Tag Archives: Organization for Economic Cooperation and Development

Nanosafety Cluster newsletter—excerpts from the Spring 2016 issue

The European Commission’s NanoSafety Cluster Newsletter (no.7) Spring 2016 edition is some 50 pp. long and it provides a roundup of activities and forthcoming events. Here are a few excerpts,

“Closer to the Market” Roadmap (CTTM) now finalised

Hot off the press! the Cluster’s “Closer to the Market” Roadmap (CTTM)  is  a  multi-dimensional,  stepwise  plan  targeting  a framework to deliver safe nano-enabled products to the market. After some years of discussions, several consultations of a huge number of experts in the nanosafety-field, conferences at which the issue of market implementation of nanotechnologies was talked  about,  writing  hours/days,  and  finally  two public consultation rounds, the CTTM is now finalized.

As stated in the Executive Summary: “Nano-products and nano-enabled applications need a clear and easy-to-follow human and environmental safety framework for the development along the innovation chain from initial idea to market and beyond that facilitates  navigation  through  the  complex  regulatory and approval processes under which different product categories fall.

Download it here, and get involved in its implementation through the Cluster!
Authors: Andreas Falk* 1, Christa Schimpel1, Andrea Haase3, Benoît Hazebrouck4, Carlos Fito López5, Adriele Prina-Mello6, Kai Savolainen7, Adriënne Sips8, Jesús M. Lopez de Ipiña10, Iseult Lynch11, Costas Charitidis12, Visser Germ13

NanoDefine hosts Synergy Workshop with NSC projects

NanoDefine  organised  the  2nd Nanosafety  Cluster  (NSC)  Synergy Workshop  at  the  Netherlands  House  for Education  and  Research  in Brussels  on  2nd  February  2016. The  aim  was  to  identify  overlaps and synergies existing between different projects that could develop into
outstanding cooperation opportunities.

One central issue was the building of a common ontology and a European framework for data management and analysis, as planned within eNanoMapper, to facilitate a closer interdisciplinary collaboration between  NSC projects and to better address the need for proper data storage, analysis and sharing (Open Access).

Unexpectedly, there’s a Canadian connection,

Discovering protocols for nanoparticles: the soils case
NanoFASE WP7 & NanoSafety Cluster WG3 Exposure

In NanoFASE, of course, we focus on the exposure to nanomaterials. Having consistent and meaningful protocols to characterize the fate of nanomaterials in different environments is therefore of great interest to us. Soils and sediments are in this respect very cumbersome. Also in the case of conventional chemicals has the development of  protocols for fate description in terrestrial systems been a long route.

The special considerations of nanomaterials make this job even harder. For instance, how does one handle the fact that the interaction between soils and nanoparticles is always out of equilibrium? How does one distinguish between the nanoparticles that are still mobile and those that are attached to soil?

In the case of conventional chemicals, a single measurement of a filtered soil suspension often suffices to find the mobile fraction, as long one is sure that equilibrium has been attained. Equilibrium never occurs in the case of  nanoparticles, and the distinction between attached/suspended particles is analytically less clear to do.

Current activity in NanoFASE is focusing at finding protocols to characterize this interaction. Not only does the protocol have to provide meaningful parameters that can be used, e.g. in modelling, but also the method itself should be fast and cheap enough so that a lot of data can be collected in a reasonable amount of time. NanoFASE is  in a good position to do this, because of its focus on fate and because of the many international collaborators.

For  instance,  the Swedish  Agricultural  University (Uppsala)  is  collaborating  with  McGill  University (Montreal, Canada [emphasis mine]), an advisory partner to NanoFASE, in developing the OECD [Organization for Economic Cooperation and Development] protocol for column tests (OECD test nr 312:  “Leaching in soil columns”). The effort is led by Yasir Sultan from Environment Canada and by Karlheinz Weinfurtner from the Frauenhofer institute in Germany. Initial results show the transport of nanomaterials in soil columns to be very limited.

The OECD protocol therefore does not often lead to measurable breakthrough curves that can be modelled to provide information about  nanomaterial  mobility  in  soils  and  most  likely  requires adaptations  to  account  for  the  relatively  low mobility  of  typical pristine nanomaterials.

OECD 312 prescribes to use 40 cm columns, which is most likely too long to show a breakthrough in the case of nanoparticles. Testing in NanoFASE will therefore focus on working with shorter columns and also investigating the effect of the flow speed.

The progress and the results of this action will be reported on our website (www.nanofase.eu).

ENM [engineered nanomaterial] Transformation in and Release from Managed Waste Streams (WP5): The NanoFASE pilot Wastewater Treatment Plant is up and running and producing sludge – soon we’ll be dosing with nanoparticles to test “real world” aging.

Now, wastewater,

ENM [engineered nanomaterial] Transformation in and Release from Managed Waste Streams (WP5): The NanoFASE pilot Wastewater Treatment Plant is up and running and producing sludge – soon we’ll be dosing with nanoparticles to test “real world” aging.

WP5 led by Ralf Kaegi of EAWAG [Swiss Federal Institute of Aquatic Science and Technology] (Switzerland) will establish transformation and release rates of ENM during their passage through different reactors. We are focusing on wastewater treatment plants (WWTPs), solid waste and dedicated sewage sludge incinerators as well as landfills (see figure below). Additionally, lab-scale experiments using pristine and well characterized materials, representing the realistic fate relevant forms at each stage, will allow us to obtain a mechanistic understanding of the transformation processes in waste treatment reactors. Our experimental results will feed directly into the development of a mathematical model describing the transformation and transfer of ENMs through the investigated reactors.

I’m including this since I’ve been following the ‘silver nanoparticle story’ for some time,

NanoMILE publication update: NanoMILE on the air and on the cover

Dramatic  differences  in  behavior  of  nano-silver during  the  initial  wash  cycle  and  for  its  further dissolution/transformation potential over time depending on detergent composition and form.

In an effort to better relate nanomaterial aging procedures to those which they are most likely to undergo during the life cycle of nano-enhanced products, in this paper we describe the various transformations which are possible when exposing Ag engineered nanoparticles (ENPs) to a suite of commercially available washing detergents (Figure 1). While Ag ENP transformation and washing of textiles has received considerable attention in recent years, our study is novel in that we (1) used several commercially available detergents allowing us to estimate the various changes possible in individual homes and commercial washing settings; (2) we have continued  method  development  of  state  of  the  art nanometrology techniques, including single particle ICP-MS, for the detection and characterization of ENPs in complex media; and (3) we were able to provide novel additions to the knowledge base of the environmental nanotechnology research community both in terms of the analytical methods (e.g. the first time ENP aggregates have been definitively analyzed via single particle ICP-MS) and broadening the scope of “real world” conditions that should be considered when understanding AgENP through their life cycle.

Our findings, which were recently published in Environmental Science and Toxicology (2015, 49: 9665), indicate that the washing detergent chemistry causes dramatic differences in ENP behavior during the initial wash cycle and has ramifications for the dissolution/transformation potential of the Ag ENPs over time (see Figure 2). The use of silver as an  antimicrobial  treatment  in  textiles  continues  to garner  considerable  attention.  Last  year  we  published  a manuscript in ACS Nano that considered how various silver treatments to textiles (conventional and nano) both release  nano-sized  material  after  the  wash  cycle  with  similar chemical  characteristics.  That  study  essentially conveyed that multiple silver treatments would become more similar through the product life cycle. Our newest  work expands this by investigating one silver ENP under various washing conditions thereby creating more varied silver products as an end result.

Fascinating stuff if you’ve been following the issues around nanotechnology and safety.

Towards the end of the newsletter on pp. 46-48, they list opportunities for partnerships, collaboration, and research posts and they list websites where you can check out job opportunities. Good Luck!

The Canadian nano scene as seen by the OECD (Organization for Economic Cooperation and Development)

I’ve grumbled more than once or twice about the seemingly secret society that is Canada’s nanotechnology effort (especially health, safety, and environment issues) and the fact that I get most my information from Organization for Economic Cooperation and Development (OECD) documents. That said, thank you to Lynne Bergeson’s April 8, 2016 post on Nanotechnology Now for directions to the latest OECD nano document,

The Organization for Economic Cooperation and Development recently posted a March 29, 2016, report entitled Developments in Delegations on the Safety of Manufactured Nanomaterials — Tour de Table. … The report compiles information, provided by Working Party on Manufactured Nanomaterials (WPMN) participating delegations, before and after the November 2015 WPMN meeting, on current developments on the safety of manufactured nanomaterials.

It’s an international roundup that includes: Australia, Austria, Belgium, Canada, Germany, Japan, Korea, the Netherlands, Switzerland, Turkey, United Kingdom, U.S., and the European Commission (EC), as well as the Business and Industry Advisory Committee to the OECD (BIAC) and International Council on Animal Protection in OECD Programs (ICAPO).

