

This document is open access.

The report itself,

OECD. ENVIRONMENT DIRECTORATE.
JOINT MEETING OF THE CHEMICALS COMMITTEE AND
THE WORKING PARTY ON CHEMICALS, PESTICIDES AND BIOTECHNOLOGY. Environment, Health and Safety Publications
Series on the Safety of Manufactured Nanomaterials. ENV/JM/MONO(2014)1

ECOTOXICOLOGY AND ENVIRONMENTAL FATE OF MANUFACTURED NANOMATERIALS:
TEST GUIDELINES Expert Meeting Report
Series on the Safety of Manufactured Nanomaterials No. 40

Ecotoxicology and Environmental Fate of Manufactured Nanomaterials: Test Guidelines

There’s an addendum which includes the presentations made at the meeting (you can find both the report, proper, and the addendum on this page scroll to report no. 40),

OECD. ENVIRONMENT DIRECTORATE JOINT MEETING OF THE CHEMICALS COMMITTEE AND
THE WORKING PARTY ON CHEMICALS, PESTICIDES AND BIOTECHNOLOGY. Environment, Health and Safety Publications. ENV/JM/MONO(2014)1/ADD

ADDENDUM TO EXOTOXICOLOGY AND ENVIRONMENTAL FATE OF MANUFACTURED
NANOMATERIALS: TEST GUIDELINES

Series on the Safety of Manufactured Nanomaterials No. 40
Ecotoxicology and Environmental Fate of Manufactured Nanomaterials:
Test Guidelines.

As it can get a little tricky accessing OECD documents, I’ve tried to give a couple different links and as much identifying information as possible. Good luck!

OECD Science, Technology and Industry 2013 Scorecard: Canada highlights and key nanotechnology indicators*

The Organization for Economic Cooperation and Development (OECD) has released its 2013 scorecard or, more officially, the OECD Science, Technology and Industry Scoreboard 2013 (which you can find here). There’s a brief description of the 2013 scorecard on the webpage housing the complete report/scorecard and various publications derived from it,

Science, technology, innovation and entrepreneurship – which foster competitiveness, productivity, and job creation – are important mechanisms for encouraging sustainable growth. The 260 indicators in the OECD Science, Technology and Industry (STI) Scoreboard 2013 show how OECD and partner economies are performing in a wide range of areas to help governments design more effective and efficient policies and monitor progress towards their desired goals.

The 2013 scorecard highlights concerning Canada are (from the OECD Science, Technology and Industry Scoreboard 2013
: Canada publication),

Canada experienced a decline in business spending on R&D between 2001 and 2011, despite generous public support, mainly through tax incentives for business R&D. As a percentage of GDP, Canada’s tax incentives for R&D were the largest after France in 2011. [emphasis mine]
Despite relatively limited investment in R&D, a large share of Canada’s manufacturing and services firms are involved in innovation. Canada is among the group of countries where high-technology industries still dominate patenting activity, while in several other OECD countries business services now account for the largest share of patents. Canada lags somewhat in the proportion of young firms applying for patents, however.
 Canada achieves a relatively high impact with its scientific research. Compared with other large OECD economies, Canada has a very high rate of international mobility of researchers, mostly with the United States. Returning researchers and new inflows tend to publish in journals with higher quality than researchers that have not engaged in international mobility.
 Canada’s trade performance is characterised by a strong focus on primary products, which affects its positioning in global value chains. This contributes to a relatively low foreign (and thus a high domestic) value added content in Canada’s exports, which declined between 1995 and 2009. In 2009, over 26% of jobs in the business sector were sustained by demand from abroad, down from just over 30% in 1995.

So, despite some of the best tax incentives amongst OECD countries, business in Canada spent less on R&D as the decade wore on. Interesting. Especially so since the government, realizing there were problems of some kind, commissioned Tom Jenkins (Chairman, OpenText Corporation), along with a committee,, to examine the various government tax incentive programmes developed for business R&D. This resulted in what  is known as the Jenkins report (featured in my Oct. 21, 2011 posting) and changes, based on the recommendations, such as more incentives for partnerships between universities and businesses and a major change of focus (funds for science that will make money) for one of the granting agencies (mentioned in my May 22, 2013 posting). Given that Canada already had good incentives for business R&D before 2011, why did the government implement more incentives after the 2011 Jenkins report since it seems that the incentives might not be the problem. Here’s more about the situation prior to the changes stemming from the 2011 Jenkins report, from the OECD’s 2013 scorecard: Canada Highlights,

Canada is among the few OECD countries where R&D expenditure declined between 2000 and 2011 (Figure 1). This decline was mainly due to reduced business spending on R&D. It occurred despite relatively generous public support for business R&D, primarily through tax incentives. In 2011, Canada was amongst the OECD countries with the most generous tax support for R&D and the country with the largest share of government funding for business R&D being accounted for by tax credits (Figure 2). …

OECD and key nanotechnology indicators

At roughly the same time as the OECD Science, Technology and Industry Scoreboard was released, there was this Oct. 25, 2013 news item on Nanowerk about an October 2013 update of the OECD’s key nanotechnology indicators (Note: A link has been removed),

The ‘Key Nanotechnology Indicators’ are produced by the OECD’s Directorate for Science Technology and Industry (DSTI) and recently have been updated in October 2013. These latest numbers are available as Excel spreadsheets and can be found here on the OECD DSTI page and include the following:
Nanotechnology firms
KNI 1 Number of firms active in nanotechnology, 2011 or latest available year
KNI 2 Percentage of small nanotechnology firms, 2011 or latest available year
Number of firms active in nanotechnology
Number of firms active in nanotechnology (OECD). (click image to enlarg

i have looked at some of the nanotechnology key indicator spreadsheets provided by the OECD and the only one of my admittedly small sample that lists Canadian performance was in the Share of countries in nanotechnology patents filed under PCT, 2008-10. Apparently Canada did not submit data about Number of firms active in nanotechnology, 2011 or latest available year or Nanotechnology R&D expenditures in the business sector, 2011 or latest available year.

