Tag Archives: Organization for Economic Cooperation and Development

Part 2 (b) of 3: Science Culture: Where Canada Stands; an expert assessment (reconstructed)

Carrying on from part 2 (a) of this commentary on the Science Culture: Where Canada Stands assessment by the Council of Canadian Academies (CAC).

One of the most intriguing aspects of this assessment was the reliance on an unpublished inventory of Canadian science outreach initiatives (informal science education) that was commissioned by the Korean Foundation for the Advancement of Science and Creativity,

The system of organizations, programs, and initiatives that supports science culture in any country is dynamic. As a result, any inventory provides only a snapshot at a single point in time, and risks quickly becoming out of date. No sustained effort has been made to track public science outreach and engagement efforts in Canada at the national or regional level. Some of the Panel’s analysis relies on data from an unpublished inventory of public science communication initiatives in Canada undertaken in 2011 by Bernard Schiele, Anik Landry, and Alexandre Schiele for the Korean Foundation for the Advancement of Science and Creativity (Schiele et al., 2011). This inventory identified over 700 programs and organizations across all provinces and regions in Canada, including over 400 initiatives related to museums, science centres, zoos, or aquariums; 64 associations or NGOs involved in public science outreach; 49 educational initiatives; 60 government policies and programs; and 27 media programs. (An update of this inventory completed by the Panel brings the total closer to 800 programs.) The inventory is used throughout the chapter [chapter five] to characterize different components of the Canadian system supporting public science outreach, communication, and engagement. (p. 130 PDF; p. 98 print)

I’m fascinated by the Korean interest and wonder if this due to perceived excellence or to budgetary considerations. The cynic in me suspects the Korean foundation was interested in the US scene but decided that information from the Canadian scene would be cheaper to acquire and the data could be extrapolated to give a perspective on the US scene.

In addition to the usual suspects (newspapers, television, radio, science centres, etc.), the Expert Panel did recognize the importance of online science sources (they would have looked foolish if they hadn’t),

Canadians are increasingly using the internet to seek out information relating to science. This activity can take the form of generalized searches about science-related issues or more targeted forms of information acquisition. For example, Canadians report using the internet to seek out information on health and medical issues an average of 47 times a year, or nearly every week. Other forms of online exposure to scientific content also appear to be common. For example, 46% of Canadians report having read a blog post or listserv related to science and technology at least once in the last three months, and 62% having watched an online video related to science and technology.

An increasing reliance on the internet as the main source of information about science and technology is consistent with the evolution of the media environment, as well as with survey data from other countries. Based on the Panel’s survey, 17% of Canadians, for example, report reading a printed newspaper daily, while 40% report reading about the news or current events online every day. (p. 13/2 PDF; p. 100/1 print)

In common with the rest of the world, Canadians are producing and enjoying science festivals,

In Canada there are two established, large-scale science festivals. Science Rendezvous [founded in 2008 as per its Wikipedia entry] takes place in about 20 cities across the country and combines a variety of programming to comprise a day-long free event (Science Rendezvous, 2013).

The annual Eureka! Festival in Montréal (see Figure 5.6 [founded in 2007 as per its program list]) has over 100 activities over three days; it attracted over 68,000 attendees in 2012 (Eureka! Festival, 2013). More science festivals have recently been created. The University of Toronto launched the Toronto Science Festival in fall 2013 (UofT, 2013), and Beakerhead, a new festival described as a “collision of art and culture, technology, and engineering,” was launched in 2013 in Calgary (Beakerhead, 2013). Two Canadian cities have also recently won bids to host STEMfest (Saskatoon in 2015 and Halifax in 2018), an international festival of science, technology, engineering, and mathematics (Global STEM States, 2014). (pp. 145/6 PDF; pp. 113/4 PDF)

The assessment notes have a grand total of five radio and television programmes devoted to science: The Nature of Things, Daily Planet, Quirks and Quarks, Découverte, and Les années lumière (p. 150 PDF; p. 118 print) and a dearth of science journalism,

Dedicated science coverage is notably absent from the majority of newspapers and other print journalism in Canada. As shown in Table 5.3, none of the top 11 newspapers by weekly readership in Canada has a dedicated science section, including nationals such as The Globe and Mail and National Post. Nine of these newspapers have dedicated technology sections, which sometimes contain sub-sections with broader coverage of science or environment stories; however, story coverage tends to be dominated by technology or business (or gaming) stories. Few Canadian newspapers have dedicated science journalists on staff, and The Globe and Mail is unique among Canadian papers in having a science reporter, a medicine and health reporter, and a technology reporter. (p. 152 PDF; p. 120 print)

Not stated explicitly in the assessment is this: those science and technology stories you see in the newspaper are syndicated stories, i.e., written by reporters for the Associated Press, Reuters, and other international press organizations or simply reprinted (with credit) from another newspaper.

The report does cover science blogging with this,

Science blogs are another potential source of information about developments in science and technology. A database compiled by the Canadian Science Writers’ Association, as of March of 2013, lists 143 Canadian science blogs, covering all areas of science and other aspects of science such as science policy and science culture (CSWA, 2013). Some blogs are individually authored and administered, while others are affiliated with larger networks or other organizations (e.g., Agence Science-Presse, PLOS Blogs). Canadian science blogger Maryse de la Giroday has also published an annual round-up of Canadian science blogs on her blog (www.frogheart.ca) for the past three years, and a new aggregator of Canadian science blogs was launched in 2013 (www.scienceborealis.ca). [emphases mine]

Data from the Panel’s survey suggest that blogs are becoming a more prominent source of information about science and technology for the general public. As noted at the beginning of the chapter, 46% of Canadians report having read a blog post about science or technology at least once in the past three months. Blogs are also influencing the way that scientific research is carried out and disseminated. A technical critique in a blog post by Canadian microbiologist Rosie Redfield in 2010, for example, catalyzed a widely publicized debate on the validity of a study published in Science, exploring the ability of bacteria to incorporate arsenic into their DNA. The incident demonstrated the potential impact of blogs on mainstream scientific research. CBC highlighted the episode as the Canadian science story of the year (Strauss, 2011), and Nature magazine identified Redfield as one of its 10 newsmakers of the year in 2011 as a result of her efforts to replicate the initial study and publicly document her progress and results (Hayden, 2011).

The impact of online information sources, however, is not limited to blogs, with 42% of Canadians reporting having heard about a science and technology news story though social media sources like Twitter and Facebook in the last three months. And, as noted earlier, the internet is often used to search for information about specific science and technology topics, both for general issues such as climate change, and more personalized information on medical and health issues.(pp. 153/4 PDF; pp. 121/2 print)

Yes, I got a shout out as did Rosie Redfield. We were the only two science bloggers namechecked. (Years ago, the Guardian newspaper was developing a science blog network and the editor claimed he couldn’t find many female science bloggers after fierce criticism of its first list of bloggers. This was immediately repudiated not only by individuals but someone compiled a list of hundreds of female science bloggers.) Still, the perception persists and I’m thrilled that the panel struck out in a different direction. I was also pleased to see Science Borealis (a Canadian science blog aggregator) mentioned. Having been involved with its founding, I’m also delighted its first anniversary was celebrated in Nov. 2014.