As usual, I’m focusing on Canada. From the DEVELOPMENTS IN DELEGATIONS ON THE SAFETY OF MANUFACTURED NANOMATERIALS – TOUR DE TABLE Series on the Safety of Manufactured Nanomaterials No. 67,

CANADA
National  developments  on  human  health  and  environmental  safety  including  recommendations, definitions, or discussions related to adapting or applying existing regulatory systems or the drafting of new laws/ regulations/amendments/guidance materials A consultation document on a Proposed Approach to Address Nanoscale Forms of Substances on the Domestic  Substances  List was  published  with  a  public  comment  period  ending on  May  17,  2015. The proposed approach outlines the Government’s plan to address nanomaterials considered in commerce in Canada (on  Canada’s  public inventory).  The  proposal is a stepwise  approach to  acquire  and  evaluate information,  followed  by  any  necessary  action. A  follow-up  stakeholder  workshop  is  being  planned  to discuss  next  steps  and  possible  approaches  to prioritize  future  activities. The  consultation document  is available at: http://www.ec.gc.ca/lcpe-cepa/default.asp?lang=En&n=1D804F45-1

A mandatory information gathering survey was published on July 25, 2015. The purpose of the survey is to collect information to determine the commercialstatus of certain nanomaterials in Canada. The survey targets  206  substances  considered  to  be  potentially  in commerce  at  the  nanoscale. The  list  of  206 substances was developed using outcomes from the Canada-United States Regulatory Cooperation Council (RCC)  Nanotechnology  Initiative  to  identify nanomaterial  types. These  nanomaterial  types  were  cross-referenced  with  the Domestic  Substances  List to  develop  a  preliminary  list  of  substances  which are potentially intentionally manufactured at the nanoscale. The focus of the survey aligns with the Proposed Approach to  Address  Nanoscale  Forms  of  Substances  on  the Domestic  Substances  List (see  above)  and certain  types  of  nanomaterials  were  excluded  during the  development  of  the  list  of  substances. The information  being  requested  by  the  survey  includes substance  identification,  volumes,  and  uses.  This information will feed into the Government’s proposed approach to address nanomaterials on the Domestic Substances List. Available at: http://gazette.gc.ca/rp-pr/p1/2015/2015-07-25/html/notice-avis-eng.php

Information on:

a.risk  assessment  decisions, including  the  type  of:  (a)  nanomaterials  assessed; (b) testing recommended; and (c) outcomes of the assessment;

Four substances were notified to the program since the WPMN14 – three surface modified substances and  one  inorganic  substance.  No  actions,  including  additional  data requests,  were  taken  due  to  low expected  exposures  in  accordance  with  the New  Substances  Notifications  Regulations  (Chemicals and Polymers) (NSNR) for two of the substances.  Two of the substances notified were subject to a Significant New Activity Notice. A Significant New Activity notice is an information gathering tool used to require submission  of  additional  information  if  it  is suspected  that  a  significant  new  activity  may  result in  the substance becoming toxic under the Canadian Environmental Protection Act, 1999.

b.Proposals, or modifications to previous regulatory decisions

As  part  of  the  Government’s  Chemicals  Management Plan,  a  review  is  being  undertaken  for  all substances  which  have  been  controlled through  Significant  New  Activity  (SNAc)  notices (see  above).  As part  of  this  activity,  the  Government  is  reviewing past  nanomaterials  SNAc  notices  to  see  if  new information  is  available  to  refine  the  scope  and information  requirements.    As  a  result  of  this  review, 9 SNAc  notices  previously  in  place  for  nanomaterials have  been  rescinded.    This  work  is  ongoing,  and  a complete review of all nanomaterial SNAcs is currently planned to be completed in 2016.

Information related to good practice documents

The Canada-led,  ISO  standards project, ISO/DTR  19716 Nanotechnologies — Characterization  of cellulose  nanocrystals, [emphasis mine] initiated  in  April 2014, is  now at Committee  Draft  (CD)  3-month  ISO ballot, closing    Aug 31, 2015. Ballot comments will be addressed during JWG2 Measurement and Characterization working  group meetings  at  the 18th Plenary  of  ISO/TC229, Nanotechnologies,  being held in Edmonton, Alberta, Sep. 28 – Oct. 2, 2015.

Research   programmes   or   strategies   designed   to  address   human   health   and/   or environmental safety aspects of nanomaterials

Scientific research

Environment Canada continues to support various academic and departmental research projects. This research has to date included studying fate and effects of nanomaterials in the aquatic, sediment, soil, and air  compartments. Funding  in  fiscal  2015-16  continues  to  support  such  projects,  including  sub-surface transportation, determining key physical-chemical parameters to predict ecotoxicity, and impacts of nano-silver [silver nanoparticles]  addition  to  a  whole  lake  ecosystem [Experimental Lakes Area?]. Environment  Canada  has  also  partnered  with  the National Research  Council  of  Canada  recently  to  initiate  a project  on  the  development  of  test  methods  to identify surfaces of nanomaterials for the purposes of regulatory identification and to support risk assessments. In addition,  Environment  Canada  is  working  with  academic laboratories in  Canada  and  Germany  to  prepare guidance to support testing of nanoparticles using the OECD Test Guideline for soil column leaching.

Health  Canada  continues  its  research  efforts  to  investigate  the  effects  of  surface-modified  silica nanoparticles. The   aims   of   these   projects   are  to:   (1) study the importance of size and surface functionalization;  and  (2)  provide a genotoxic profile and  to  identify  mechanistic  relationships  of  particle properties  to  elicited  toxic  responses.  A manuscript reporting  the in  vitro genotoxic,  cytotoxic and transcriptomic  responses  following  exposure  to  silica  nanoparticles  has  recently  been  submitted to  a  peer reviewed journal and is currently undergoing review. Additional manuscripts reporting the toxicity results obtained to date are in preparation.

Information on public/stakeholder consultations;

A consultation document on a Proposed Approach to Address Nanoscale Forms of Substances on the Domestic  Substances  List was  published  with a  public  comment  period ending  on May  17,  2015  (see Question  1).  Comments  were  received  from approximately  20  stakeholders  representing  industry and industry  associations,  as  well  as  non-governmental  organizations. These  comments  will  inform  decision making to address nanomaterials in commerce in Canada.

Information on research or strategies on life cycle aspects of nanomaterials

Canada, along with Government agencies in the United States, Non-Governmental Organizations and Industry,  is  engaged  in  a  project  to  look  at releases  of  nanomaterials  from  industrial  consumer  matrices (e.g., coatings). The objectives of the NanoRelease Consumer Products project are to develop protocols or
methods (validated  through  interlaboratory  testing) to  measure  releases  of  nanomaterials  from  solid matrices as a result of expected uses along the material life cycle for consumer products that contain the nanomaterials. The  project  is  currently  in  the  advanced  stages  of Phase  3  (Interlaboratory  Studies).  The objectives of Phase 3 of the project are to develop robust methods for producing and collecting samples of CNT-epoxy  and  CNT-rubber  materials  under  abrasion  and  weathering scenarios,  and  to  detect  and quantify, to the extent possible, CNT release fractions. Selected laboratories in the US, Canada, Korea and the European Community are finalising the generation and analysis of sanding and weathering samples and the    results    are    being    collected    in    a   data    hub    for    further    interpretation    and    analysis.

Additional details about the project can be found at the project website: http://www.ilsi.org/ResearchFoundation/RSIA/Pages/NanoRelease1.aspx

Under the OECD Working Party on Resource Productivity and Waste (WPRPW), the expert group on waste containing nanomaterials has developed four reflection papers on the fate of nanomaterials in waste treatment  operations.  Canada  prepared the  paper  on  the  fate  of  nanomaterials in  landfills;  Switzerland on the  recycling  of  waste  containing  nanomaterials;  Germany  on  the  incineration  of  waste  containing nanomaterials;  and  France  on  nanomaterials  in wastewater  treatment.  The  purpose  of  these  papers is to provide  an  overview  of  the  existing  knowledge  on the  behaviour  of  nanomaterials  during  disposal operations and identify the information gaps. At the fourth meeting of the WPRPW that took place on 12-14 November 2013, three of the four reflection papers were considered by members. Canada’s paper was presented and discussed at the fifth meeting of the WPRPRW that took place on 8-10 December 2014. The four  papers  were  declassified  by  EPOC  in  June  2015, and  an  introductory  chapter  was  prepared  to  draw these  papers  together. The introductory  chapter  and accompanying  papers  will  be  published in  Fall  2015. At  the sixth  meeting  of  the  WPRPW  in  June – July  2015,  the  Secretariat  presented  a  proposal  for an information-sharing  platform  that  would  allow  delegates  to  share research  and  documents  related  to nanomaterials. During a trial phase, delegates will be asked to use the platform and provide feedback on its use at the next meeting of the WPRPW in December 2015. This information-sharing platform will also be accessible to delegates of the WPMN.

Information related to exposure measurement and exposure mitigation.

Canada and the Netherlands are co-leading a project on metal impurities in carbon nanotubes. A final version  of  the  report  is  expected  to  be ready for WPMN16. All  research has  been completed (e.g. all components are published or in press and there was a presentation by Pat Rasmussen to SG-08 at the Face-to-Face Meeting in Seoul June 2015). The first draft will be submitted to the SG-08 secretariat in autumn 2015. Revisions  will  be  based  on  early  feedback  from  SG-08  participants.  The  next  steps  depend  on  this feedback and amount of revision required.

Information on past, current or future activities on nanotechnologies that are being done in co-operation with non-OECD countries.

A webinar between ECHA [European Chemicals Agency], the US EPA [Environmental Protection Agency] and Canada was hosted by Canada on April 16, 2015. These are  regularly  scheduled  trilateral  discussions  to keep  each  other  informed  of  activities  in  respective jurisdictions.

In  March 2015, Health  Canada  hosted  3  nanotechnology knowledge  transfer sessions  targeting Canadian  government  research  and  regulatory  communities  working  in  nanotechnology.  These  sessions were  an  opportunity  to  share  information  and perspectives  on  the  current  state  of  science supporting  the regulatory  oversight  of  nanomaterials with  Government.  Presenters  provided  detailed  outputs  from  the OECD WPMN including: updates on OECD test methods and guidance documents; overviews of physical-chemical properties, as well as their relevance to toxicological testing and risk assessment; ecotoxicity and fate   test   methods;   human   health   risk   assessment   and   alternative   testing   strategies;   and exposure measurement  and  mitigation.  Guest  speakers  included  Dr  Richard  C.  Pleus  Managing  Director  and  Director of Intertox, Inc and Dr. Vladimir Murashov Special Assistant on Nanotechnology to the Director of National Institute for Occupational Safety and Health (NIOSH).

On   March   4-5, 2015, Industry   Canada   and   NanoCanada co-sponsored  “Commercializing Nanotechnology  in  Canada”,  a  national  workshop  that brought  together  representatives  from  industry, academia and government to better align Canada’s efforts in nanotechnology.  This workshop was the first of  its  kind  in  Canada. It  also  marked  the  official  launch  of  NanoCanada (http://nanocanada.com/),  a national  initiative  that  is  bringing  together stakeholders  from  across  Canada  to  bridge  the  innovation  gap and stimulates emerging technology solutions.