*Added ‘Science’ to the head as in ‘… Science, Technology and Industry Scoreboard 2013′ on May 29, 2014.

What happened? 2009 report says Canadian students are leaders in reading, math, and science; 2013 report says Canadian students are dropping out of maths and sciences

The Organization for Economic Cooperation and Development (OECD) assesses reading, mathematics, and science skills every three years (they measure results from 15 year olds in participating countries) through their Programme for International Student Assessment (PISA). Canada has participated since 2000 (PISA was launched in 1997). As recently as the 2009 assessment (the 2012 assessment does not appear to have been released yet),, Canadian students were above average in many measures, from the Canadian School Boards Association 2010 (?) posting titled, PISA Results: Canadian Students Score High in Performance, Canadian Education System Scores High in Equity,

The results of the Programme for International Assessment (PISA) 2009 were released today at the Ontario Institute for Studies in Education in Toronto. This report, which measures the “quality, efficiency and equity” of education in sixty-five countries and economies, is issued by the Organization for Economic Co-Operation and Development (OECD), in conjunction with the Council of Ministers of Education, Canada, Human Resources and Skills Development Canada and Statistics Canada. This international assessment ranks Canadian students in three domains: reading, math and science. …

Highlights of both the international report and Canadian report include:

  • Canadian students continue to be leaders in reading, math and science. [emphasis mine]
  • The overall performance of Canadian students in math and science are well above the OECD average and remain unchanged from previous PISA results. Canada is outperformed only by seven countries in math and six countries in science.
  • The Canadian gender gap: females outperform males in reading, while males outperformed females in math and science.
  • Equity, a measure of how well a country can maximize its students’ potential, was ranked as extremely high in Canada. The combination of high PISA scores with high equity demonstrates that there is a small gap between highest and lowest performing students.

Three or so years later, it appears that we have high drop out rates in the sciences and maths, from an Oct. 8, 2013 news item on the CBC (Canadian Broadcasting Corporation) website,

… Canadians are paying a heavy price for the fact that less than 50 per cent of Canadian high school students graduate with senior courses in science, technology, engineering and math (STEM) at a time when 70 per cent of Canada’s top jobs require an education in those fields, said report released by the science education advocacy group Let’s Talk Science and the pharmaceutical company Amgen Canada.

Spotlight on Science Learning 2013 compiles publicly available information about individual and societal costs of students dropping out STEM courses early.

The answer as to what happened has something  to do with when the OECD programme makes its assessment. They measure skills in 15 year olds and generally speaking that means students in grade 10, which coincidentally, is the last year math and science are required courses in most provinces, from the CBC Oct.8, 2013, news item,

Even though most provinces only require math and science courses until Grade 10, the report [Spotlight on Science published by Let’s Talk Science and pharmaceutical company Amgen Canada) found students without Grade 12 math could expect to be excluded from 40 to 75 per cent of programs at Canadian universities, and students without Grade 11 could expect to be excluded from half of community college programs. [emphasis mine]

This news about Canadian students and their failure to pursue maths and sciences according to the Spotlight on Science Learning report was included in the context (in the CBC news item) of another OECD report (released Tues., Oct. 8, 2013), which concluded that Canadian adult numeracy skills lag behind, from the Oct. 8, 2013 CBC news item,

The OECD released its first survey of adult skills Tuesday (Oct. 8, 2013), measuring the literacy, numeracy, and problem-solving skills of those aged 16 to 65 in 24 countries, including 27,000 people in Canada.

While Canadians scored far above average at problem solving in technology-rich environments and their average literacy score was around the average of OECD countries, their mean numeracy score was “significantly below the average,” the OECD said, putting Canada 13th out of 21 countries. [emphasis mine]

The Council of Ministers of Education, Canada, described the average score as “slightly below the OECD average,” but acknowledged the results suggested “this is one area that could be targeted by policymakers for improvement. [emphasis mine]

There’s a difference between ‘significantly below average’ and ‘slightly below average’ and shy of reading the report I’m not sure who to believe. In any event, our literacy skills are accounted to be good and we’re also good at problemsolving in technology-rich environments.  This latest OECD report is titled, OECD Skills Outlook 2013. Here’s more about it from the Outlook webpage (Note: Links have been removed),

This first OECD Skills Outlook presents the initial results of the Survey of Adults Skills (PIAAC), which evaluates the skills of adults in 24 countries. It provides insights into the availability of some of the key skills and how they are used at work and at home. A major component is the direct assessment of key information-processing skills: literacy, numeracy and problem solving in the context of technology-rich environments.