I doubt many people know we have a science press organization in Canada, Agence Science-Presse, but perhaps this mention in the assessment will help raise awareness in Canada’s English language media,

Founded in 1978 with the motto Parce que tout le monde s’intéresse à la science (“because everyone is interested in science”), Agence Science-Presse is a not-for-profit organization in Quebec that supports media coverage of science by distributing articles on scientific research or other topical science and technology issues to media outlets in Canada and abroad. The organization also supports science promotion activities aimed at youth. For example, it currently edits and maintains an aggregation of blogs designed for young science enthusiasts and science journalists (Blogue ta science). (p. 154 PDF; p. 122)

The final chapter (the 6th) of the assessment makes five key recommendations for ‘Cultivating a strong science culture’:

  1. Support lifelong science learning
  2. Make science inclusive
  3. Adapt to new technologies
  4. Enhance science communication and engagement
  5. Provide national or regional leadership

Presumably the agriculture reference in the chapter title is tongue-in-cheek. Assuming that’s not one of my fantasies, it’s good to see a little humour.

On to the first recommendation, lifelong learning,

… Science centres and museums, science programs on radio and television, science magazines and journalism, and online resources can all help fulfil this function by providing accessible resources for adult science learning, and by anticipating emerging information needs based on topical issues.

Most informal science learning organizations already provide these opportunities to varying degrees; however, this conception of the relative roles of informal and formal science learning providers differs from the traditional understanding, which often emphasizes how informal environments can foster engagement in science (particularly among youth), thereby triggering additional interest and the later acquisition of knowledge (Miller, 2010b). [emphasis mine] Such a focus may be appropriate for youth programming, but neglects the role that these institutions can play in ongoing education for adults, who often seek out information on science based on specific, well-defined interests or needs (e.g., a medical diagnosis, a newspaper article on the threat of a viral pandemic, a new technology brought into the workplace) (Miller, 2012). [emphases mine] Informal science learning providers can take advantage of such opportunities by anticipating these needs, providing useful and accessible information, and then simultaneously building and deepening knowledge of the underlying science through additional content.

I’m glad to see the interest in adult informal science education although the emphasis on health/medical and workplace technology issues suggests the panel underestimates, despite the data from its own survey, Canadians’ curiosity about and interest in science and technology. The panel also underestimates the tenacity with which many gatekeepers hold to the belief that no one is interested in science. It took me two years before a local organizer would talk to me about including one science-themed meeting in his programme (the final paragraph in my April 14, 2014 post describes some of the process  and my April 18, 2014 post describes the somewhat disappointing outcome). In the end, it was great to see a science-themed ‘city conversation’ but I don’t believe the organizer found it to be a success, which means it’s likely to be a long time before there’s another one.

The next recommendation, ‘Making science inclusive’, is something that I think needs better practice. If one is going to be the change one wants to see that means getting people onto your expert panels that reflect your inclusiveness and explaining to your audience how your expert panel is inclusive.

The ‘Adapting to new technologies’ recommendation is where I expected to see some mention of the social impact of such emerging technologies as robotics, nanotechnology, synthetic biology, etc. That wasn’t the case,

Science culture in Canada and other countries is now evolving in a rapidly changing technological environment. Individuals are increasingly turning to online sources for information about science and technology, and science communicators and the media are also adapting to the new channels of communication and outreach provided over the internet. As people engage more with new forms of technology in their home and work lives, organizations may be able to identify new ways to take advantage of available technologies to support learning and foster science interest and engagement. At the same time, as noted in Chapter 2, this transition is also challenging traditional models of operation for many organizations such as science centres, museums, and science media providers, forcing them to develop new strategies.

Examples of the use of new technologies to support learning are now commonplace. Nesta, an innovation-oriented organization based in the United Kingdom, conducted a study investigating the extent to which new technologies are transforming learning among students (Luckin et al., 2012) (p. 185 PDF; p. 153 print)

Admittedly, the panel was not charged with looking too far into the future but it does seem odd that in a science culture report there isn’t much mention (other than a cursory comment in an early chapter) of these emerging technologies and the major changes they are bringing with them. If nothing else, the panel might have wanted to make mention of artificial intelligence how the increasing role of automated systems may be affecting science culture in Canada. For example, in my July 16, 2014 post I described a deal Associated Press (AP) signed with a company that automates the process of writing sports and business stories. You may well have read a business story (AP contracted for business stories) written by an artificial intelligence system or, if you prefer the term, an algorithm.

The recommendation for ‘Enhancing science communication and engagement’ is where I believe the Expert Panel should be offered a bouquet,

… Given the significance of government science in many areas of research, government science communication constitutes an important vector for increasing public awareness and understanding about science. In Canada current policies governing how scientists working in federal departments and agencies are allowed to interact with the media and the public have come under heavy criticism in recent years …

Concerns about the federal government’s current policies on government scientists’ communication with the media have been widely reported in Canadian and international
press in recent years (e.g., Ghosh, 2012; CBC, 2013c; Gatehouse, 2013; Hume, 2013; Mancini, 2013; Munro, 2013). These concerns were also recently voiced by the editorial board of Nature (2012), which unfavourably compared Canada’s current approach with the more open policies now in place in the United States. Scientists at many U.S. federal agencies are free to speak to the media without prior departmental approval, and to
express their personal views as long as they clearly state that they are not speaking on behalf of the government. In response to such concerns, and to a formal complaint filed by the Environmental Law Clinic at the University of Victoria and Democracy Watch, on April 2, 2013 Canada’s Information Commissioner launched an investigation into whether current policies and policy instruments in seven federal departments and agencies are “restricting or prohibiting government scientists from speaking with or sharing research with the media and the Canadian public” (OICC, 2013).

Since these concerns have come to light, many current and former government scientists have discussed how these policies have affected their interactions with the media. Marley Waiser, a former scientist with Environment Canada, has spoken about how that department’s policies prevented her from discussing her research on chemical pollutants in Wascana Creek near Regina (CBC, 2013c). Dr. Kristi Miller, a geneticist with the Department of Fisheries and Oceans, was reportedly prevented from speaking publicly about a study she published in Science, which investigated whether a viral infection might be the cause of declines in Sockeye salmon stocks in the Fraser River (Munro, 2011).

According to data from Statistics Canada (2012), nearly 20,000 science and technology professionals work for the federal government. The ability of these researchers to communicate with the media and the Canadian public has a clear bearing on Canada’s science culture. Properly supported, government scientists can serve as a useful conduit for informing the public about their scientific work, and engaging the public in discussions about the social relevance of their research; however, the concerns reported above raise questions about the extent to which current federal policies in Canada are limiting these opportunities for public communication and engagement. (pp. 190/1 PDF; p. 158/9 print)

Kudos for including the information and for this passage as well,

Many organizations including science centres and museums, research centres, and even governments may be perceived as having a science promotion agenda that portrays only the benefits of science. As a result, these organizations are not always seen as promoters of debate through questioning, which is a crucial part of the scientific process. Acknowledging complexity and controversy is another means to improve the quality of public engagement in science in a range of different contexts. (p. 195 PDF; p. 163 print)

One last happy note, which is about integrating the arts and design into the STEM (science, technology, engineering, and mathematics communities),

Linking Science to the Arts and Design U.S. advocates for “STEM to STEAM” call for an incorporation of the arts in discussions of science, technology, engineering, and mathematics in an effort to “achieve a synergistic balance” (Piro, 2010). They cite positive outcomes such as cognitive development, reasoning skills, and concentration abilities. Piro (2010) argues that “if creativity, collaboration, communication, and critical thinking — all touted as hallmark skills for 21st-century success — are to be cultivated, we need to ensure that STEM subjects are drawn closer to the arts.” Such approaches offer new techniques to engage both student and adult audiences in science learning and engagement opportunities.

What I find fascinating about this STEM to STEAM movement is that many of these folks don’t seem to realize is that until fairly recently the arts and sciences recently have always been closely allied.  James Clerk Maxwell was also a poet, not uncommon amongst 19th century scientists.