It’s nice to get an update about what’s going on. Despite the fact this report was published in 2016 the future tense is used in many of the verbs depicting actions long since accomplished. Maybe this was a cut-and-paste job?

Moving on, I note the mention of the Canada-led,  ISO  standards project, ISO/DTR  19716 Nanotechnologies — Characterization  of cellulose  nanocrystals (CNC). For those not familiar with CNC, the Canadian government has invested hugely in this material derived mainly from trees, in Canada. Other countries and jurisdictions have researched nanocellulose derived from carrots, bananas, pineapples, etc.

Finally, it was interesting to find out about the existence of  NanoCanada. In looking up the Contact Us page, I noticed Marie D’Iorio’s name. D’Iorio, as far as I’m aware, is still the Executive Director for Canada’s National Institute of Nanotechnology (NINT) or here (one of the National Research Council of Canada’s institutes). I have tried many times to interview someone from the NINT (Nils Petersen, the first NINT ED and Martha Piper, a member of the advisory board) and more recently D’Iorio herself only to be be met with a resounding silence. However, there’s a new government in place, so I will try again to find out more about the NINT, and, this time, NanoCanada.

Is safety all it’s cracked up to be? (three items about risk)

I have three items for this piece, two about human risk assessment and nanotechnology and one questioning the drive towards safety.

Proposal for a nanotechnology and human risk assessment scheme

A couple of academics, one from the Université de Montréal (Canada) and the other from the Université de Rennes (France) have proposed what they declare is a “well-developed human risk assessment (HRA) that applies to NPs (nanoparticles).” It’s a bold statement to be found in this paper (Note: There are some oddities about this paper’s citation),

Human Risk Assessment and Its Application to
Nanotechnology: A Challenge for Assessors (PDF) by Claude Emond and Luc Multigner.  2015 J. Phys.: Conf. Ser. 617 012039 http://iopscience.iop.org/1742-6596/617/1/01203

The first oddity is that the second author on the PDF version of the paper, Luc Multigner, is not listed on the paper’s page on the Journal of Physics website. where T N Britos is listed as the second author. Next, there’s the DOI (digital object identifier) which isn’t specified anywhere I can find it. There is something that looks like a DOI in the links to both the paper’s webpage and its PDF: 10.1088/1742-6596/617/1/012039.

Now on to the paper.

The authors are proposing that a methodology designed in 1983 (found in a document known as the Red Book) by the US National Research Council be adapted for use in nanotechnology human risk assessment,

… The approach divided the HRA into four different characterization steps: Source Identification Characterization (SIC), Exposure Assessment Characterization (EAC), Hazard Assessment Characterization (HAC) and Risk Assessment Characterization (RAC) [8, 9] (Figure 1).

Interspecies Variability Factors in Human Health Risk Assessment

This item comes from Lynn Bergeson’s Oct. 2, 2015 posting on Nanotechnology Now,

The Organization for Economic Cooperation and Development (OECD) posted a new publication in its Series on the Safety of Manufactured Nanomaterials, Preliminary Guidance Notes on Nanomaterials: Interspecies Variability Factors in Human Health Risk Assessment. See http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=env/jm/mono(2015)31&doclanguage=en The report includes the following recommendations for further work:

– The Expert Opinion prepared in support of the project noted a general lack of availability of data from repeated-dose toxicity studies in different species. In particular, studies of extended duration such as 90-day subchronic or chronic toxicity studies were only available for a minor part of the analyzed nanomaterials and routes of exposures. …

– Physiologically-based models are receiving increased attention in human health risk assessment. With the available data on lung burden following inhalation exposure to nanomaterials, a useful comparison of measured vs. predicted data has been possible in this project for rats, suggesting that further refinement of the multiple path particle dosimetry (MPPD) model is required before it can be applied to (sub)chronic scenarios. Unfortunately, corresponding information has not been available for humans, preventing comparisons between rats and humans.

This document is no. 58 in the OECD (Organization for Economic Cooperation and Development) Series on the Safety of Manufactured Nanomaterials. All of these documents are freely available.

Why Safety Can Be Dangerous

The third and final item in this post is an announcement for an event at the Woodrow Wilson International Center for Scholars. From an Oct. 14, 2015 email,

Why Safety Can Be Dangerous: A Conversation with Gregory Ip

The Science & Technology Innovation Program is proud to welcome journalist Gregory Ip to discuss his latest book, Foolproof: Why Safety Can Be Dangerous and How Danger Makes Us Safe (Little, Brown). In Foolproof, Ip looks at how we often force new, unexpected risks to develop in unexpected places as we seek to minimize risk from crises like financial downturns and natural disasters.

More information about the Science & Technology Innovation Program’s Public Engagement in an Age of Complexity can be found here: http://www.wilsoncenter.org/article/public-engagement-age-complexity

Tuesday, October 20th, 2015
10:00am – 11:00am

6th Floor Auditorium

Directions

Wilson Center
Ronald Reagan Building and
International Trade Center
One Woodrow Wilson Plaza
1300 Pennsylvania, Ave., NW
Washington, D.C. 20004

Phone: 202.691.4000

The Foolproof event page provides more information,

In Foolproof, Ip looks at how we often force new, unexpected risks to develop in unexpected places as we seek to minimize risk from crises like financial downturns and natural disasters. This is a phenomena only likely to increase as our financial systems and cities become more complex and interconnected, but Ip concludes that these crises actually benefit society.

Final comments

We’re always engaged in a balancing act between risk and safety. How we resolve that conundrum can have huge and unexpected impacts on our future.

As an example of unintended consequences, I live in a region with many forests and a very successful fire suppression programme. Risk from forest fires has been reduced at the cost of building up  so much debris on the forest floor that forest fires which do occur are more devastating than if theyhad regularly diminished the debris.

Part 2 (b) of 3: Science Culture: Where Canada Stands; an expert assessment (reconstructed)

Carrying on from part 2 (a) of this commentary on the Science Culture: Where Canada Stands assessment by the Council of Canadian Academies (CAC).

One of the most intriguing aspects of this assessment was the reliance on an unpublished inventory of Canadian science outreach initiatives (informal science education) that was commissioned by the Korean Foundation for the Advancement of Science and Creativity,

The system of organizations, programs, and initiatives that supports science culture in any country is dynamic. As a result, any inventory provides only a snapshot at a single point in time, and risks quickly becoming out of date. No sustained effort has been made to track public science outreach and engagement efforts in Canada at the national or regional level. Some of the Panel’s analysis relies on data from an unpublished inventory of public science communication initiatives in Canada undertaken in 2011 by Bernard Schiele, Anik Landry, and Alexandre Schiele for the Korean Foundation for the Advancement of Science and Creativity (Schiele et al., 2011). This inventory identified over 700 programs and organizations across all provinces and regions in Canada, including over 400 initiatives related to museums, science centres, zoos, or aquariums; 64 associations or NGOs involved in public science outreach; 49 educational initiatives; 60 government policies and programs; and 27 media programs. (An update of this inventory completed by the Panel brings the total closer to 800 programs.) The inventory is used throughout the chapter [chapter five] to characterize different components of the Canadian system supporting public science outreach, communication, and engagement. (p. 130 PDF; p. 98 print)

I’m fascinated by the Korean interest and wonder if this due to perceived excellence or to budgetary considerations. The cynic in me suspects the Korean foundation was interested in the US scene but decided that information from the Canadian scene would be cheaper to acquire and the data could be extrapolated to give a perspective on the US scene.

In addition to the usual suspects (newspapers, television, radio, science centres, etc.), the Expert Panel did recognize the importance of online science sources (they would have looked foolish if they hadn’t),

Canadians are increasingly using the internet to seek out information relating to science. This activity can take the form of generalized searches about science-related issues or more targeted forms of information acquisition. For example, Canadians report using the internet to seek out information on health and medical issues an average of 47 times a year, or nearly every week. Other forms of online exposure to scientific content also appear to be common. For example, 46% of Canadians report having read a blog post or listserv related to science and technology at least once in the last three months, and 62% having watched an online video related to science and technology.

An increasing reliance on the internet as the main source of information about science and technology is consistent with the evolution of the media environment, as well as with survey data from other countries. Based on the Panel’s survey, 17% of Canadians, for example, report reading a printed newspaper daily, while 40% report reading about the news or current events online every day. (p. 13/2 PDF; p. 100/1 print)

In common with the rest of the world, Canadians are producing and enjoying science festivals,

In Canada there are two established, large-scale science festivals. Science Rendezvous [founded in 2008 as per its Wikipedia entry] takes place in about 20 cities across the country and combines a variety of programming to comprise a day-long free event (Science Rendezvous, 2013).

The annual Eureka! Festival in Montréal (see Figure 5.6 [founded in 2007 as per its program list]) has over 100 activities over three days; it attracted over 68,000 attendees in 2012 (Eureka! Festival, 2013). More science festivals have recently been created. The University of Toronto launched the Toronto Science Festival in fall 2013 (UofT, 2013), and Beakerhead, a new festival described as a “collision of art and culture, technology, and engineering,” was launched in 2013 in Calgary (Beakerhead, 2013). Two Canadian cities have also recently won bids to host STEMfest (Saskatoon in 2015 and Halifax in 2018), an international festival of science, technology, engineering, and mathematics (Global STEM States, 2014). (pp. 145/6 PDF; pp. 113/4 PDF)

The assessment notes have a grand total of five radio and television programmes devoted to science: The Nature of Things, Daily Planet, Quirks and Quarks, Découverte, and Les années lumière (p. 150 PDF; p. 118 print) and a dearth of science journalism,

Dedicated science coverage is notably absent from the majority of newspapers and other print journalism in Canada. As shown in Table 5.3, none of the top 11 newspapers by weekly readership in Canada has a dedicated science section, including nationals such as The Globe and Mail and National Post. Nine of these newspapers have dedicated technology sections, which sometimes contain sub-sections with broader coverage of science or environment stories; however, story coverage tends to be dominated by technology or business (or gaming) stories. Few Canadian newspapers have dedicated science journalists on staff, and The Globe and Mail is unique among Canadian papers in having a science reporter, a medicine and health reporter, and a technology reporter. (p. 152 PDF; p. 120 print)

Not stated explicitly in the assessment is this: those science and technology stories you see in the newspaper are syndicated stories, i.e., written by reporters for the Associated Press, Reuters, and other international press organizations or simply reprinted (with credit) from another newspaper.