You can get the full report or summaries from here. As for the Spotlight on Science report, you can find it here on the Let’s Talk Science website. I’ve included the video about the report, which I think illustrates one of the key problems with Canadian children and science,

It’s (video) dull and it didn’t need to be.As for the report itself, it’s reflects a standard approach to this ‘problem’ of getting children to pursue the sciences and maths after a certain point. Personally, I think there’s a much interesting study on this topic of children and science, the ASPIRES project, in the UK, which I highlighted in my Jan. 31, 2012 posting,

One of the research efforts in the UK is the ASPIRES research project at King’s College London (KCL), which is examining children’s attitudes to science and future careers. Their latest report, Ten Science Facts and Fictions: the case for early education about STEM careers (PDF), is profiled in a Jan. 11, 2012 news item on physorg.com (from the news item),

Professor Archer [Louise Archer, Professor of Sociology of Education at King’s] said: “Children and their parents hold quite complex views of science and scientists and at age 10 or 11 these views are largely positive. The vast majority of children at this age enjoy science at school, have parents who are supportive of them studying science and even undertake science-related activities in their spare time. They associate scientists with important work, such as finding medical cures, and with work that is well paid.

“Nevertheless, less than 17 per cent aspire to a career in science. These positive impressions seem to lead to the perception that science offers only a very limited range of careers, for example doctor, scientist or science teacher. It appears that this positive stereotype is also problematic in that it can lead people to view science as out of reach for many, only for exceptional or clever people, and ‘not for me’.

Professor Archer says the findings indicate that engaging young people in science is not therefore simply a case of making it more interesting or more fun. She said: “There is a disconnect between interest and aspirations. Our research shows that young people’s ambitions are strongly influenced by their social backgrounds – ethnicity, social class and gender – and by family contexts. [emphases mine]

Families and support systems make a huge difference in children’s lives and their aspirations, scientific or otherwise.

In sum, up until 2009 Canadian children seemed to have good skills in literacy, maths, and sciences at the age of 15, which is the same year courses in maths and sciences are no longer required (in most provinces). According to the Spotlight on Science Learning 2013 report, most children choose not take those maths and sciences courses after grade 10 despite the fact that they are needed for most higher education. This lack of interest appears to be reflected in the OECD’s recent report, OECD Skills Outlook 2013, which noted that Canadian adults’ numeracy skills lag behind that of many of their counterparts in other countries (although we compare well with high literacy and other skills). While I find the Spotlight on Science Learning 2013 report interesting, the UK’s ASPIRES project has taken what seems to me a more fruitful approach to children and science.

Bottom line: I think we need more imagination in our approach and we need to better include the kids themselves (a couple of interactive demonstrations just aren’t involving enough), and we need to make science, etc. engaging for the entire community.

OECD (Organization for Economic Cooperation and Development) makes recommendation regarding regulatory frameworks for nanomaterials.

A Sept. 26, 2013 news item on Nanowerk announces the latest OECD (Organization for Economic Cooperation and Development) recommendations on nanomaterial safety,

The OECD has recommended its Member Countries apply existing international and national chemical regulatory frameworks to manage the risks associated with manufactured nanomaterials.

The Sept. 20, 2013 OECD news release, which originated the news item, provides more details,

The Recommendation, approved by the Organisation’s governing Council, noted that these frameworks and other management systems may need to be adapted to take into account the specific properties of manufactured nanomaterials.

Manufactured nanomaterials are chemical particles that exhibit new characteristics in contrast to the same material without nanoscale features. These novel features offer possibilities for new commercial applications, such as solar cells using silicon nanocrystals to achieve higher efficiency. They also raise questions regarding potential unintended risks to humans and the environment. For example, new manufactured nanomaterials have applications in sunscreens and cosmetics, and so the potential risk from their exposure to consumers needs to be carefully assessed and managed.

The OECD has been working since 2006 to develop approaches for risk assessment for manufactured materials that are of high quality, science-based and internationally harmonised.

The Recommendation notes the importance of the OECD Test Guidelines for the Safety Testing of Chemicals, concluding that many of the existing guidelines are also suitable for the safety assessment of nanomaterials. At the same time, it recognises that some guidelines may need to be adapted to take into account the specific properties of nanomaterials. Work continues at OECD to achieve that.

An important consequence of this Recommendation is that much of the data collected as part of the safety assessment of nanomaterials will fall within the scope of the OECD system for the Mutual Acceptance of Data (MAD) in the Assessment of Chemicals. The OECD Mutual Acceptance of Data system is a multilateral agreement which saves governments and chemical producers around €150 million every year by allowing the results of a variety of non-clinical safety tests done on chemicals and chemical products, such as industrial chemicals and pesticides – and now nanomaterials – to be shared across OECD and other countries that adhere to the system.  Argentina, Brazil, India, Malaysia, Singapore, South Africa as well as all OECD countries are full adherents to the MAD system, and Thailand is a provisional adherent.

The extension of the scope of MAD to nanomaterials will considerably reduce the potential for non-tariff trade barriers between countries when marketing manufactured nanomaterials or products which include nanomaterials as well as allow for sharing the workload between countries in testing and assessing all the nanomaterials which are on the market. There will be a review of the Recommendation in three years to assess how it has been implemented in OECD countries and those partner countries which have adhered to it.