In Canada one example of this approach is found in the work of Michael R. Hayden, who has conducted extensive genetic research on Huntington disease. In the lead-up to the 2000 Human Genome Project World Conference, Hayden commissioned Vancouver’s Electric Company Theatre to fuse “the spheres of science and art in a play that explored the implications of the revolutionary technology of the Human Genome Project” (ECT, n.d.). This play, The Score, was later adapted into a film. Hayden believes that his play “transforms the scientific ideas explored in the world of the laboratory into universal themes of human identity, freedom and creativity, and opens up a door for a discussion between the scientific community and the public in general” (Genome Canada, 2006). (p. 196 PDF; p. 164 print)

I’m not sure why the last recommendation presents an either/or choice, ‘Providing national or regional leadership’, while the following content suggests a much more fluid state,

…  it should be recognized that establishing a national or regional vision for science culture is not solely the prerogative of government. Such a vision requires broad support and participation from the community of affected stakeholders to be effective, and can also emerge from that community in the absence of a strong governmental role.

The final chapter (the seventh) restates the points the panel has made throughout its report. Unexpectedly, part 2 got bigger, ’nuff said.

* Removed word from this sentence: “For example, in my July 16, 2014 post I [made removed] described a deal Associated Press (AP) signed with a company that automates the process of writing sports and business stories.” on Nov. 17, 2020.

Part 2 (a) of 3: Science Culture: Where Canada Stands; an expert assessment (reconstructed)

Losing over 2000 words, i.e., part 2 of this commentary on the Science Culture: Where Canada Stands assessment by the Council of Canadian Academies (CAC) on New Year’s Eve 2014 was a bit of blow. So, here’s my attempt at reconstructing my much mourned part 2.

There was acknowledgement of Canada as an Arctic country and an acknowledgement of this country’s an extraordinary geographical relationship to the world’s marine environment,

Canada’s status as an Arctic nation also has a bearing on science and science culture. Canada’s large and ecologically diverse Arctic landscape spans a substantial part of the circumpolar Arctic, and comprises almost 40% of the country’s landmass (Statistics Canada, 2009). This has influenced the development of Canadian culture more broadly, and also created opportunities in the advancement of Arctic science. Canada’s northern inhabitants, the majority of whom are Indigenous peoples, represent a source of knowledge that contributes to scientific research in the North (CCA, 2008).

These characteristics have contributed to the exploration of many scientific questions including those related to environmental science, resource development, and the health and well-being of northern populations. Canada also has the longest coastline of any country, and these extensive coastlines and marine areas give rise to unique research opportunities in ocean science (CCA, 2013a). (p. 55 PDF; p. 23 print)

Canada’s aging population is acknowledged in a backhand way,

Like most developed countries, Canada’s population is also aging. In 2011 the median age in Canada was 39.9 years, up from 26.2 years in 1971 (Statistics Canada, n.d.). This ongoing demographic transition will have an impact on science culture in Canada in years to come. An aging population will be increasingly interested in health and medical issues. The ability to make use of this kind of information will depend in large part on the combination of access to the internet, skill in navigating it, and a conceptual toolbox that includes an understanding of genes, probability, and related constructs (Miller, 2010b). (p. 56 PDF; p. 24 print)

Yes, the only science topics of interest for an old person are health and medicine. Couldn’t they have included one sentence suggesting an aging population’s other interests and other possible impacts on science culture?

On the plus side, the report offers a list of selected Canadian science culture milestones,

• 1882 – Royal Society of Canada is established.
• 1916 – National Research Council is established.
• 1923 – Association canadienne-française pour l’avancement des sciences (ACFAS) is established.
• 1930 – Canadian Geographic is first published by the Royal Canadian Geographical Society.
• 1951 – Massey–Lévesque Commission calls for the creation of a national science and technology museum.
• 1959 – Canada sees its first science fairs in Winnipeg, Edmonton, Hamilton, Toronto, Montréal, and Vancouver; volunteer coordination eventually grows into Youth Science Canada.
• 1960 – CBC’s Nature of Things debuts on television; Fernand Séguin hosts “Aux frontières de la science.”
• 1962 – ACFAS creates Le Jeune scientifique, which becomes Québec Science in 1970.
• 1966 – Science Council of Canada is created to advise Parliament on science and technology issues.
• 1967 – Canada Museum of Science and Technology is created.
• 1969 – Ontario Science Centre opens its doors (the Exploratorium in San Francisco opens the same year).
• 1971 – Canadian Science Writers’ Association is formed.
• 1975 – Symons Royal Commission on Canadian Studies speaks to how understanding the role of science in society is important to understanding Canadian culture and identity.
• 1975 – Quirks and Quarks debuts on CBC Radio.
• 1976 – OWL children’s magazine begins publication.
• 1977 – Association des communicateurs scientifiques du Québec is established.
• 1978 – L’Agence Science-Presse is created.
• 1981 – Association des communicateurs scientifiques creates the Fernand-Séguin scholarship to identify promising young science journalists.
• 1982 – Les Débrouillards is launched in Quebec. (p. 58 PDF; p. 26 print)

The list spills onto the next page and into the 2000’s.

It’s a relief to see the Expert Panel give a measured response to the claims made about science culture and its various impacts, especially on the economy (in my book, some of the claims have bordered on hysteria),

The Panel found little definitive empirical evidence of causal relationships between the dimensions of science culture and higher-level social objectives like stronger economic performance or more effective public policies. As is the case with much social science research, isolating the impacts of a single variable on complex social phenomena is methodologically challenging, and few studies have attempted to establish such relationships in any detail. As noted in 1985 by the Bodmer report (a still-influential report on public understanding of science in the United Kingdom), although there is good reason prima facie to believe that improving public understanding of science has national economic benefits, empirical proof for such a link is often elusive (RS & Bodmer, 1985). This remains the case today. Nevertheless, many pieces of evidence suggest why a modern, industrialized society should cultivate a strong science culture. Literature from the domains of cognitive science, sociology, cultural studies, economics, innovation, political science, and public policy provides relevant insights. (p. 63 PDF; p. 31 print)

Intriguingly, while the panel has made extensive use of social science methods for this assessment there are some assumptions made about skill sets required for the future,

Technological innovation depends on the presence of science and technology skills in the workforce. While at one point it may have been possible for relatively low-skilled individuals to substantively contribute to technological development, in the 21st century this is no longer the case. [emphasis mine] Advanced science and technology skills are now a prerequisite for most types of technological innovation. (p. 72 PDF; p. 40 print)

Really, it’s no longer possible for relatively low-skilled individuals to contribute to technological development? Maybe the expert panel missed this bit in my March 27, 2013 post,

Getting back to Bittel’s Slate article, he mentions Foldit (here’s my first piece in an Aug. 6, 2010 posting [scroll down about 1/2 way]), a protein-folding game which has generated some very exciting science. He also notes some of that science was generated by older, ‘uneducated’ women. Bittel linked to Jeff Howe’s Feb. 27, 2012 article about Foldit and other crowdsourced science projects for Slate where I found this very intriguing bit,

“You’d think a Ph.D. in biochemistry would be very good at designing protein molecules,” says Zoran Popović, the University of Washington game designer behind Foldit. Not so. “Biochemists are good at other things. But Foldit requires a narrow, deeper expertise.”