The report does cover science blogging with this,

Science blogs are another potential source of information about developments in science and technology. A database compiled by the Canadian Science Writers’ Association, as of March of 2013, lists 143 Canadian science blogs, covering all areas of science and other aspects of science such as science policy and science culture (CSWA, 2013). Some blogs are individually authored and administered, while others are affiliated with larger networks or other organizations (e.g., Agence Science-Presse, PLOS Blogs). Canadian science blogger Maryse de la Giroday has also published an annual round-up of Canadian science blogs on her blog (www.frogheart.ca) for the past three years, and a new aggregator of Canadian science blogs was launched in 2013 (www.scienceborealis.ca). [emphases mine]

Data from the Panel’s survey suggest that blogs are becoming a more prominent source of information about science and technology for the general public. As noted at the beginning of the chapter, 46% of Canadians report having read a blog post about science or technology at least once in the past three months. Blogs are also influencing the way that scientific research is carried out and disseminated. A technical critique in a blog post by Canadian microbiologist Rosie Redfield in 2010, for example, catalyzed a widely publicized debate on the validity of a study published in Science, exploring the ability of bacteria to incorporate arsenic into their DNA. The incident demonstrated the potential impact of blogs on mainstream scientific research. CBC highlighted the episode as the Canadian science story of the year (Strauss, 2011), and Nature magazine identified Redfield as one of its 10 newsmakers of the year in 2011 as a result of her efforts to replicate the initial study and publicly document her progress and results (Hayden, 2011).

The impact of online information sources, however, is not limited to blogs, with 42% of Canadians reporting having heard about a science and technology news story though social media sources like Twitter and Facebook in the last three months. And, as noted earlier, the internet is often used to search for information about specific science and technology topics, both for general issues such as climate change, and more personalized information on medical and health issues.(pp. 153/4 PDF; pp. 121/2 print)

Yes, I got a shout out as did Rosie Redfield. We were the only two science bloggers namechecked. (Years ago, the Guardian newspaper was developing a science blog network and the editor claimed he couldn’t find many female science bloggers after fierce criticism of its first list of bloggers. This was immediately repudiated not only by individuals but someone compiled a list of hundreds of female science bloggers.) Still, the perception persists and I’m thrilled that the panel struck out in a different direction. I was also pleased to see Science Borealis (a Canadian science blog aggregator) mentioned. Having been involved with its founding, I’m also delighted its first anniversary was celebrated in Nov. 2014.

I doubt many people know we have a science press organization in Canada, Agence Science-Presse, but perhaps this mention in the assessment will help raise awareness in Canada’s English language media,

Founded in 1978 with the motto Parce que tout le monde s’intéresse à la science (“because everyone is interested in science”), Agence Science-Presse is a not-for-profit organization in Quebec that supports media coverage of science by distributing articles on scientific research or other topical science and technology issues to media outlets in Canada and abroad. The organization also supports science promotion activities aimed at youth. For example, it currently edits and maintains an aggregation of blogs designed for young science enthusiasts and science journalists (Blogue ta science). (p. 154 PDF; p. 122)

The final chapter (the 6th) of the assessment makes five key recommendations for ‘Cultivating a strong science culture’:

  1. Support lifelong science learning
  2. Make science inclusive
  3. Adapt to new technologies
  4. Enhance science communication and engagement
  5. Provide national or regional leadership

Presumably the agriculture reference in the chapter title is tongue-in-cheek. Assuming that’s not one of my fantasies, it’s good to see a little humour.

On to the first recommendation, lifelong learning,

… Science centres and museums, science programs on radio and television, science magazines and journalism, and online resources can all help fulfil this function by providing accessible resources for adult science learning, and by anticipating emerging information needs based on topical issues.

Most informal science learning organizations already provide these opportunities to varying degrees; however, this conception of the relative roles of informal and formal science learning providers differs from the traditional understanding, which often emphasizes how informal environments can foster engagement in science (particularly among youth), thereby triggering additional interest and the later acquisition of knowledge (Miller, 2010b). [emphasis mine] Such a focus may be appropriate for youth programming, but neglects the role that these institutions can play in ongoing education for adults, who often seek out information on science based on specific, well-defined interests or needs (e.g., a medical diagnosis, a newspaper article on the threat of a viral pandemic, a new technology brought into the workplace) (Miller, 2012). [emphases mine] Informal science learning providers can take advantage of such opportunities by anticipating these needs, providing useful and accessible information, and then simultaneously building and deepening knowledge of the underlying science through additional content.

I’m glad to see the interest in adult informal science education although the emphasis on health/medical and workplace technology issues suggests the panel underestimates, despite the data from its own survey, Canadians’ curiosity about and interest in science and technology. The panel also underestimates the tenacity with which many gatekeepers hold to the belief that no one is interested in science. It took me two years before a local organizer would talk to me about including one science-themed meeting in his programme (the final paragraph in my April 14, 2014 post describes some of the process  and my April 18, 2014 post describes the somewhat disappointing outcome). In the end, it was great to see a science-themed ‘city conversation’ but I don’t believe the organizer found it to be a success, which means it’s likely to be a long time before there’s another one.

The next recommendation, ‘Making science inclusive’, is something that I think needs better practice. If one is going to be the change one wants to see that means getting people onto your expert panels that reflect your inclusiveness and explaining to your audience how your expert panel is inclusive.

The ‘Adapting to new technologies’ recommendation is where I expected to see some mention of the social impact of such emerging technologies as robotics, nanotechnology, synthetic biology, etc. That wasn’t the case,

Science culture in Canada and other countries is now evolving in a rapidly changing technological environment. Individuals are increasingly turning to online sources for information about science and technology, and science communicators and the media are also adapting to the new channels of communication and outreach provided over the internet. As people engage more with new forms of technology in their home and work lives, organizations may be able to identify new ways to take advantage of available technologies to support learning and foster science interest and engagement. At the same time, as noted in Chapter 2, this transition is also challenging traditional models of operation for many organizations such as science centres, museums, and science media providers, forcing them to develop new strategies.

Examples of the use of new technologies to support learning are now commonplace. Nesta, an innovation-oriented organization based in the United Kingdom, conducted a study investigating the extent to which new technologies are transforming learning among students (Luckin et al., 2012) (p. 185 PDF; p. 153 print)

Admittedly, the panel was not charged with looking too far into the future but it does seem odd that in a science culture report there isn’t much mention (other than a cursory comment in an early chapter) of these emerging technologies and the major changes they are bringing with them. If nothing else, the panel might have wanted to make mention of artificial intelligence how the increasing role of automated systems may be affecting science culture in Canada. For example, in my July 16, 2014 post I made described a deal Associated Press (AP) signed with a company that automates the process of writing sports and business stories. You may well have read a business story (AP contracted for business stories) written by an artificial intelligence system or, if you prefer the term, an algorithm.

The recommendation for ‘Enhancing science communication and engagement’ is where I believe the Expert Panel should be offered a bouquet,

… Given the significance of government science in many areas of research, government science communication constitutes an important vector for increasing public awareness and understanding about science. In Canada current policies governing how scientists working in federal departments and agencies are allowed to interact with the media and the public have come under heavy criticism in recent years …

Concerns about the federal government’s current policies on government scientists’ communication with the media have been widely reported in Canadian and international
press in recent years (e.g., Ghosh, 2012; CBC, 2013c; Gatehouse, 2013; Hume, 2013; Mancini, 2013; Munro, 2013). These concerns were also recently voiced by the editorial board of Nature (2012), which unfavourably compared Canada’s current approach with the more open policies now in place in the United States. Scientists at many U.S. federal agencies are free to speak to the media without prior departmental approval, and to
express their personal views as long as they clearly state that they are not speaking on behalf of the government. In response to such concerns, and to a formal complaint filed by the Environmental Law Clinic at the University of Victoria and Democracy Watch, on April 2, 2013 Canada’s Information Commissioner launched an investigation into whether current policies and policy instruments in seven federal departments and agencies are “restricting or prohibiting government scientists from speaking with or sharing research with the media and the Canadian public” (OICC, 2013).

Since these concerns have come to light, many current and former government scientists have discussed how these policies have affected their interactions with the media. Marley Waiser, a former scientist with Environment Canada, has spoken about how that department’s policies prevented her from discussing her research on chemical pollutants in Wascana Creek near Regina (CBC, 2013c). Dr. Kristi Miller, a geneticist with the Department of Fisheries and Oceans, was reportedly prevented from speaking publicly about a study she published in Science, which investigated whether a viral infection might be the cause of declines in Sockeye salmon stocks in the Fraser River (Munro, 2011).

According to data from Statistics Canada (2012), nearly 20,000 science and technology professionals work for the federal government. The ability of these researchers to communicate with the media and the Canadian public has a clear bearing on Canada’s science culture. Properly supported, government scientists can serve as a useful conduit for informing the public about their scientific work, and engaging the public in discussions about the social relevance of their research; however, the concerns reported above raise questions about the extent to which current federal policies in Canada are limiting these opportunities for public communication and engagement. (pp. 190/1 PDF; p. 158/9 print)

Kudos for including the information and for this passage as well,

Many organizations including science centres and museums, research centres, and even governments may be perceived as having a science promotion agenda that portrays only the benefits of science. As a result, these organizations are not always seen as promoters of debate through questioning, which is a crucial part of the scientific process. Acknowledging complexity and controversy is another means to improve the quality of public engagement in science in a range of different contexts. (p. 195 PDF; p. 163 print)

One last happy note, which is about integrating the arts and design into the STEM (science, technology, engineering, and mathematics communities),

Linking Science to the Arts and Design U.S. advocates for “STEM to STEAM” call for an incorporation of the arts in discussions of science, technology, engineering, and mathematics in an effort to “achieve a synergistic balance” (Piro, 2010). They cite positive outcomes such as cognitive development, reasoning skills, and concentration abilities. Piro (2010) argues that “if creativity, collaboration, communication, and critical thinking — all touted as hallmark skills for 21st-century success — are to be cultivated, we need to ensure that STEM subjects are drawn closer to the arts.” Such approaches offer new techniques to engage both student and adult audiences in science learning and engagement opportunities.