I find it odd the Working Party on Nanomaterialsis (or the Working Party on Manufacture Nanomaterials as it sometimes called) is not mentioned. This recommendation seems to have  arisen from the  Council on the Safety Testing and Assessment of Manufactured Nanomaterials. Canada is a member of the OECD and of its Working Party on Nanomaterials. I don’t know where we stand if anywhere on the Council on the Safety Testing and Assessment of Manufactured Nanomaterials. Perhaps I can check later when I have time.

Final report on joint OECD/NNI report on assessing nanotechnology’s economic impact

In March 2012, the Organization for Economic Cooperation and Development (OECD) and the US National Nanotechnology Initiative (NNI) held a symposium on assessing the economic impacts of nanotechnology, which was hosted by American Association for the Advancement of Science (AAAS) in Washington, DC.  Lynn Bergeson announced the release of the symposium’s final report in her Sept. 16, 2013 posting on the Nanotechnology Now website.

The title of the final report published by the OECD is Symposium on Assessing the Economic  Impact of Nanotechnology: Synthesis Report. I have excerpted some information including this introductory paragraph from the executive summary of this 81 pp report,

Governments have a fiscal and social responsibility to ensure that limited research and development resources are used wisely and cost-effectively in support of social, economic, and scientific aspirations. As a result of significant public and private investments in nanotechnology during the past decade and an expanding array of commercial applications, the field of nanotechnology has matured to the point of showing significant potential to help societies achieve the shared goal of improving efficiencies and accelerating progress in a range of economic sectors, including medicine, manufacturing, and energy. Countries that wish to promote the continued responsible development of nanotechnology will, however, need quantitative data on the economic impact of nanotechnology to guide further investment and policy decisions. Few widely accepted economic impact assessments have been conducted, however, and there are many questions regarding the best methodologies to be used. (p. 4)

The attendees considered the challenges associated with evaluating the impact of nanotechnology, some of which are common to emerging technologies in general and some or which are specific to nanotechnology (from the report),

The attendees also considered the question of a definition for nanotechnology. While operational definitions are developed at national or regional levels, e.g. for statistical or regulatory purposes, there are relatively few internationally agreed upon definitions or classifications for nanotechnology or its products and processes. Such definitions are essential for developing a methodology for an economic impact assessment and/or to facilitate data collection. Participants mentioned that definitions should be flexible so that they facilitate the development and valuation of the technology; they also noted that definitions might vary in different contexts or sectors.

Additional issues were raised:

 Its multipurpose, enabling nature makes measuring the impact of nanotechnology difficult. It can be fundamental to a product’s key functionality (e.g. battery charge time or capacity) but ancillary to the value chain (E.g. represent a small portion of the final product or process). Nanotechnology is also likely to have a range of incremental impacts on goods and services as well as existing manufacturing techniques. This requires understanding the value added at different stages of the production chain.

 Nanotechnology’s impact is often intermingled with that of many other interventions and technologies so that determining its precise role can be difficult.

 The large and varied amount of data linked to nanotechnology development may lead to difficulties in cleaning and manipulating the data meaningfully.

 Confidential business information and the proprietary nature of products and services may make it difficult to obtain information from industry. Moreover, it is not clear how a nanotechnology company or a company using nanotechnology is defined or defines itself or to what extent companies, universities and associate institutions are involved in exploiting and developing nanotechnology.

 For now, data are mainly collected through surveys. It is important to weigh the benefits against the additional workload that surveys place on administrations, research institutes and industries. Information should be obtained efficiently, focusing on the data of greatest interest for assessing the value of the technology.

 The nanotechnology policy landscape is evolving. It is important to consider non-specific, rather than nanotechnology-specific, funding strategies and policies when assessing economic impacts such as return on investment.

While certain issues may be resolved through improvements and over time, some restrict the ability to conduct valid nanotechnology impact assessments, such as the complex relationship between science, innovation and the economy; the interaction between public and private actors; the role of other factors in technology development and innovation; and the time lag between investments and their returns. (p. 8)

Of course the main issue being addressed was the development of tools/instruments to assess nanotechnology’s economic impact (from the report),

Some steps have been taken towards assessing the impact of nanotechnology. Examples mentioned during the symposium include the U.S. STAR METRICS database, which uses an input/output approach to determine the outputs of federal funding of science and technology, and Brazil’s Lattes system, in which researchers, students and institutions share information about their interests and backgrounds to facilitate information sharing and collaboration. The Lattes system is also intended to aid in the design of science, technology and innovation policies and to help understand the social and economic impacts of previous investments. DEFRA (Department for Environment, Food and Rural Affairs, United Kingdom) values a given nanotechnology product in monetary terms against an incumbent and thus calculates additional value added over current technology.

Other valuation methods mentioned included the “traditional” cost/ benefit analysis (often accompanied by scenario development for immature technologies such as nanotechnology) and life cycle assessment (LCA). LCA addresses the impact of nanotechnology along the entire product value chain. It is important to conduct LCAs as early as possible in product development to define the full value of a product using nanotechnology. Value chain assessments can also help address the challenge of determining the role of nanotechnology in a final product, where economic value is most commonly assessed. (p. 9)

Participants recognised the difficulty of developing a “one size fits all” methodology. The data collected and the indicators and the methodologies chosen need to fit the situation. Precisely defining the objectives of the impact assessment is critical: “What do we want to measure?” (e.g. the impact of a specific nanotechnology investment or the impact of a nano-enabled replacement product on environmental performance). “What outcomes do we want from the analysis?” (e.g. monetary value and GDP growth or qualitative measures of environmental and social benefits).