Or as it turns out, more than one. Some gamers have a preternatural ability to recognize patterns, an innate form of spatial reasoning most of us lack. Others—often “grandmothers without a high school education,” says Popovic—exercise a particular social skill. “They’re good at getting people unstuck. They get them to approach the problem differently.” What big pharmaceutical company would have anticipated the need to hire uneducated grandmothers? (I know a few, if Eli Lilly HR is thinking of rejiggering its recruitment strategy.) [emphases mine]

It’s not the idea that technical and scientific skills are needed that concerns me; it’s the report’s hard line about ‘low skills’ (which is a term that is not defined). In addition to the notion that future jobs require only individuals with ‘high level’ skills; there’s the notion (not mentioned in this report but gaining general acceptance in the media) that we shouldn’t ever have to perform repetitive and boring activities. It’s a notion which completely ignores a certain aspect of the learning process. Very young children repeat over and over and over and over … . Apprenticeships in many skills-based crafts were designed with years of boring, repetitive work as part of the training. It seems counter-intuitive but boring, repetitive activities can lead to very high level skills such as the ability to ‘unstick’ a problem for an expert with a PhD in biochemistry.

Back to the assessment, the panel commissioned a survey, conducted in 2013, to gather data about science culture in Canada,

The Panel’s survey of Canadian science culture, designed to be comparable to surveys undertaken in other countries as well as to the 1989 Canadian survey, assessed public attitudes towards science and technology, levels and modes of public engagement in science, and public science knowledge or understanding. (The evidence reported in this chapter on the fourth dimension, science and technology skills, is drawn from other sources such as Statistics Canada and the OECD).

Conducted in April 2013, the survey relied on a combination of landline and mobile phone respondents (60%) and internet respondents (40%), randomly recruited from the general population. In analyzing the results, responses to the survey were weighted based on Statistics Canada data according to region, age, education, and gender to ensure that the sample was representative of the Canadian public. 7 A total of 2,004 survey responses were received, with regional breakdowns presented in Table 4.1. At a national level, survey results are accurate within a range of plus or minus 2.2% 19 times out of 20 (i.e., at the 95% confidence interval), and margins of error for regional results range from 3.8% to 7.1%). Three open-ended questions were also included in the survey, which were coded using protocols previously applied to these questions in other international surveys. 8 All open-ended questions were coded independently by at least three bilingual coders, and any discrepancies in coding were settled through a review by a fourth coder. (p. 79 PDF; p. 47 print)

The infographic’s data in part 1 of this commentary, What Do Canadians Think About Science and Technology (S&T)? is based on the survey and other statistical information included in the report especially Chapter four focused on measurements (pp. 77  – 127 PDF; pp. 45 – 95 print). While the survey presents a somewhat rosier picture of the Canadian science culture than the one I experience on a daily basis, the data seems to have been gathered in a thoughtful fashion. Regardless of the assessment’s findings and my opinions,  how Canadians view science became a matter of passionate debate in the Canadian science blogging community (at least parts of it) in late 2014 as per a Dec. 3, 2014 posting by the Science Borealis team on their eponymous blog (Note: Links have been removed),

The CBC’s Rick Mercer is a staunch science advocate, and his November 19th rant was no exception. He addressed the state of basic science in Canada, saying that Canadians are “passionate and curious about science.”

In response, scientist David Kent wrote a post on the Black Hole Blog in which he disagreed with Mercer, saying, “I do not believe Mr. Mercer’s idea that Canadians as a whole are interested although I, like him, would wish it to be the case.”

Kent’s post has generated some fierce discussion, both in the comments on his original post and in the comments on a Facebook post by Evidence for Democracy.

Here at Science Borealis, we rely on a keen and enthusiastic public to engage with the broad range of science-based work our bloggers share, so we decided to address some of the arguments Kent presented in his post.

Anecdotal evidence versus data

Kent says “Mr. Mercer’s claims about Canadians’ passions are anecdotal at best, and lack any evidence – indeed it is possible that Canadians don’t give a hoot about science for science’s sake.”

Unfortunately, Kent’s own argument is based on anecdotal evidence (“To me it appears that… the average Canadian adult does not particularly care about how or why something works.”).

If you’re looking for data, they’re available in a recent Council of Canadian Academies report that specifically studied science culture in Canada. Results show that Canadians are very interested in science.

You can find David Kent’s Nov. 26, 2014 post about Canadians, Rick Mercer and science here. Do take a look at the blog’s comments which feature a number of people deeply involved in promoting and producing Canadian science culture.

I promised disturbing statistics in the head for this posting and here they are in the second paragraph,

Canadian students perform well in PISA [Organization for Economic Cooperation and Development’s (OECD) Programme for International Student Assessment (PISA)] , with relatively high scores on all three of the major components of the assessment (reading, science, and mathematics) compared with students in other countries (Table 4.4). In 2012 only seven countries or regions had mean scores on the science assessment higher than Canada on a statistically significant basis: Shanghai–China, Hong Kong–China, Singapore, Japan, Finland, Estonia, and Korea (Brochu et al., 2013). A similar pattern holds for mathematics scores, where nine countries had mean scores higher than Canada on a statistically significant basis: Shanghai–China, Singapore, Hong Kong–China, Chinese Taipei, Korea, Macao–China, Japan, Lichtenstein, and Switzerland (Brochu et al., 2013). Regions scoring higher than Canada are concentrated in East Asia, and tend to be densely populated, urban areas. Among G8 countries, Canada ranks second on mean science and mathematics scores, behind Japan.

However, the 2012 PISA results also show statistically significant declines in Canada’s scores on both the mathematics and science components. Canada’s science score declined by nine points from its peak in 2006 (with a fall in ranking from 3rd to 10th), and the math score declined by 14 points since first assessed in 2003 (a fall from 7th to 13th) (Brochu et al., 2013). Changes in Canada’s standing relative to other countries reflect both the addition of new countries or regions over time (i.e., the addition of regions such as Hong Kong–China and Chinese Taipei in 2006, and of Shanghai–China in 2009) and statistically significant declines in mean scores.

My Oct. 9, 2013 post discusses the scores in more detail and as the Expert Panel notes, the drop is disconcerting and disturbing. Hopefully, it doesn’t indicate a trend.

Part 2 (b) follows immediately.

*Word corrected in this sentence: “There was acknowledgement of Canada as [a changed to an] Arctic country and an acknowledgement of this country’s an extraordinary geographical relationship to the world’s marine environment.” on Nov. 17, 2020

Nanomaterials and safety: Europe’s non-governmental agencies make recommendations; (US) Arizona State University initiative; and Japan’s voluntary carbon nanotube management

I have three news items which have one thing in common, they concern nanomaterials and safety. Two of these of items are fairly recent; the one about Japan has been sitting in my drafts folder for months and I’m including it here because if I don’t do it now, I never will.

First, there’s an April 7, 2014 news item on Nanowerk (h/t) about European non-governmental agencies (CIEL; the Center for International Environmental Law and its partners) and their recommendations regarding nanomaterials and safety. From the CIEL April 2014 news release,

CIEL and European partners* publish position paper on the regulation of nanomaterials at a meeting of EU competent authorities

*ClientEarth, The European Environmental Bureau, European citizen’s Organization for Standardisation, The European consumer voice in Standardisation –ANEC, and Health Care Without Harm, Bureau of European Consumers

… Current EU legislation does not guarantee that all nanomaterials on the market are safe by being assessed separately from the bulk form of the substance. Therefore, we ask the European Commission to come forward with concrete proposals for a comprehensive revision of the existing legal framework addressing the potential risks of nanomaterials.

1. Nanomaterials are different from other substances.

We are concerned that EU law does not take account of the fact that nano forms of a substance are different and have different intrinsic properties from their bulk counterpart. Therefore, we call for this principle to be explicitly established in the REACH, and Classification Labeling and Packaging (CLP) regulations, as well as in all other relevant legislation. To ensure adequate consideration, the submission of comprehensive substance identity and characterization data for all nanomaterials on the market, as defined by the Commission’s proposal for a nanomaterial definition, should be required.