What I find fascinating about this STEM to STEAM movement is that many of these folks don’t seem to realize is that until fairly recently the arts and sciences recently have always been closely allied.  James Clerk Maxwell was also a poet, not uncommon amongst 19th century scientists.

In Canada one example of this approach is found in the work of Michael R. Hayden, who has conducted extensive genetic research on Huntington disease. In the lead-up to the 2000 Human Genome Project World Conference, Hayden commissioned Vancouver’s Electric Company Theatre to fuse “the spheres of science and art in a play that explored the implications of the revolutionary technology of the Human Genome Project” (ECT, n.d.). This play, The Score, was later adapted into a film. Hayden believes that his play “transforms the scientific ideas explored in the world of the laboratory into universal themes of human identity, freedom and creativity, and opens up a door for a discussion between the scientific community and the public in general” (Genome Canada, 2006). (p. 196 PDF; p. 164 print)

I’m not sure why the last recommendation presents an either/or choice, ‘Providing national or regional leadership’, while the following content suggests a much more fluid state,

…  it should be recognized that establishing a national or regional vision for science culture is not solely the prerogative of government. Such a vision requires broad support and participation from the community of affected stakeholders to be effective, and can also emerge from that community in the absence of a strong governmental role.

The final chapter (the seventh) restates the points the panel has made throughout its report. Unexpectedly, part 2 got bigger, ’nuff said.

Part 2 (a) of 3: Science Culture: Where Canada Stands; an expert assessment (reconstructed)

Losing over 2000 words, i.e., part 2 of this commentary on the Science Culture: Where Canada Stands assessment by the Council of Canadian Academies (CAC) on New Year’s Eve 2014 was a bit of blow. So, here’s my attempt at reconstructing my much mourned part 2.

There was acknowledgement of Canada as a Arctic country and an acknowledgement of this country’s an extraordinary geographical relationship to the world’s marine environment,

Canada’s status as an Arctic nation also has a bearing on science and science culture. Canada’s large and ecologically diverse Arctic landscape spans a substantial part of the circumpolar Arctic, and comprises almost 40% of the country’s landmass (Statistics Canada, 2009). This has influenced the development of Canadian culture more broadly, and also created opportunities in the advancement of Arctic science. Canada’s northern inhabitants, the majority of whom are Indigenous peoples, represent a source of knowledge that contributes to scientific research in the North (CCA, 2008).

These characteristics have contributed to the exploration of many scientific questions including those related to environmental science, resource development, and the health and well-being of northern populations. Canada also has the longest coastline of any country, and these extensive coastlines and marine areas give rise to unique research opportunities in ocean science (CCA, 2013a). (p. 55 PDF; p. 23 print)

Canada’s aging population is acknowledged in a backhand way,

Like most developed countries, Canada’s population is also aging. In 2011 the median age in Canada was 39.9 years, up from 26.2 years in 1971 (Statistics Canada, n.d.). This ongoing demographic transition will have an impact on science culture in Canada in years to come. An aging population will be increasingly interested in health and medical issues. The ability to make use of this kind of information will depend in large part on the combination of access to the internet, skill in navigating it, and a conceptual toolbox that includes an understanding of genes, probability, and related constructs (Miller, 2010b). (p. 56 PDF; p. 24 print)

Yes, the only science topics of interest for an old person are health and medicine. Couldn’t they have included one sentence suggesting an aging population’s other interests and other possible impacts on science culture?

On the plus side, the report offers a list of selected Canadian science culture milestones,

• 1882 – Royal Society of Canada is established.
• 1916 – National Research Council is established.
• 1923 – Association canadienne-française pour l’avancement des sciences (ACFAS) is established.
• 1930 – Canadian Geographic is first published by the Royal Canadian Geographical Society.
• 1951 – Massey–Lévesque Commission calls for the creation of a national science and technology museum.
• 1959 – Canada sees its first science fairs in Winnipeg, Edmonton, Hamilton, Toronto, Montréal, and Vancouver; volunteer coordination eventually grows into Youth Science Canada.
• 1960 – CBC’s Nature of Things debuts on television; Fernand Séguin hosts “Aux frontières de la science.”
• 1962 – ACFAS creates Le Jeune scientifique, which becomes Québec Science in 1970.
• 1966 – Science Council of Canada is created to advise Parliament on science and technology issues.
• 1967 – Canada Museum of Science and Technology is created.
• 1969 – Ontario Science Centre opens its doors (the Exploratorium in San Francisco opens the same year).
• 1971 – Canadian Science Writers’ Association is formed.
• 1975 – Symons Royal Commission on Canadian Studies speaks to how understanding the role of science in society is important to understanding Canadian culture and identity.
• 1975 – Quirks and Quarks debuts on CBC Radio.
• 1976 – OWL children’s magazine begins publication.
• 1977 – Association des communicateurs scientifiques du Québec is established.
• 1978 – L’Agence Science-Presse is created.
• 1981 – Association des communicateurs scientifiques creates the Fernand-Séguin scholarship to identify promising young science journalists.
• 1982 – Les Débrouillards is launched in Quebec. (p. 58 PDF; p. 26 print)

The list spills onto the next page and into the 2000’s.

It’s a relief to see the Expert Panel give a measured response to the claims made about science culture and its various impacts, especially on the economy (in my book, some of the claims have bordered on hysteria),

The Panel found little definitive empirical evidence of causal relationships between the dimensions of science culture and higher-level social objectives like stronger economic performance or more effective public policies. As is the case with much social science research, isolating the impacts of a single variable on complex social phenomena is methodologically challenging, and few studies have attempted to establish such relationships in any detail. As noted in 1985 by the Bodmer report (a still-influential report on public understanding of science in the United Kingdom), although there is good reason prima facie to believe that improving public understanding of science has national economic benefits, empirical proof for such a link is often elusive (RS & Bodmer, 1985). This remains the case today. Nevertheless, many pieces of evidence suggest why a modern, industrialized society should cultivate a strong science culture. Literature from the domains of cognitive science, sociology, cultural studies, economics, innovation, political science, and public policy provides relevant insights. (p. 63 PDF; p. 31 print)

Intriguingly, while the panel has made extensive use of social science methods for this assessment there are some assumptions made about skill sets required for the future,

Technological innovation depends on the presence of science and technology skills in the workforce. While at one point it may have been possible for relatively low-skilled individuals to substantively contribute to technological development, in the 21st century this is no longer the case. [emphasis mine] Advanced science and technology skills are now a prerequisite for most types of technological innovation. (p. 72 PDF; p. 40 print)

Really, it’s no longer possible for relatively low-skilled individuals to contribute to technological development? Maybe the expert panel missed this bit in my March 27, 2013 post,

Getting back to Bittel’s Slate article, he mentions Foldit (here’s my first piece in an Aug. 6, 2010 posting [scroll down about 1/2 way]), a protein-folding game which has generated some very exciting science. He also notes some of that science was generated by older, ‘uneducated’ women. Bittel linked to Jeff Howe’s Feb. 27, 2012 article about Foldit and other crowdsourced science projects for Slate where I found this very intriguing bit,

“You’d think a Ph.D. in biochemistry would be very good at designing protein molecules,” says Zoran Popović, the University of Washington game designer behind Foldit. Not so. “Biochemists are good at other things. But Foldit requires a narrow, deeper expertise.”

Or as it turns out, more than one. Some gamers have a preternatural ability to recognize patterns, an innate form of spatial reasoning most of us lack. Others—often “grandmothers without a high school education,” says Popovic—exercise a particular social skill. “They’re good at getting people unstuck. They get them to approach the problem differently.” What big pharmaceutical company would have anticipated the need to hire uneducated grandmothers? (I know a few, if Eli Lilly HR is thinking of rejiggering its recruitment strategy.) [emphases mine]

It’s not the idea that technical and scientific skills are needed that concerns me; it’s the report’s hard line about ‘low skills’ (which is a term that is not defined). In addition to the notion that future jobs require only individuals with ‘high level’ skills; there’s the notion (not mentioned in this report but gaining general acceptance in the media) that we shouldn’t ever have to perform repetitive and boring activities. It’s a notion which completely ignores a certain aspect of the learning process. Very young children repeat over and over and over and over … . Apprenticeships in many skills-based crafts were designed with years of boring, repetitive work as part of the training. It seems counter-intuitive but boring, repetitive activities can lead to very high level skills such as the ability to ‘unstick’ a problem for an expert with a PhD in biochemistry.

Back to the assessment, the panel commissioned a survey, conducted in 2013, to gather data about science culture in Canada,

The Panel’s survey of Canadian science culture, designed to be comparable to surveys undertaken in other countries as well as to the 1989 Canadian survey, assessed public attitudes towards science and technology, levels and modes of public engagement in science, and public science knowledge or understanding. (The evidence reported in this chapter on the fourth dimension, science and technology skills, is drawn from other sources such as Statistics Canada and the OECD).