Input indicators (e.g. R&D investment, infrastructure) are the easiest to collect; they provide information on the development of a technology in a given region, country or globally. Output indicators, such as patents and publications, provide information on the trajectories of a technology and on key areas of innovation. The most useful for policy makers are indicators of impact, but high-quality data, especially quantitative data, are difficult to collect. Indicators of impact provide a basis for assessing direct (market share, growth of companies, new products, wealth creation) and indirect impacts (welfare gains, consumer surplus). The economic and social impact of nanotechnology goes beyond what can be measured with existing statistics and traditional surveys. A pilot survey by the Russian Federation plans to examine nanotechnology issues that are not necessarily covered by traditional statistical surveys, such as technology transfer and linkages between different segments of the national innovation system. The OECD Working Party of National Experts on Science and Technology Indicators is also working on the development of a statistical framework for the measurement of emerging, enabling and general purpose technologies, which includes the notion of impact.
While quantitative measures may be preferable, impact assessments based on qualitative indicators using methods such as technology assessment scenarios and mapping of value chains can also provide valuable information.

I haven’t read the entire report yet but the material after the executive summary bears a similarity to field notes. Generally in reports like this everything is stated in an impersonal third person with the speaker being mentioned only in the header for the section  so the contents have an  authority associated with holy books. While I haven’t seen any quotes, the speakers here are noted as having said such and such, e.g., “Mr. Tassey suggested a “technology-element” model as an alternative means of driving policy and managing the R&D cycle.” (p. 15) It’s not unheard of, just unusual.

For anyone interested in the earlier reports and/or in the Canadian participation in this 2012 symposium, there’s an interview with Vanessa Clive, Industry Canada, Nanotechnology Policy Advisor in my July 23, 2012 posting where she discusses the symposium and offers links to documents used as background material for the symposium.

NanoValid invites you to a Sept. 2013 workshop on the Advanced Characterization of Nanomaterial

I received (Aug. 5, 2013) an announcement, which I’m passing on here, about a workshop taking place in Spain this coming September (2013),

The EC-funded NanoValid Project (www.nanovalid.eu) invites you to register for the last remaining places at the “Advanced Characterization of Nanomaterials” workshop organised by the University of Zaragoza and the Institute of Nanoscience of Aragon (INA).

When: September 16th – 20th 2013

Where: University of Zaragoza, Institute of Nanoscience of Aragon

BACKGROUND:

The characterization of nanomaterials is a challenging topic that requires in-depth knowledge of physicochemical techniques and state-of-the-art devices. This workshop contributes to continuous training of analytical procedures at the nanoscale for enhancing current knowledge and developing novel materials and procedures in nanotechnology.

FEATURES AND BENEFITS:

•             Addresses both PhD students and Post-Doc researchers

•             Access to advanced techniques of nanotechnology

•             Fully qualified scientific and technical personnel

•             Open poster and oral communication sessions

FEE:

€ 525:    This includes workshop fees, a welcome reception, lunches, coffee-breaks & booklet.

Optional banquet in a traditional Aragonese cuisine venue (€50)

PROGRAMME:

The full programme includes theory sessions, practical demonstrations and training sessions, as well as oral and poster presentations (…).

REGISTER HERE:

http://www.nanovalid.eu/events/ws/registration.htm

FURTHER INFORMATION:

[email protected]

M. Pilar Lobera, PhD ([email protected]); Francisco Balas, PhD ([email protected])

http://ina.unizar.es

Not having previously investigated the NanoValid project, I checked out the homepage,

The EU FP7 large-scale integrating project NanoValid (contract: 263147) has been launched on the 1st of November 2011, as one of the “flagship” nanosafety projects. The project consists of 24 European partners from 14 different countries and 6 partners from Brazil, Canada, India and the US and will run from 2011 to 2015, with a total budget of more than 13 mio EUR (EC contribution 9.6 mio EUR). [emphasis mine] Main objective of NanoValid is to develop a set of reliable reference methods and materials for the fabrication, physicochemical (pc) characterization, hazard identification and exposure assessment of engineered nanomaterials (EN), including methods for dispersion control and labelling of ENs. Based on newly established reference methods, current approaches and strategies for risk and life cycle assessment will be improved, modified and further developed, and their feasibility assessed by means of practical case studies.

In cooperation with other relevant projects, such as MARINA and QNano, and relevant standardization bodies, such as the OECD [Organization for Economic Cooperation and Development] WPMN [Working Party on Manufactured Nanomaterials], existing industrial or newly designed ENs will be subjected to a rigid and comprehensive inter-laboratory validation campaign that includes the currently most advanced methods and instruments for measuring and characterizing of ENs, to generate accurate and reproducible material data and standardized method protocols, also for tracing and quantifying nanoparticles (NP) in complex matrices. The stability and behaviour of selected NP will be monitored and tested in a variety of relevant environmental samples and test media to derive optimum and reproducible fabrication, measurement and test conditions.

The validated characterization methods will be used to design well-defined certified reference materials, which in turn will help to validate, adapt, modify and further develop current biological approaches (in vitro, in vivo and in silico) for assessing hazard and exposure of ENs, and associated risks to human health and the environment. Effects of chronic and accumulative exposure and of exposure under real-life conditions, where ENPs [engineered nanoparticles] are likely to act as components of complex mixtures, will be duly taken into account.