Similarly, we call on the European Commission and EU Member States to ensure that nanomaterials do not benefit from the delays granted under REACH to phase-in substances, on the basis of information collected on their bulk form.

Further, nanomaterials, due to their properties, are generally much more reactive than their bulk counterpart, thereby increasing the risk of harmful impact of nanomaterials compared to an equivalent mass of bulk material. Therefore, the present REACH thresholds for the registration of nanomaterials should be lowered.

Before 2018, all nanomaterials on the market produced in amounts of over 10kg/year must be registered with ECHA on the basis of a full registration dossier specific to the nanoform.

2. Risk from nanomaterials must be assessed

Six years after the entry into force of the REACH registration requirements, only nine substances have been registered as nanomaterials despite the much wider number of substances already on the EU market, as demonstrated by existing inventories. Furthermore, the poor quality of those few nano registration dossiers does not enable their risks to be properly assessed. To confirm the conclusions of the Commission’s nano regulatory review assuming that not all nanomaterials are toxic, relevant EU legislation should be amended to ensure that all nanomaterials are adequately assessed for their hazardous properties.

Given the concerns about novel properties of nanomaterials, under REACH, all registration dossiers of nanomaterials must include a chemical safety assessment and must comply with the same information submission requirements currently required for substances classified as Carcinogenic, Mutagenic or Reprotoxic (CMRs).

3. Nanomaterials should be thoroughly evaluated

Pending the thorough risk assessment of nanomaterials demonstrated by comprehensive and up-to-date registration dossiers for all nanoforms on the market, we call on ECHA to systematically check compliance for all nanoforms, as well as check the compliance of all dossiers which, due to uncertainties in the description of their identity and characterization, are suspected of including substances in the nanoform. Further, the Community Roling Action Plan (CoRAP) list should include all identified substances in the nanoform and evaluation should be carried out without delay.

4. Information on nanomaterials must be collected and disseminated

All EU citizens have the right to know which products contain nanomaterials as well as the right to know about their risks to health and environment and overall level of exposure. Given the uncertainties surrounding nanomaterials, the Commission must guarantee that members of the public are in a position to exercise their right to know and to make informed choices pending thorough risk assessments of nanomaterials on the market.

Therefore, a publicly accessible inventory of nanomaterials and consumer products containing nanomaterials must be established at European level. Moreover, specific nano-labelling or declaration requirements must be established for all nano-containing products (detergents, aerosols, sprays, paints, medical devices, etc.) in addition to those applicable to food, cosmetics and biocides which are required under existing obligations.

5. REACH enforcement activities should tackle nanomaterials

REACH’s fundamental principle of “no data, no market” should be thoroughly implemented. Therefore, nanomaterials that are on the market without a meaningful minimum set of data to allow the assessment of their hazards and risks should be denied market access through enforcement activities. In the meantime, we ask the EU Member States and manufacturers to use a precautionary approach in the assessment, production, use and disposal of nanomaterials

This comes on the heels of CIEL’s March 2014 news release announcing a new three-year joint project concerning nanomaterials and safety and responsible development,

Supported by the VELUX foundations, CIEL and ECOS (the European Citizen’s Organization for Standardization) are launching a three-year project aiming to ensure that risk assessment methodologies and risk management tools help guide regulators towards the adoption of a precaution-based regulatory framework for the responsible development of nanomaterials in the EU and beyond.

Together with our project partner the German Öko-Institut, CIEL and ECOS will participate in the work of the standardization organizations Comité Européen de Normalisation and International Standards Organization, and this work of the OECD [Organization for Economic Cooperation and Development], especially related to health, environmental and safety aspects of nanomaterials and exposure and risk assessment. We will translate progress into understandable information and issue policy recommendations to guide regulators and support environmental NGOs in their campaigns for the safe and sustainable production and use of nanomaterials.

The VILLUM FOUNDATION and the VELUX FOUNDATION are non-profit foundations created by Villum Kann Rasmussen, the founder of the VELUX Group and other entities in the VKR Group, whose mission it is to bring daylight, fresh air and a better environment into people’s everyday lives.

Meanwhile in the US, an April 6, 2014 news item on Nanowerk announces a new research network, based at Arizona State University (ASU), devoted to studying health and environmental risks of nanomaterials,

Arizona State University researchers will lead a multi-university project to aid industry in understanding and predicting the potential health and environmental risks from nanomaterials.

Nanoparticles, which are approximately 1 to 100 nanometers in size, are used in an increasing number of consumer products to provide texture, resiliency and, in some cases, antibacterial protection.

The U.S. Environmental Protection Agency (EPA) has awarded a grant of $5 million over the next four years to support the LCnano Network as part of the Life Cycle of Nanomaterials project, which will focus on helping to ensure the safety of nanomaterials throughout their life cycles – from the manufacture to the use and disposal of the products that contain these engineered materials.

An April 1, 2014 ASU news release, which originated the news item, provides more details and includes information about project partners which I’m happy to note include nanoHUB and the Nanoscale Informal Science Education Network (NISENet) in addition to the other universities,

Paul Westerhoff is the LCnano Network director, as well as the associate dean of research for ASU’s Ira A. Fulton Schools of Engineering and a professor in the School of Sustainable Engineering and the Built Environment.

The project will team engineers, chemists, toxicologists and social scientists from ASU, Johns Hopkins, Duke, Carnegie Mellon, Purdue, Yale, Oregon’s state universities, the Colorado School of Mines and the University of Illinois-Chicago.

Engineered nanomaterials of silver, titanium, silica and carbon are among the most commonly used. They are dispersed in common liquids and food products, embedded in the polymers from which many products are made and attached to textiles, including clothing.

Nanomaterials provide clear benefits for many products, Westerhoff says, but there remains “a big knowledge gap” about how, or if, nanomaterials are released from consumer products into the environment as they move through their life cycles, eventually ending up in soils and water systems.

“We hope to help industry make sure that the kinds of products that engineered nanomaterials enable them to create are safe for the environment,” Westerhoff says.

“We will develop molecular-level fundamental theories to ensure the manufacturing processes for these products is safer,” he explains, “and provide databases of measurements of the properties and behavior of nanomaterials before, during and after their use in consumer products.”

Among the bigger questions the LCnano Network will investigate are whether nanomaterials can become toxic through exposure to other materials or the biological environs they come in contact with over the course of their life cycles, Westerhoff says.

The researchers will collaborate with industry – both large and small companies – and government laboratories to find ways of reducing such uncertainties.

Among the objectives is to provide a framework for product design and manufacturing that preserves the commercial value of the products using nanomaterials, but minimizes potentially adverse environmental and health hazards.

In pursuing that goal, the network team will also be developing technologies to better detect and predict potential nanomaterial impacts.

Beyond that, the LCnano Network also plans to increase awareness about efforts to protect public safety as engineered nanomaterials in products become more prevalent.

The grant will enable the project team to develop educational programs, including a museum exhibit about nanomaterials based on the LCnano Network project. The exhibit will be deployed through a partnership with the Arizona Science Center and researchers who have worked with the Nanoscale Informal Science Education Network.

The team also plans to make information about its research progress available on the nanotechnology industry website Nanohub.org.

“We hope to use Nanohub both as an internal virtual networking tool for the research team, and as a portal to post the outcomes and products of our research for public access,” Westerhoff says.

The grant will also support the participation of graduate students in the Science Outside the Lab program, which educates students on how science and engineering research can help shape public policy.