Conducted in April 2013, the survey relied on a combination of landline and mobile phone respondents (60%) and internet respondents (40%), randomly recruited from the general population. In analyzing the results, responses to the survey were weighted based on Statistics Canada data according to region, age, education, and gender to ensure that the sample was representative of the Canadian public. 7 A total of 2,004 survey responses were received, with regional breakdowns presented in Table 4.1. At a national level, survey results are accurate within a range of plus or minus 2.2% 19 times out of 20 (i.e., at the 95% confidence interval), and margins of error for regional results range from 3.8% to 7.1%). Three open-ended questions were also included in the survey, which were coded using protocols previously applied to these questions in other international surveys. 8 All open-ended questions were coded independently by at least three bilingual coders, and any discrepancies in coding were settled through a review by a fourth coder. (p. 79 PDF; p. 47 print)

The infographic’s data in part 1 of this commentary, What Do Canadians Think About Science and Technology (S&T)? is based on the survey and other statistical information included in the report especially Chapter four focused on measurements (pp. 77  – 127 PDF; pp. 45 – 95 print). While the survey presents a somewhat rosier picture of the Canadian science culture than the one I experience on a daily basis, the data seems to have been gathered in a thoughtful fashion. Regardless of the assessment’s findings and my opinions,  how Canadians view science became a matter of passionate debate in the Canadian science blogging community (at least parts of it) in late 2014 as per a Dec. 3, 2014 posting by the Science Borealis team on their eponymous blog (Note: Links have been removed),

The CBC’s Rick Mercer is a staunch science advocate, and his November 19th rant was no exception. He addressed the state of basic science in Canada, saying that Canadians are “passionate and curious about science.”

In response, scientist David Kent wrote a post on the Black Hole Blog in which he disagreed with Mercer, saying, “I do not believe Mr. Mercer’s idea that Canadians as a whole are interested although I, like him, would wish it to be the case.”

Kent’s post has generated some fierce discussion, both in the comments on his original post and in the comments on a Facebook post by Evidence for Democracy.

Here at Science Borealis, we rely on a keen and enthusiastic public to engage with the broad range of science-based work our bloggers share, so we decided to address some of the arguments Kent presented in his post.

Anecdotal evidence versus data

Kent says “Mr. Mercer’s claims about Canadians’ passions are anecdotal at best, and lack any evidence – indeed it is possible that Canadians don’t give a hoot about science for science’s sake.”

Unfortunately, Kent’s own argument is based on anecdotal evidence (“To me it appears that… the average Canadian adult does not particularly care about how or why something works.”).

If you’re looking for data, they’re available in a recent Council of Canadian Academies report that specifically studied science culture in Canada. Results show that Canadians are very interested in science.

You can find David Kent’s Nov. 26, 2014 post about Canadians, Rick Mercer and science here. Do take a look at the blog’s comments which feature a number of people deeply involved in promoting and producing Canadian science culture.

I promised disturbing statistics in the head for this posting and here they are in the second paragraph,

Canadian students perform well in PISA [Organization for Economic Cooperation and Development’s (OECD) Programme for International Student Assessment (PISA)] , with relatively high scores on all three of the major components of the assessment (reading, science, and mathematics) compared with students in other countries (Table 4.4). In 2012 only seven countries or regions had mean scores on the science assessment higher than Canada on a statistically significant basis: Shanghai–China, Hong Kong–China, Singapore, Japan, Finland, Estonia, and Korea (Brochu et al., 2013). A similar pattern holds for mathematics scores, where nine countries had mean scores higher than Canada on a statistically significant basis: Shanghai–China, Singapore, Hong Kong–China, Chinese Taipei, Korea, Macao–China, Japan, Lichtenstein, and Switzerland (Brochu et al., 2013). Regions scoring higher than Canada are concentrated in East Asia, and tend to be densely populated, urban areas. Among G8 countries, Canada ranks second on mean science and mathematics scores, behind Japan.

However, the 2012 PISA results also show statistically significant declines in Canada’s scores on both the mathematics and science components. Canada’s science score declined by nine points from its peak in 2006 (with a fall in ranking from 3rd to 10th), and the math score declined by 14 points since first assessed in 2003 (a fall from 7th to 13th) (Brochu et al., 2013). Changes in Canada’s standing relative to other countries reflect both the addition of new countries or regions over time (i.e., the addition of regions such as Hong Kong–China and Chinese Taipei in 2006, and of Shanghai–China in 2009) and statistically significant declines in mean scores.

My Oct. 9, 2013 post discusses the scores in more detail and as the Expert Panel notes, the drop is disconcerting and disturbing. Hopefully, it doesn’t indicate a trend.

Part 2 (b) follows immediately.

Nanomaterials and safety: Europe’s non-governmental agencies make recommendations; (US) Arizona State University initiative; and Japan’s voluntary carbon nanotube management

I have three news items which have one thing in common, they concern nanomaterials and safety. Two of these of items are fairly recent; the one about Japan has been sitting in my drafts folder for months and I’m including it here because if I don’t do it now, I never will.

First, there’s an April 7, 2014 news item on Nanowerk (h/t) about European non-governmental agencies (CIEL; the Center for International Environmental Law and its partners) and their recommendations regarding nanomaterials and safety. From the CIEL April 2014 news release,

CIEL and European partners* publish position paper on the regulation of nanomaterials at a meeting of EU competent authorities

*ClientEarth, The European Environmental Bureau, European citizen’s Organization for Standardisation, The European consumer voice in Standardisation –ANEC, and Health Care Without Harm, Bureau of European Consumers

… Current EU legislation does not guarantee that all nanomaterials on the market are safe by being assessed separately from the bulk form of the substance. Therefore, we ask the European Commission to come forward with concrete proposals for a comprehensive revision of the existing legal framework addressing the potential risks of nanomaterials.

1. Nanomaterials are different from other substances.

We are concerned that EU law does not take account of the fact that nano forms of a substance are different and have different intrinsic properties from their bulk counterpart. Therefore, we call for this principle to be explicitly established in the REACH, and Classification Labeling and Packaging (CLP) regulations, as well as in all other relevant legislation. To ensure adequate consideration, the submission of comprehensive substance identity and characterization data for all nanomaterials on the market, as defined by the Commission’s proposal for a nanomaterial definition, should be required.

Similarly, we call on the European Commission and EU Member States to ensure that nanomaterials do not benefit from the delays granted under REACH to phase-in substances, on the basis of information collected on their bulk form.

Further, nanomaterials, due to their properties, are generally much more reactive than their bulk counterpart, thereby increasing the risk of harmful impact of nanomaterials compared to an equivalent mass of bulk material. Therefore, the present REACH thresholds for the registration of nanomaterials should be lowered.

Before 2018, all nanomaterials on the market produced in amounts of over 10kg/year must be registered with ECHA on the basis of a full registration dossier specific to the nanoform.

2. Risk from nanomaterials must be assessed

Six years after the entry into force of the REACH registration requirements, only nine substances have been registered as nanomaterials despite the much wider number of substances already on the EU market, as demonstrated by existing inventories. Furthermore, the poor quality of those few nano registration dossiers does not enable their risks to be properly assessed. To confirm the conclusions of the Commission’s nano regulatory review assuming that not all nanomaterials are toxic, relevant EU legislation should be amended to ensure that all nanomaterials are adequately assessed for their hazardous properties.

Given the concerns about novel properties of nanomaterials, under REACH, all registration dossiers of nanomaterials must include a chemical safety assessment and must comply with the same information submission requirements currently required for substances classified as Carcinogenic, Mutagenic or Reprotoxic (CMRs).

3. Nanomaterials should be thoroughly evaluated

Pending the thorough risk assessment of nanomaterials demonstrated by comprehensive and up-to-date registration dossiers for all nanoforms on the market, we call on ECHA to systematically check compliance for all nanoforms, as well as check the compliance of all dossiers which, due to uncertainties in the description of their identity and characterization, are suspected of including substances in the nanoform. Further, the Community Roling Action Plan (CoRAP) list should include all identified substances in the nanoform and evaluation should be carried out without delay.

4. Information on nanomaterials must be collected and disseminated

All EU citizens have the right to know which products contain nanomaterials as well as the right to know about their risks to health and environment and overall level of exposure. Given the uncertainties surrounding nanomaterials, the Commission must guarantee that members of the public are in a position to exercise their right to know and to make informed choices pending thorough risk assessments of nanomaterials on the market.

Therefore, a publicly accessible inventory of nanomaterials and consumer products containing nanomaterials must be established at European level. Moreover, specific nano-labelling or declaration requirements must be established for all nano-containing products (detergents, aerosols, sprays, paints, medical devices, etc.) in addition to those applicable to food, cosmetics and biocides which are required under existing obligations.

5. REACH enforcement activities should tackle nanomaterials

REACH’s fundamental principle of “no data, no market” should be thoroughly implemented. Therefore, nanomaterials that are on the market without a meaningful minimum set of data to allow the assessment of their hazards and risks should be denied market access through enforcement activities. In the meantime, we ask the EU Member States and manufacturers to use a precautionary approach in the assessment, production, use and disposal of nanomaterials

This comes on the heels of CIEL’s March 2014 news release announcing a new three-year joint project concerning nanomaterials and safety and responsible development,

Supported by the VELUX foundations, CIEL and ECOS (the European Citizen’s Organization for Standardization) are launching a three-year project aiming to ensure that risk assessment methodologies and risk management tools help guide regulators towards the adoption of a precaution-based regulatory framework for the responsible development of nanomaterials in the EU and beyond.

Together with our project partner the German Öko-Institut, CIEL and ECOS will participate in the work of the standardization organizations Comité Européen de Normalisation and International Standards Organization, and this work of the OECD [Organization for Economic Cooperation and Development], especially related to health, environmental and safety aspects of nanomaterials and exposure and risk assessment. We will translate progress into understandable information and issue policy recommendations to guide regulators and support environmental NGOs in their campaigns for the safe and sustainable production and use of nanomaterials.

The VILLUM FOUNDATION and the VELUX FOUNDATION are non-profit foundations created by Villum Kann Rasmussen, the founder of the VELUX Group and other entities in the VKR Group, whose mission it is to bring daylight, fresh air and a better environment into people’s everyday lives.