It was a little surprising to find Canada listed as one of the project partners. I also found this map of the consortium participants which lists McGill University specifically as the Canadian participant.

I briefly mentioned NanoValid in a June 19, 2012 posting which featured a listing of Environmental, Health and Safety projects being funded by the European Union’s 7th Framework Programme.

Nanotechnology for Green Innovation report, Canada, and the OECD’s Working Party on Manufactured Nanomaterials

I will get to the report in a moment but since it led me on a magical mystery tour through the OECD (Organization for Economic Cooperation and Development) and its new website and assorted organizational confusions, I thought I’d share those first.

February 2012 marks the last report from the OECD’s Working Party on Manufactured Nanomaterials that I can find. As well, the OECD appears to have changed its website recently (since Feb. 2012) and I find searching it less rewarding.

There’s more, it seems that the Working Party on Manufactured Nanomaterials either no longer exists or has been subsumed as part of the Working Party on Nanotechnology. I mourn the old nanomaterials working party as I found much valuable information there about the Canadian situation that was available nowhere else. Oddly, Industry Canada still has a webpage devoted to the OECD’s Working Party on Manufactured Nanomaterials but the OECD link on the Industry Canada leads you to a database,

The OECD Working Party on Manufactured Nanomaterials (WPMN ) was established in September, 2006 in order to foster international co-operation in health and environmental safety-related aspects of manufactured nanomaterials. Environment Canada represents the Government of Canada at the WPMN, supported by other interested federal departments and agencies, including Industry Canada, and stakeholders. For more information on the work of the WPMN, please visit the WPMN website or contact Environment Canada.

Nostalgia buffs can find all 37 of the Working Party on Manufactured Nanomaterials reports here on the Nanotechnology Industries Association website (save one) or here on the OECD’s Publications in the Series on the Safety of Manufactured Nanomaterials webpage.

A new ‘green’ nanotechnology and innovation report was announced in a June 18, 2013 news item on Nanowerk (Note: A link has been removed),

A new paper by the OECD Working Party on Nanotechnology (“Nanotechnology for Green Innovation”; pdf) brings together information collected through discussions and projects undertaken relevant to the development and use of nanotechnology for green innovation. It relies in particular on preliminary results from the WPN project on the Responsible Development of Nanotechnology and on conclusions from a symposium, organised by the OECD WPN together with the United States National Nanotechnology Initiative, which took place in March 2012 in Washington DC, United States, on Assessing the Economic Impact of Nanotechnology. [emphases mine]  It also draws on material from the four background papers that were developed for the symposium. The background papers were:

“Challenges for Governments in Evaluating the Return on Investment from Nanotechnology and its Broader Economic Impact” by Eleanor O’Rourke and Mark Morrison of the Institute of Nanotechnology, United Kingdom;

“Finance and Investor Models in Nanotechnology” by Tom Crawley, Pekka Koponen, Lauri Tolvas and Terhi Marttila of Spinverse, Finland;

“The Economic Contributions of Nanotechnology to Green and Sustainable Growth” by Philip Shapira and Jan Youtie, Georgia Institute of Technology, Atlanta, United States; and

“Models, Tool and Metrics Available to Assess the Economic Impact of Nanotechnology” by Katherine Bojczuk and Ben Walsh of Oakdene Hollins, United Kingdom.

The purpose of the paper is to provide background information for future work by the WPN on the application of nanotechnology to green innovation.

I wrote about the March 2012 symposium in a March 29, 2012 posting,

I was hoping for a bit more detail about how one would go about including nanotechnology-enabled products in this type of economic impact assessment but this is all I could find (from the news release),

In their paper, Youtie and Shapira cite several examples of green nanotechnology, discuss the potential impacts of the technology, and review forecasts that have been made.

I checked both Philip Shapira‘s webpage and Jan Youtie‘s at Georgia Tech to find that neither lists this latest work, which hopefully includes additional detail. I’m hopeful there’ll be a document published in the proceedings for this symposium and access will be possible.

So, I’m very happy to see this 2013 report and  I have three different ways to access it,

  1. OECD library page for Nanotechnology for Green Innovation
  2. http://www.oecd-ilibrary.org/docserver/download/5k450q9j8p8q.pdf?expires=1371578116&id=id&accname=guest&checksum=F308B436A883BF6533E66C19182ECF17 which features a title page identifying this is as  an OECD Science, Technology and Industry Policy Papers No. 5 (this one lists 35 pp)
  3. http://search.oecd.org/officialdocuments/displaydocumentpdf/?cote=DSTI/STP/NANO%282013%293/FINAL&docLanguage=En which is identified with this Unclassified DSTI/STP/NANO(2013)3/FINAL and a publication date of June 13, 2013 (this one lists 34 pp)

The following comments are based on a very quick read through the report. Pulling together four papers and trying to create a cohesive and coherent single report after the fact is difficult and this report shows some of the stresses. One  of the problems is that 34 or 35 pp., depending on which version you’re reading, isn’t enough to cover the very broad topic indicated by the report’s title. I couldn’t find a clear general statement about government policies. For example, there are various countries with policies and there are trade blocks such as the European Union which also has policies. Additionally, there may be other jurisdictions. All of which contribute an environment which makes ‘green’ innovation nano or otherwise a challenge but no mention is made of this challenge. Further, I don’t recall seeing any mention of patents, which I’d expect would be a major talking point in a paper with innovation in its title. If there was mention of intellectual property, it made no impact on me, odd, especially where nanotechnology is concerned.