Other ASU faculty members involved in the LCnano Network project are:

• Pierre Herckes, associate professor, Department of Chemistry and Biochemistry, College of Liberal Arts and Sciences
• Kiril Hristovski, assistant professor, Department of Engineering, College of Technology and Innovation
• Thomas Seager, associate professor, School of Sustainable Engineering and the Built Environment
• David Guston, professor and director, Consortium for Science, Policy and Outcomes
• Ira Bennett, assistant research professor, Consortium for Science, Policy and Outcomes
• Jameson Wetmore, associate professor, Consortium for Science, Policy and Outcomes, and School of Human Evolution and Social Change

I hope to hear more about the LCnano Network as it progresses.

Finally, there was this Nov. 12, 2013 news item on Nanowerk about instituting  voluntary safety protocols for carbon nanotubes in Japan,

Technology Research Association for Single Wall Carbon Nanotubes (TASC)—a consortium of nine companies and the National Institute of Advanced Industrial Science and Technology (AIST) — is developing voluntary safety management techniques for carbon nanotubes (CNTs) under the project (no. P10024) “Innovative carbon nanotubes composite materials project toward achieving a low-carbon society,” which is sponsored by the New Energy and Industrial Technology Development Organization (NEDO).

Lynn Bergeson’s Nov. 15, 2013 posting on nanotech.lawbc.com provides a few more details abut the TASC/AIST carbon nanotube project (Note: A link has been removed),

Japan’s National Institute of Advanced Industrial Science and Technology (AIST) announced in October 2013 a voluntary guidance document on measuring airborne carbon nanotubes (CNT) in workplaces. … The guidance summarizes the available practical methods for measuring airborne CNTs:  (1) on-line aerosol measurement; (2) off-line quantitative analysis (e.g., thermal carbon analysis); and (3) sample collection for electron microscope observation. …

You can  download two protocol documents (Guide to measuring airborne carbon nanotubes in workplaces and/or The protocols of preparation, characterization and in vitro cell based assays for safety testing of carbon nanotubes), another has been published since Nov. 2013, from the AIST’s Developing voluntary safety management techniques for carbon nanotubes (CNTs): Protocol and Guide webpage., Both documents are also available in Japanese and you can link to the Japanese language version of the site from the webpage.

Ecotoxicology and environmental fate of manufactured nanomaterials—testing guidelines from Organization for Economic Cooperation and Development (OECD)

The Organization for Economic Cooperation and Development (OECD) has released guidelines for testing manufactured nanomaterials according to a March 11, 2014 news item on Nanowerk,

As part of its Programme on the Safety of Manufactured Nanomaterials, and in particular work on the testing and assessment of manufactured nanomaterials, OECD initiated a series of expert meetings to improve the applicability of the OECD Test Guidelines to nanomaterials. With this in mind, the Working Party on Manufactured Nanomaterials agreed to address the ecotoxicology and environmental fate of manufactured nanomaterials.

The OECD Expert Meeting on Ecotoxicology and Environmental Fate took place on 29th-31st January 2013 in Berlin, Federal Press Office. The event was hosted by the German delegation and funded by the German Federal Ministry of the Environment, Nature Conservation and Nuclear Safety (BMU) as well as the United States Environment Protection Agency (US EPA).

Three documents were published one of which being a preview,

The OECD expert meeting on ecotoxicology and environmental fate — Towards the development of improved OECD guidelines for the testing of nanomaterials by Dana Kühnel and Carmen Nickel. Science of The Total Environment Volume 472, 15 February 2014, Pages 347–353 http://dx.doi.org/10.1016/j.scitotenv.2013.11.055

This document is open access.

The report itself,

OECD. ENVIRONMENT DIRECTORATE.
JOINT MEETING OF THE CHEMICALS COMMITTEE AND
THE WORKING PARTY ON CHEMICALS, PESTICIDES AND BIOTECHNOLOGY. Environment, Health and Safety Publications
Series on the Safety of Manufactured Nanomaterials. ENV/JM/MONO(2014)1

ECOTOXICOLOGY AND ENVIRONMENTAL FATE OF MANUFACTURED NANOMATERIALS:
TEST GUIDELINES Expert Meeting Report
Series on the Safety of Manufactured Nanomaterials No. 40

Ecotoxicology and Environmental Fate of Manufactured Nanomaterials: Test Guidelines

There’s an addendum which includes the presentations made at the meeting (you can find both the report, proper, and the addendum on this page scroll to report no. 40),

OECD. ENVIRONMENT DIRECTORATE JOINT MEETING OF THE CHEMICALS COMMITTEE AND
THE WORKING PARTY ON CHEMICALS, PESTICIDES AND BIOTECHNOLOGY. Environment, Health and Safety Publications. ENV/JM/MONO(2014)1/ADD

ADDENDUM TO EXOTOXICOLOGY AND ENVIRONMENTAL FATE OF MANUFACTURED
NANOMATERIALS: TEST GUIDELINES

Series on the Safety of Manufactured Nanomaterials No. 40
Ecotoxicology and Environmental Fate of Manufactured Nanomaterials:
Test Guidelines.

As it can get a little tricky accessing OECD documents, I’ve tried to give a couple different links and as much identifying information as possible. Good luck!

OECD Science, Technology and Industry 2013 Scorecard: Canada highlights and key nanotechnology indicators*

The Organization for Economic Cooperation and Development (OECD) has released its 2013 scorecard or, more officially, the OECD Science, Technology and Industry Scoreboard 2013 (which you can find here). There’s a brief description of the 2013 scorecard on the webpage housing the complete report/scorecard and various publications derived from it,

Science, technology, innovation and entrepreneurship – which foster competitiveness, productivity, and job creation – are important mechanisms for encouraging sustainable growth. The 260 indicators in the OECD Science, Technology and Industry (STI) Scoreboard 2013 show how OECD and partner economies are performing in a wide range of areas to help governments design more effective and efficient policies and monitor progress towards their desired goals.

The 2013 scorecard highlights concerning Canada are (from the OECD Science, Technology and Industry Scoreboard 2013
: Canada publication),

Canada experienced a decline in business spending on R&D between 2001 and 2011, despite generous public support, mainly through tax incentives for business R&D. As a percentage of GDP, Canada’s tax incentives for R&D were the largest after France in 2011. [emphasis mine]
Despite relatively limited investment in R&D, a large share of Canada’s manufacturing and services firms are involved in innovation. Canada is among the group of countries where high-technology industries still dominate patenting activity, while in several other OECD countries business services now account for the largest share of patents. Canada lags somewhat in the proportion of young firms applying for patents, however.
 Canada achieves a relatively high impact with its scientific research. Compared with other large OECD economies, Canada has a very high rate of international mobility of researchers, mostly with the United States. Returning researchers and new inflows tend to publish in journals with higher quality than researchers that have not engaged in international mobility.
 Canada’s trade performance is characterised by a strong focus on primary products, which affects its positioning in global value chains. This contributes to a relatively low foreign (and thus a high domestic) value added content in Canada’s exports, which declined between 1995 and 2009. In 2009, over 26% of jobs in the business sector were sustained by demand from abroad, down from just over 30% in 1995.