Meanwhile in the US, an April 6, 2014 news item on Nanowerk announces a new research network, based at Arizona State University (ASU), devoted to studying health and environmental risks of nanomaterials,

Arizona State University researchers will lead a multi-university project to aid industry in understanding and predicting the potential health and environmental risks from nanomaterials.

Nanoparticles, which are approximately 1 to 100 nanometers in size, are used in an increasing number of consumer products to provide texture, resiliency and, in some cases, antibacterial protection.

The U.S. Environmental Protection Agency (EPA) has awarded a grant of $5 million over the next four years to support the LCnano Network as part of the Life Cycle of Nanomaterials project, which will focus on helping to ensure the safety of nanomaterials throughout their life cycles – from the manufacture to the use and disposal of the products that contain these engineered materials.

An April 1, 2014 ASU news release, which originated the news item, provides more details and includes information about project partners which I’m happy to note include nanoHUB and the Nanoscale Informal Science Education Network (NISENet) in addition to the other universities,

Paul Westerhoff is the LCnano Network director, as well as the associate dean of research for ASU’s Ira A. Fulton Schools of Engineering and a professor in the School of Sustainable Engineering and the Built Environment.

The project will team engineers, chemists, toxicologists and social scientists from ASU, Johns Hopkins, Duke, Carnegie Mellon, Purdue, Yale, Oregon’s state universities, the Colorado School of Mines and the University of Illinois-Chicago.

Engineered nanomaterials of silver, titanium, silica and carbon are among the most commonly used. They are dispersed in common liquids and food products, embedded in the polymers from which many products are made and attached to textiles, including clothing.

Nanomaterials provide clear benefits for many products, Westerhoff says, but there remains “a big knowledge gap” about how, or if, nanomaterials are released from consumer products into the environment as they move through their life cycles, eventually ending up in soils and water systems.

“We hope to help industry make sure that the kinds of products that engineered nanomaterials enable them to create are safe for the environment,” Westerhoff says.

“We will develop molecular-level fundamental theories to ensure the manufacturing processes for these products is safer,” he explains, “and provide databases of measurements of the properties and behavior of nanomaterials before, during and after their use in consumer products.”

Among the bigger questions the LCnano Network will investigate are whether nanomaterials can become toxic through exposure to other materials or the biological environs they come in contact with over the course of their life cycles, Westerhoff says.

The researchers will collaborate with industry – both large and small companies – and government laboratories to find ways of reducing such uncertainties.

Among the objectives is to provide a framework for product design and manufacturing that preserves the commercial value of the products using nanomaterials, but minimizes potentially adverse environmental and health hazards.

In pursuing that goal, the network team will also be developing technologies to better detect and predict potential nanomaterial impacts.

Beyond that, the LCnano Network also plans to increase awareness about efforts to protect public safety as engineered nanomaterials in products become more prevalent.

The grant will enable the project team to develop educational programs, including a museum exhibit about nanomaterials based on the LCnano Network project. The exhibit will be deployed through a partnership with the Arizona Science Center and researchers who have worked with the Nanoscale Informal Science Education Network.

The team also plans to make information about its research progress available on the nanotechnology industry website Nanohub.org.

“We hope to use Nanohub both as an internal virtual networking tool for the research team, and as a portal to post the outcomes and products of our research for public access,” Westerhoff says.

The grant will also support the participation of graduate students in the Science Outside the Lab program, which educates students on how science and engineering research can help shape public policy.

Other ASU faculty members involved in the LCnano Network project are:

• Pierre Herckes, associate professor, Department of Chemistry and Biochemistry, College of Liberal Arts and Sciences
• Kiril Hristovski, assistant professor, Department of Engineering, College of Technology and Innovation
• Thomas Seager, associate professor, School of Sustainable Engineering and the Built Environment
• David Guston, professor and director, Consortium for Science, Policy and Outcomes
• Ira Bennett, assistant research professor, Consortium for Science, Policy and Outcomes
• Jameson Wetmore, associate professor, Consortium for Science, Policy and Outcomes, and School of Human Evolution and Social Change

I hope to hear more about the LCnano Network as it progresses.

Finally, there was this Nov. 12, 2013 news item on Nanowerk about instituting  voluntary safety protocols for carbon nanotubes in Japan,

Technology Research Association for Single Wall Carbon Nanotubes (TASC)—a consortium of nine companies and the National Institute of Advanced Industrial Science and Technology (AIST) — is developing voluntary safety management techniques for carbon nanotubes (CNTs) under the project (no. P10024) “Innovative carbon nanotubes composite materials project toward achieving a low-carbon society,” which is sponsored by the New Energy and Industrial Technology Development Organization (NEDO).

Lynn Bergeson’s Nov. 15, 2013 posting on nanotech.lawbc.com provides a few more details abut the TASC/AIST carbon nanotube project (Note: A link has been removed),

Japan’s National Institute of Advanced Industrial Science and Technology (AIST) announced in October 2013 a voluntary guidance document on measuring airborne carbon nanotubes (CNT) in workplaces. … The guidance summarizes the available practical methods for measuring airborne CNTs:  (1) on-line aerosol measurement; (2) off-line quantitative analysis (e.g., thermal carbon analysis); and (3) sample collection for electron microscope observation. …

You can  download two protocol documents (Guide to measuring airborne carbon nanotubes in workplaces and/or The protocols of preparation, characterization and in vitro cell based assays for safety testing of carbon nanotubes), another has been published since Nov. 2013, from the AIST’s Developing voluntary safety management techniques for carbon nanotubes (CNTs): Protocol and Guide webpage., Both documents are also available in Japanese and you can link to the Japanese language version of the site from the webpage.

Ecotoxicology and environmental fate of manufactured nanomaterials—testing guidelines from Organization for Economic Cooperation and Development (OECD)

The Organization for Economic Cooperation and Development (OECD) has released guidelines for testing manufactured nanomaterials according to a March 11, 2014 news item on Nanowerk,

As part of its Programme on the Safety of Manufactured Nanomaterials, and in particular work on the testing and assessment of manufactured nanomaterials, OECD initiated a series of expert meetings to improve the applicability of the OECD Test Guidelines to nanomaterials. With this in mind, the Working Party on Manufactured Nanomaterials agreed to address the ecotoxicology and environmental fate of manufactured nanomaterials.

The OECD Expert Meeting on Ecotoxicology and Environmental Fate took place on 29th-31st January 2013 in Berlin, Federal Press Office. The event was hosted by the German delegation and funded by the German Federal Ministry of the Environment, Nature Conservation and Nuclear Safety (BMU) as well as the United States Environment Protection Agency (US EPA).

Three documents were published one of which being a preview,

The OECD expert meeting on ecotoxicology and environmental fate — Towards the development of improved OECD guidelines for the testing of nanomaterials by Dana Kühnel and Carmen Nickel. Science of The Total Environment Volume 472, 15 February 2014, Pages 347–353 http://dx.doi.org/10.1016/j.scitotenv.2013.11.055

This document is open access.

The report itself,

OECD. ENVIRONMENT DIRECTORATE.
JOINT MEETING OF THE CHEMICALS COMMITTEE AND
THE WORKING PARTY ON CHEMICALS, PESTICIDES AND BIOTECHNOLOGY. Environment, Health and Safety Publications
Series on the Safety of Manufactured Nanomaterials. ENV/JM/MONO(2014)1

ECOTOXICOLOGY AND ENVIRONMENTAL FATE OF MANUFACTURED NANOMATERIALS:
TEST GUIDELINES Expert Meeting Report
Series on the Safety of Manufactured Nanomaterials No. 40

Ecotoxicology and Environmental Fate of Manufactured Nanomaterials: Test Guidelines

There’s an addendum which includes the presentations made at the meeting (you can find both the report, proper, and the addendum on this page scroll to report no. 40),

OECD. ENVIRONMENT DIRECTORATE JOINT MEETING OF THE CHEMICALS COMMITTEE AND
THE WORKING PARTY ON CHEMICALS, PESTICIDES AND BIOTECHNOLOGY. Environment, Health and Safety Publications. ENV/JM/MONO(2014)1/ADD

ADDENDUM TO EXOTOXICOLOGY AND ENVIRONMENTAL FATE OF MANUFACTURED
NANOMATERIALS: TEST GUIDELINES

Series on the Safety of Manufactured Nanomaterials No. 40
Ecotoxicology and Environmental Fate of Manufactured Nanomaterials:
Test Guidelines.

As it can get a little tricky accessing OECD documents, I’ve tried to give a couple different links and as much identifying information as possible. Good luck!

OECD Science, Technology and Industry 2013 Scorecard: Canada highlights and key nanotechnology indicators*

The Organization for Economic Cooperation and Development (OECD) has released its 2013 scorecard or, more officially, the OECD Science, Technology and Industry Scoreboard 2013 (which you can find here). There’s a brief description of the 2013 scorecard on the webpage housing the complete report/scorecard and various publications derived from it,

Science, technology, innovation and entrepreneurship – which foster competitiveness, productivity, and job creation – are important mechanisms for encouraging sustainable growth. The 260 indicators in the OECD Science, Technology and Industry (STI) Scoreboard 2013 show how OECD and partner economies are performing in a wide range of areas to help governments design more effective and efficient policies and monitor progress towards their desired goals.

The 2013 scorecard highlights concerning Canada are (from the OECD Science, Technology and Industry Scoreboard 2013
: Canada publication),

Canada experienced a decline in business spending on R&D between 2001 and 2011, despite generous public support, mainly through tax incentives for business R&D. As a percentage of GDP, Canada’s tax incentives for R&D were the largest after France in 2011. [emphasis mine]
Despite relatively limited investment in R&D, a large share of Canada’s manufacturing and services firms are involved in innovation. Canada is among the group of countries where high-technology industries still dominate patenting activity, while in several other OECD countries business services now account for the largest share of patents. Canada lags somewhat in the proportion of young firms applying for patents, however.
 Canada achieves a relatively high impact with its scientific research. Compared with other large OECD economies, Canada has a very high rate of international mobility of researchers, mostly with the United States. Returning researchers and new inflows tend to publish in journals with higher quality than researchers that have not engaged in international mobility.
 Canada’s trade performance is characterised by a strong focus on primary products, which affects its positioning in global value chains. This contributes to a relatively low foreign (and thus a high domestic) value added content in Canada’s exports, which declined between 1995 and 2009. In 2009, over 26% of jobs in the business sector were sustained by demand from abroad, down from just over 30% in 1995.