The report does have some good specifics and  it is worthwhile reading. For example, I found the section on lithium-ion batteries quite informative.

In any event, I’m not really the audience for this document, the “purpose of the paper is to provide background information for future work by the WPN on the application of nanotechnology to green innovation.”

ETA June 18, 2013 6:00 pm PDT: Here’s a link to the new OECD nanotechnology page, STInano

France’s nanomaterial declaration

I stumbled across a rather brief May 13, 2013 announcement on the ICON (International Council on Nanotechnology) website about a French nanomaterial initiative,

France Extends Deadline for Reporting Nanomaterials (NOECT Blog)

Further investigation landed me on the R-Nano.fr; Declaration of Nanomaterials website,

Welcome to the website for declaring substances with nanoparticle status: “r-nano”. On these pages you can declare the substances with nanoparticle status that you produce, import, distribute, or formulate, as required by Articles L. 523-1 to L. 523-5 of the French Environmental Code.

At the deadline of 30 April 2013, 457 companies have made 1991 declarations. These initial results shows a satisfactory mobilization of stakeholders.

The Ministry of Ecology, Sustainable Development and Energy, considering the diversity of actors covered by the declaration requirement, and at the request of several industries, decided, for the first reporting year, to grant two more months to complete the declarations. Thereby, exceptionally, new declarations can be initiated and submitted until 30 June 2013.

There’s a little more explanation of the site’s raison d’être on the Help/FAQs page,

Q : 1/ Why is there a system for declaring substances with nanoparticle status ?

Because of the advantages offered by their specific properties, substances with nanoparticle status are used in a number of sectors: foodstuffs, aeronautics, cosmetics, alternative energies, pneumatics, health, sport and others. The properties in question are such as to create potential hazards for humans and the environment. As emphasised in the European Commission Communication of 3 October 2012, a substance can present different hazards depending on whether it has bulk status or nanoparticle status.

For a better understanding of the issues, it seems necessary to acquire an improved knowledge of the market, including the substances marketed in France, their uses, the sectors in which they are used, the quantities involved, etc.

With the help of this information, it will be possible to estimate exposures more accurately and produce risk assessments for these substances. It is for this purpose that France has decided to introduce mandatory declaration of substances with nanoparticle status, whether in that form, in mixtures or within certain materials.

Q : 2/ How must declarations be made? Is there a special form ?

A web site has been set up on which the various companies concerned can each create an account and submit their declarations. The address of the declaration web site is www.r-nano.fr

Regarding declarations for which applicants wish to make use of the waiver concerning the availability of information to the public provided for activities related to national defence, the declaration will first be made online and then finalised on paper.

Q : 3/ At what date does the system come into force ?

The system comes into force on 1 January 2013: the first declarations will concern substances in nanoparticle status produced, imported and/or distributed during 2012.

Q : 5/ If a substance with nanoparticle status is indicated on the packaging (case of biocides and cosmetics in 2013), is it still necessary to submit a declaration ?

Yes: the labelling and the declaration system do not have the same purpose.

Q : 6/ Is France the only country in Europe with this kind of declaration system ?

Yes, though Italy, Belgium and Denmark are considering the introduction of similar measures.

Q : 7/ Which players are concerned by the declaration ? (UPDATED)

All national participants in the distribution chain in France covered by the requirement to declare substances with nanoparticle status must complete a declaration if they produce, import into France from another Member State of the European Union or from any other country or distribute any substance, mixture or “article” (article, see Question 18) covered by the definitions laid down in Article R. 523-12 and in quantities exceeding 100 grams/year and per substance.

Q : 38/ How will the information supplied be used ?

The information supplied for declarations enables the authorities to estimate the flows of substances with nanoparticle status in France, which will be a “first” for Europe. The knowledge acquired concerning substances and their uses, the production and usage sectors, or the quantities sold, will provide insight into the dissemination of these substances and their actual use.

To help them undertake health risk assessments, authorities will be allowed to request supplementary information from declarers, when available, especially concerning toxicological and ecotoxicological data, as well as data concerning exposure.

I have two comments. First, there are over 40 questions in the FAQs but none concern the issue of how this requirement will be enforced. Second, I gather that after abysmal results elsewhere the French concluded that voluntary reporting does not work.

It’s good to see at least [one*] government making an attempt to gather the information openly. The Canadian scheme was managed in a more clandestine fashion. I finally tracked down some information about it in an OECD (Organization for Economic Cooperation and Development) document and featured some of the data from the Canadian nanomaterial reporting scheme (as reported to the OECD)  in my April 12, 2010 posting.

* ETA May 17, 2013: I added the word ‘one’.

Mexico, nano, and bombs

Violence in pursuit of a cause is not unusual. With a goal in sight, often it’s freedom of one kind or another, people will revert to violence to achieve their ends, especially when they feel there are no alternatives and/or are under attack. However, violence in pursuit of some vague worldview is more difficult to understand (at least, it is for me).