So, despite some of the best tax incentives amongst OECD countries, business in Canada spent less on R&D as the decade wore on. Interesting. Especially so since the government, realizing there were problems of some kind, commissioned Tom Jenkins (Chairman, OpenText Corporation), along with a committee,, to examine the various government tax incentive programmes developed for business R&D. This resulted in what  is known as the Jenkins report (featured in my Oct. 21, 2011 posting) and changes, based on the recommendations, such as more incentives for partnerships between universities and businesses and a major change of focus (funds for science that will make money) for one of the granting agencies (mentioned in my May 22, 2013 posting). Given that Canada already had good incentives for business R&D before 2011, why did the government implement more incentives after the 2011 Jenkins report since it seems that the incentives might not be the problem. Here’s more about the situation prior to the changes stemming from the 2011 Jenkins report, from the OECD’s 2013 scorecard: Canada Highlights,

Canada is among the few OECD countries where R&D expenditure declined between 2000 and 2011 (Figure 1). This decline was mainly due to reduced business spending on R&D. It occurred despite relatively generous public support for business R&D, primarily through tax incentives. In 2011, Canada was amongst the OECD countries with the most generous tax support for R&D and the country with the largest share of government funding for business R&D being accounted for by tax credits (Figure 2). …

OECD and key nanotechnology indicators

At roughly the same time as the OECD Science, Technology and Industry Scoreboard was released, there was this Oct. 25, 2013 news item on Nanowerk about an October 2013 update of the OECD’s key nanotechnology indicators (Note: A link has been removed),

The ‘Key Nanotechnology Indicators’ are produced by the OECD’s Directorate for Science Technology and Industry (DSTI) and recently have been updated in October 2013. These latest numbers are available as Excel spreadsheets and can be found here on the OECD DSTI page and include the following:
Nanotechnology firms
KNI 1 Number of firms active in nanotechnology, 2011 or latest available year
KNI 2 Percentage of small nanotechnology firms, 2011 or latest available year
Number of firms active in nanotechnology
Number of firms active in nanotechnology (OECD). (click image to enlarg

i have looked at some of the nanotechnology key indicator spreadsheets provided by the OECD and the only one of my admittedly small sample that lists Canadian performance was in the Share of countries in nanotechnology patents filed under PCT, 2008-10. Apparently Canada did not submit data about Number of firms active in nanotechnology, 2011 or latest available year or Nanotechnology R&D expenditures in the business sector, 2011 or latest available year.

*Added ‘Science’ to the head as in ‘… Science, Technology and Industry Scoreboard 2013’ on May 29, 2014.

What happened? 2009 report says Canadian students are leaders in reading, math, and science; 2013 report says Canadian students are dropping out of maths and sciences

The Organization for Economic Cooperation and Development (OECD) assesses reading, mathematics, and science skills every three years (they measure results from 15 year olds in participating countries) through their Programme for International Student Assessment (PISA). Canada has participated since 2000 (PISA was launched in 1997). As recently as the 2009 assessment (the 2012 assessment does not appear to have been released yet),, Canadian students were above average in many measures, from the Canadian School Boards Association 2010 (?) posting titled, PISA Results: Canadian Students Score High in Performance, Canadian Education System Scores High in Equity,

The results of the Programme for International Assessment (PISA) 2009 were released today at the Ontario Institute for Studies in Education in Toronto. This report, which measures the “quality, efficiency and equity” of education in sixty-five countries and economies, is issued by the Organization for Economic Co-Operation and Development (OECD), in conjunction with the Council of Ministers of Education, Canada, Human Resources and Skills Development Canada and Statistics Canada. This international assessment ranks Canadian students in three domains: reading, math and science. …

Highlights of both the international report and Canadian report include:

  • Canadian students continue to be leaders in reading, math and science. [emphasis mine]
  • The overall performance of Canadian students in math and science are well above the OECD average and remain unchanged from previous PISA results. Canada is outperformed only by seven countries in math and six countries in science.
  • The Canadian gender gap: females outperform males in reading, while males outperformed females in math and science.
  • Equity, a measure of how well a country can maximize its students’ potential, was ranked as extremely high in Canada. The combination of high PISA scores with high equity demonstrates that there is a small gap between highest and lowest performing students.

Three or so years later, it appears that we have high drop out rates in the sciences and maths, from an Oct. 8, 2013 news item on the CBC (Canadian Broadcasting Corporation) website,

… Canadians are paying a heavy price for the fact that less than 50 per cent of Canadian high school students graduate with senior courses in science, technology, engineering and math (STEM) at a time when 70 per cent of Canada’s top jobs require an education in those fields, said report released by the science education advocacy group Let’s Talk Science and the pharmaceutical company Amgen Canada.

Spotlight on Science Learning 2013 compiles publicly available information about individual and societal costs of students dropping out STEM courses early.

The answer as to what happened has something  to do with when the OECD programme makes its assessment. They measure skills in 15 year olds and generally speaking that means students in grade 10, which coincidentally, is the last year math and science are required courses in most provinces, from the CBC Oct.8, 2013, news item,

Even though most provinces only require math and science courses until Grade 10, the report [Spotlight on Science published by Let’s Talk Science and pharmaceutical company Amgen Canada) found students without Grade 12 math could expect to be excluded from 40 to 75 per cent of programs at Canadian universities, and students without Grade 11 could expect to be excluded from half of community college programs. [emphasis mine]

This news about Canadian students and their failure to pursue maths and sciences according to the Spotlight on Science Learning report was included in the context (in the CBC news item) of another OECD report (released Tues., Oct. 8, 2013), which concluded that Canadian adult numeracy skills lag behind, from the Oct. 8, 2013 CBC news item,

The OECD released its first survey of adult skills Tuesday (Oct. 8, 2013), measuring the literacy, numeracy, and problem-solving skills of those aged 16 to 65 in 24 countries, including 27,000 people in Canada.

While Canadians scored far above average at problem solving in technology-rich environments and their average literacy score was around the average of OECD countries, their mean numeracy score was “significantly below the average,” the OECD said, putting Canada 13th out of 21 countries. [emphasis mine]

The Council of Ministers of Education, Canada, described the average score as “slightly below the OECD average,” but acknowledged the results suggested “this is one area that could be targeted by policymakers for improvement. [emphasis mine]

There’s a difference between ‘significantly below average’ and ‘slightly below average’ and shy of reading the report I’m not sure who to believe. In any event, our literacy skills are accounted to be good and we’re also good at problemsolving in technology-rich environments.  This latest OECD report is titled, OECD Skills Outlook 2013. Here’s more about it from the Outlook webpage (Note: Links have been removed),

This first OECD Skills Outlook presents the initial results of the Survey of Adults Skills (PIAAC), which evaluates the skills of adults in 24 countries. It provides insights into the availability of some of the key skills and how they are used at work and at home. A major component is the direct assessment of key information-processing skills: literacy, numeracy and problem solving in the context of technology-rich environments.

You can get the full report or summaries from here. As for the Spotlight on Science report, you can find it here on the Let’s Talk Science website. I’ve included the video about the report, which I think illustrates one of the key problems with Canadian children and science,

It’s (video) dull and it didn’t need to be.As for the report itself, it’s reflects a standard approach to this ‘problem’ of getting children to pursue the sciences and maths after a certain point. Personally, I think there’s a much interesting study on this topic of children and science, the ASPIRES project, in the UK, which I highlighted in my Jan. 31, 2012 posting,

One of the research efforts in the UK is the ASPIRES research project at King’s College London (KCL), which is examining children’s attitudes to science and future careers. Their latest report, Ten Science Facts and Fictions: the case for early education about STEM careers (PDF), is profiled in a Jan. 11, 2012 news item on physorg.com (from the news item),

Professor Archer [Louise Archer, Professor of Sociology of Education at King’s] said: “Children and their parents hold quite complex views of science and scientists and at age 10 or 11 these views are largely positive. The vast majority of children at this age enjoy science at school, have parents who are supportive of them studying science and even undertake science-related activities in their spare time. They associate scientists with important work, such as finding medical cures, and with work that is well paid.

“Nevertheless, less than 17 per cent aspire to a career in science. These positive impressions seem to lead to the perception that science offers only a very limited range of careers, for example doctor, scientist or science teacher. It appears that this positive stereotype is also problematic in that it can lead people to view science as out of reach for many, only for exceptional or clever people, and ‘not for me’.