So, despite some of the best tax incentives amongst OECD countries, business in Canada spent less on R&D as the decade wore on. Interesting. Especially so since the government, realizing there were problems of some kind, commissioned Tom Jenkins (Chairman, OpenText Corporation), along with a committee,, to examine the various government tax incentive programmes developed for business R&D. This resulted in what  is known as the Jenkins report (featured in my Oct. 21, 2011 posting) and changes, based on the recommendations, such as more incentives for partnerships between universities and businesses and a major change of focus (funds for science that will make money) for one of the granting agencies (mentioned in my May 22, 2013 posting). Given that Canada already had good incentives for business R&D before 2011, why did the government implement more incentives after the 2011 Jenkins report since it seems that the incentives might not be the problem. Here’s more about the situation prior to the changes stemming from the 2011 Jenkins report, from the OECD’s 2013 scorecard: Canada Highlights,

Canada is among the few OECD countries where R&D expenditure declined between 2000 and 2011 (Figure 1). This decline was mainly due to reduced business spending on R&D. It occurred despite relatively generous public support for business R&D, primarily through tax incentives. In 2011, Canada was amongst the OECD countries with the most generous tax support for R&D and the country with the largest share of government funding for business R&D being accounted for by tax credits (Figure 2). …

OECD and key nanotechnology indicators

At roughly the same time as the OECD Science, Technology and Industry Scoreboard was released, there was this Oct. 25, 2013 news item on Nanowerk about an October 2013 update of the OECD’s key nanotechnology indicators (Note: A link has been removed),

The ‘Key Nanotechnology Indicators’ are produced by the OECD’s Directorate for Science Technology and Industry (DSTI) and recently have been updated in October 2013. These latest numbers are available as Excel spreadsheets and can be found here on the OECD DSTI page and include the following:
Nanotechnology firms
KNI 1 Number of firms active in nanotechnology, 2011 or latest available year
KNI 2 Percentage of small nanotechnology firms, 2011 or latest available year
Number of firms active in nanotechnology
Number of firms active in nanotechnology (OECD). (click image to enlarg

i have looked at some of the nanotechnology key indicator spreadsheets provided by the OECD and the only one of my admittedly small sample that lists Canadian performance was in the Share of countries in nanotechnology patents filed under PCT, 2008-10. Apparently Canada did not submit data about Number of firms active in nanotechnology, 2011 or latest available year or Nanotechnology R&D expenditures in the business sector, 2011 or latest available year.

*Added ‘Science’ to the head as in ‘… Science, Technology and Industry Scoreboard 2013’ on May 29, 2014.

What happened? 2009 report says Canadian students are leaders in reading, math, and science; 2013 report says Canadian students are dropping out of maths and sciences

The Organization for Economic Cooperation and Development (OECD) assesses reading, mathematics, and science skills every three years (they measure results from 15 year olds in participating countries) through their Programme for International Student Assessment (PISA). Canada has participated since 2000 (PISA was launched in 1997). As recently as the 2009 assessment (the 2012 assessment does not appear to have been released yet),, Canadian students were above average in many measures, from the Canadian School Boards Association 2010 (?) posting titled, PISA Results: Canadian Students Score High in Performance, Canadian Education System Scores High in Equity,

The results of the Programme for International Assessment (PISA) 2009 were released today at the Ontario Institute for Studies in Education in Toronto. This report, which measures the “quality, efficiency and equity” of education in sixty-five countries and economies, is issued by the Organization for Economic Co-Operation and Development (OECD), in conjunction with the Council of Ministers of Education, Canada, Human Resources and Skills Development Canada and Statistics Canada. This international assessment ranks Canadian students in three domains: reading, math and science. …

Highlights of both the international report and Canadian report include:

  • Canadian students continue to be leaders in reading, math and science. [emphasis mine]
  • The overall performance of Canadian students in math and science are well above the OECD average and remain unchanged from previous PISA results. Canada is outperformed only by seven countries in math and six countries in science.
  • The Canadian gender gap: females outperform males in reading, while males outperformed females in math and science.
  • Equity, a measure of how well a country can maximize its students’ potential, was ranked as extremely high in Canada. The combination of high PISA scores with high equity demonstrates that there is a small gap between highest and lowest performing students.

Three or so years later, it appears that we have high drop out rates in the sciences and maths, from an Oct. 8, 2013 news item on the CBC (Canadian Broadcasting Corporation) website,

… Canadians are paying a heavy price for the fact that less than 50 per cent of Canadian high school students graduate with senior courses in science, technology, engineering and math (STEM) at a time when 70 per cent of Canada’s top jobs require an education in those fields, said report released by the science education advocacy group Let’s Talk Science and the pharmaceutical company Amgen Canada.

Spotlight on Science Learning 2013 compiles publicly available information about individual and societal costs of students dropping out STEM courses early.

The answer as to what happened has something  to do with when the OECD programme makes its assessment. They measure skills in 15 year olds and generally speaking that means students in grade 10, which coincidentally, is the last year math and science are required courses in most provinces, from the CBC Oct.8, 2013, news item,

Even though most provinces only require math and science courses until Grade 10, the report [Spotlight on Science published by Let’s Talk Science and pharmaceutical company Amgen Canada) found students without Grade 12 math could expect to be excluded from 40 to 75 per cent of programs at Canadian universities, and students without Grade 11 could expect to be excluded from half of community college programs. [emphasis mine]

This news about Canadian students and their failure to pursue maths and sciences according to the Spotlight on Science Learning report was included in the context (in the CBC news item) of another OECD report (released Tues., Oct. 8, 2013), which concluded that Canadian adult numeracy skills lag behind, from the Oct. 8, 2013 CBC news item,

The OECD released its first survey of adult skills Tuesday (Oct. 8, 2013), measuring the literacy, numeracy, and problem-solving skills of those aged 16 to 65 in 24 countries, including 27,000 people in Canada.

While Canadians scored far above average at problem solving in technology-rich environments and their average literacy score was around the average of OECD countries, their mean numeracy score was “significantly below the average,” the OECD said, putting Canada 13th out of 21 countries. [emphasis mine]

The Council of Ministers of Education, Canada, described the average score as “slightly below the OECD average,” but acknowledged the results suggested “this is one area that could be targeted by policymakers for improvement. [emphasis mine]

There’s a difference between ‘significantly below average’ and ‘slightly below average’ and shy of reading the report I’m not sure who to believe. In any event, our literacy skills are accounted to be good and we’re also good at problemsolving in technology-rich environments.  This latest OECD report is titled, OECD Skills Outlook 2013. Here’s more about it from the Outlook webpage (Note: Links have been removed),

This first OECD Skills Outlook presents the initial results of the Survey of Adults Skills (PIAAC), which evaluates the skills of adults in 24 countries. It provides insights into the availability of some of the key skills and how they are used at work and at home. A major component is the direct assessment of key information-processing skills: literacy, numeracy and problem solving in the context of technology-rich environments.

You can get the full report or summaries from here. As for the Spotlight on Science report, you can find it here on the Let’s Talk Science website. I’ve included the video about the report, which I think illustrates one of the key problems with Canadian children and science,

It’s (video) dull and it didn’t need to be.As for the report itself, it’s reflects a standard approach to this ‘problem’ of getting children to pursue the sciences and maths after a certain point. Personally, I think there’s a much interesting study on this topic of children and science, the ASPIRES project, in the UK, which I highlighted in my Jan. 31, 2012 posting,

One of the research efforts in the UK is the ASPIRES research project at King’s College London (KCL), which is examining children’s attitudes to science and future careers. Their latest report, Ten Science Facts and Fictions: the case for early education about STEM careers (PDF), is profiled in a Jan. 11, 2012 news item on physorg.com (from the news item),

Professor Archer [Louise Archer, Professor of Sociology of Education at King’s] said: “Children and their parents hold quite complex views of science and scientists and at age 10 or 11 these views are largely positive. The vast majority of children at this age enjoy science at school, have parents who are supportive of them studying science and even undertake science-related activities in their spare time. They associate scientists with important work, such as finding medical cures, and with work that is well paid.

“Nevertheless, less than 17 per cent aspire to a career in science. These positive impressions seem to lead to the perception that science offers only a very limited range of careers, for example doctor, scientist or science teacher. It appears that this positive stereotype is also problematic in that it can lead people to view science as out of reach for many, only for exceptional or clever people, and ‘not for me’.

Professor Archer says the findings indicate that engaging young people in science is not therefore simply a case of making it more interesting or more fun. She said: “There is a disconnect between interest and aspirations. Our research shows that young people’s ambitions are strongly influenced by their social backgrounds – ethnicity, social class and gender – and by family contexts. [emphases mine]

Families and support systems make a huge difference in children’s lives and their aspirations, scientific or otherwise.

In sum, up until 2009 Canadian children seemed to have good skills in literacy, maths, and sciences at the age of 15, which is the same year courses in maths and sciences are no longer required (in most provinces). According to the Spotlight on Science Learning 2013 report, most children choose not take those maths and sciences courses after grade 10 despite the fact that they are needed for most higher education. This lack of interest appears to be reflected in the OECD’s recent report, OECD Skills Outlook 2013, which noted that Canadian adults’ numeracy skills lag behind that of many of their counterparts in other countries (although we compare well with high literacy and other skills). While I find the Spotlight on Science Learning 2013 report interesting, the UK’s ASPIRES project has taken what seems to me a more fruitful approach to children and science.

Bottom line: I think we need more imagination in our approach and we need to better include the kids themselves (a couple of interactive demonstrations just aren’t involving enough), and we need to make science, etc. engaging for the entire community.