An anarchist group (ITS, aka, Individuals Tending to Savagery) has again claimed ‘credit’ for violence against scientists in Mexico. From Robert Beckhusen’s Mar. 12, 2013 article about the ITS and the violence for Wired magazine (Note: A link has been removed),

Over the past two years, Mexican scientists involved in bio- and nanotechnology have become targets. They’re not threatened by the nation’s drug cartels. They’re marked for death by a group of bomb-building eco-terrorists with the professed goal of destroying human civilization.

The group, which goes by the name Individualidades Tendiendo a lo Salvaje (ITS), posted its manifesto to anarchist blog Liberacion Total last month. The manifesto takes credit for a failed bombing attempt that month against a researcher at the Biotechnology Institute at the National Autonomous University of Mexico. And the group promises more.

ITS posted on Feb. 18, 2013 on the War On Society blog something called the Seventh communique from Individualists Tending toward the Wild (ITS)  (Gabriella Segata Antolini is named as the poster)

The aim of this text is to make our stance clear, continuing the work of spreading our ideas, clearing up some apparent doubts and misinterpretations, as well as accepting mistakes and/or errors. In no way do we want to start an endless discussion that only takes up time and energy, nor do we want this text to turn into something other than what it is. Anyone who reads it will be able to interpret correctly (or incorrectly) what they are aiming to read; the intelligent reader will know to reflect and consequently do what seems right to them.

ITS is not going to cover every person or group’s forms of thought, but the ones we respect, that we tolerate, is something else; the ideas, doctrines, stances (etc) that deserve critiques (because we are in disagreement with them [being that they cover discourses that are leftist, progressivist, irrational, religious, etc]) will be mentioned in this way; the ones that don’t, we will let pass or agree with.

All the texts that ITS has made public are not for society to “wake up and decide to attack the system,” they are not to forcibly change what the others think, nothing like this is intended; the lines we write are for the intelligent, strong individuals who decide to see reality in all its rawness, for those few who form, think and carry out the sensible critique of the highest expression of domination–the Techno-industrial System (a).

And so that our words, critiques, clarifications and statements are made known as they have been spread up to now, we have decided (until now) to take the next step, which has been to attack and try to kill the key persons who make the system improve itself. [emphasis mine]

This is the only viable way for radical critiques to emerge in the public light, making pressure so this discourse comes to the surface. We are extremists and we act as such, without compassion, without remorse, taking any means to reach our objectives.

It’s a lengthy, rambling communiqué that provides little insight into what would motivate anyone to “attack and kill.”

Beckhusen attempts to make some sense of the situation in Mexico with references to the Unabomber (a US citizen who developed a radical critique of technology and bombed various facilities) and trends within Latin American societies.

In a couple of 2012 articles for Nature (May 28, 2012 and Aug. 29, 2012), Leigh Phillips discussed and tried to make some sense of the ITS attacks in Mexico and the attacks in Europe, which were carried out by different extremist groups who do not appear to be connected, by giving it a global perspective.

Meanwhile, nanotechnology continues to be practiced and discussed in Mexico. A Mar. 13, 2012 news item on Azonano notes a recent meeting,

Nano Labs Corp. is pleased to report on the Fifteenth Meeting of the ISO/TC 229 Nanotechnologies Conference held last week [Mar. 4 - 8, 2013?] in Queretaro City, Mexico.

Nano Labs was proud to sponsor two important events in the field of international regulations of nanotechnology, in the colonial City of Queretaro, in Central Mexico. The first was a joint Organization for Economic Co-operation and Development (OECD)/ International Organization for Standardization (ISO) Expert Meeting on Physical-Chemical Properties of Manufactured Nanomaterials and Test Guidelines, and the second the 15th Meeting of ISO/TC 229 Nanotechnologies by the ISO Secretariat.

“… One of the major issues of the ISO conference is to establish a global ISO standard and regulate the safety issues related to the production and uses of nano particles in the manufacturing process on a global scale,” stated Dr. Victor Castano, Chief Innovations Officer of Nano Labs, who attended the conference.

Mexico also recently hosted a conference for the European Commission’s NanoForArt project, which I mentioned in a Mar. 1, 2013 posting,

The Feb. 2013 conferences in Mexico as per a Feb. 27, 2013 Agencia EFE news item on the Global Post website featured (Note: Links have been removed),

Baglioni [Piero Baglioni, a researcher and professor at the University of Florence] and Dr. Rodorico Giorgi, also of the University of Florence, traveled to Mexico earlier this month to preside over a conference on Nanotechnology applied to cultural heritage: wall paintings/cellulose, INAH [Instituto Nacional de Antropología e Historia] said.

I don’t know that there is any sense to be made of the situation in Mexico (certainly I can’t do it). The ITS communiqué doesn’t provide much insight. My guess is that this is a small group of people who will seem rather pathetic once they are caught—any power derived from their clandestine, violent activities disappeared.

For my previous postings about the bombings in Mexico:

Nanotechnology terrorism in Mexico? (Aug. 11, 2011)

In depth and one year later—the nanotechnology bombings in Mexico (Aug. 31, 2012)

ETC group replies to Nature’s “Nanotechnology: Armed resistance” article (Oct. 11, 2012)

While this isn’t strictly speaking on topic, I did cover a fascinating study on right wing violence in this posting,

Higher education and political violence (Sept. 23, 2010)