Professor Archer says the findings indicate that engaging young people in science is not therefore simply a case of making it more interesting or more fun. She said: “There is a disconnect between interest and aspirations. Our research shows that young people’s ambitions are strongly influenced by their social backgrounds – ethnicity, social class and gender – and by family contexts. [emphases mine]

Families and support systems make a huge difference in children’s lives and their aspirations, scientific or otherwise.

In sum, up until 2009 Canadian children seemed to have good skills in literacy, maths, and sciences at the age of 15, which is the same year courses in maths and sciences are no longer required (in most provinces). According to the Spotlight on Science Learning 2013 report, most children choose not take those maths and sciences courses after grade 10 despite the fact that they are needed for most higher education. This lack of interest appears to be reflected in the OECD’s recent report, OECD Skills Outlook 2013, which noted that Canadian adults’ numeracy skills lag behind that of many of their counterparts in other countries (although we compare well with high literacy and other skills). While I find the Spotlight on Science Learning 2013 report interesting, the UK’s ASPIRES project has taken what seems to me a more fruitful approach to children and science.

Bottom line: I think we need more imagination in our approach and we need to better include the kids themselves (a couple of interactive demonstrations just aren’t involving enough), and we need to make science, etc. engaging for the entire community.

OECD (Organization for Economic Cooperation and Development) makes recommendation regarding regulatory frameworks for nanomaterials.

A Sept. 26, 2013 news item on Nanowerk announces the latest OECD (Organization for Economic Cooperation and Development) recommendations on nanomaterial safety,

The OECD has recommended its Member Countries apply existing international and national chemical regulatory frameworks to manage the risks associated with manufactured nanomaterials.

The Sept. 20, 2013 OECD news release, which originated the news item, provides more details,

The Recommendation, approved by the Organisation’s governing Council, noted that these frameworks and other management systems may need to be adapted to take into account the specific properties of manufactured nanomaterials.

Manufactured nanomaterials are chemical particles that exhibit new characteristics in contrast to the same material without nanoscale features. These novel features offer possibilities for new commercial applications, such as solar cells using silicon nanocrystals to achieve higher efficiency. They also raise questions regarding potential unintended risks to humans and the environment. For example, new manufactured nanomaterials have applications in sunscreens and cosmetics, and so the potential risk from their exposure to consumers needs to be carefully assessed and managed.

The OECD has been working since 2006 to develop approaches for risk assessment for manufactured materials that are of high quality, science-based and internationally harmonised.

The Recommendation notes the importance of the OECD Test Guidelines for the Safety Testing of Chemicals, concluding that many of the existing guidelines are also suitable for the safety assessment of nanomaterials. At the same time, it recognises that some guidelines may need to be adapted to take into account the specific properties of nanomaterials. Work continues at OECD to achieve that.

An important consequence of this Recommendation is that much of the data collected as part of the safety assessment of nanomaterials will fall within the scope of the OECD system for the Mutual Acceptance of Data (MAD) in the Assessment of Chemicals. The OECD Mutual Acceptance of Data system is a multilateral agreement which saves governments and chemical producers around €150 million every year by allowing the results of a variety of non-clinical safety tests done on chemicals and chemical products, such as industrial chemicals and pesticides – and now nanomaterials – to be shared across OECD and other countries that adhere to the system.  Argentina, Brazil, India, Malaysia, Singapore, South Africa as well as all OECD countries are full adherents to the MAD system, and Thailand is a provisional adherent.

The extension of the scope of MAD to nanomaterials will considerably reduce the potential for non-tariff trade barriers between countries when marketing manufactured nanomaterials or products which include nanomaterials as well as allow for sharing the workload between countries in testing and assessing all the nanomaterials which are on the market. There will be a review of the Recommendation in three years to assess how it has been implemented in OECD countries and those partner countries which have adhered to it.

I find it odd the Working Party on Nanomaterialsis (or the Working Party on Manufacture Nanomaterials as it sometimes called) is not mentioned. This recommendation seems to have  arisen from the  Council on the Safety Testing and Assessment of Manufactured Nanomaterials. Canada is a member of the OECD and of its Working Party on Nanomaterials. I don’t know where we stand if anywhere on the Council on the Safety Testing and Assessment of Manufactured Nanomaterials. Perhaps I can check later when I have time.

Final report on joint OECD/NNI report on assessing nanotechnology’s economic impact

In March 2012, the Organization for Economic Cooperation and Development (OECD) and the US National Nanotechnology Initiative (NNI) held a symposium on assessing the economic impacts of nanotechnology, which was hosted by American Association for the Advancement of Science (AAAS) in Washington, DC.  Lynn Bergeson announced the release of the symposium’s final report in her Sept. 16, 2013 posting on the Nanotechnology Now website.

The title of the final report published by the OECD is Symposium on Assessing the Economic  Impact of Nanotechnology: Synthesis Report. I have excerpted some information including this introductory paragraph from the executive summary of this 81 pp report,

Governments have a fiscal and social responsibility to ensure that limited research and development resources are used wisely and cost-effectively in support of social, economic, and scientific aspirations. As a result of significant public and private investments in nanotechnology during the past decade and an expanding array of commercial applications, the field of nanotechnology has matured to the point of showing significant potential to help societies achieve the shared goal of improving efficiencies and accelerating progress in a range of economic sectors, including medicine, manufacturing, and energy. Countries that wish to promote the continued responsible development of nanotechnology will, however, need quantitative data on the economic impact of nanotechnology to guide further investment and policy decisions. Few widely accepted economic impact assessments have been conducted, however, and there are many questions regarding the best methodologies to be used. (p. 4)

The attendees considered the challenges associated with evaluating the impact of nanotechnology, some of which are common to emerging technologies in general and some or which are specific to nanotechnology (from the report),

The attendees also considered the question of a definition for nanotechnology. While operational definitions are developed at national or regional levels, e.g. for statistical or regulatory purposes, there are relatively few internationally agreed upon definitions or classifications for nanotechnology or its products and processes. Such definitions are essential for developing a methodology for an economic impact assessment and/or to facilitate data collection. Participants mentioned that definitions should be flexible so that they facilitate the development and valuation of the technology; they also noted that definitions might vary in different contexts or sectors.

Additional issues were raised:

 Its multipurpose, enabling nature makes measuring the impact of nanotechnology difficult. It can be fundamental to a product’s key functionality (e.g. battery charge time or capacity) but ancillary to the value chain (E.g. represent a small portion of the final product or process). Nanotechnology is also likely to have a range of incremental impacts on goods and services as well as existing manufacturing techniques. This requires understanding the value added at different stages of the production chain.

 Nanotechnology’s impact is often intermingled with that of many other interventions and technologies so that determining its precise role can be difficult.

 The large and varied amount of data linked to nanotechnology development may lead to difficulties in cleaning and manipulating the data meaningfully.

 Confidential business information and the proprietary nature of products and services may make it difficult to obtain information from industry. Moreover, it is not clear how a nanotechnology company or a company using nanotechnology is defined or defines itself or to what extent companies, universities and associate institutions are involved in exploiting and developing nanotechnology.

 For now, data are mainly collected through surveys. It is important to weigh the benefits against the additional workload that surveys place on administrations, research institutes and industries. Information should be obtained efficiently, focusing on the data of greatest interest for assessing the value of the technology.

 The nanotechnology policy landscape is evolving. It is important to consider non-specific, rather than nanotechnology-specific, funding strategies and policies when assessing economic impacts such as return on investment.

While certain issues may be resolved through improvements and over time, some restrict the ability to conduct valid nanotechnology impact assessments, such as the complex relationship between science, innovation and the economy; the interaction between public and private actors; the role of other factors in technology development and innovation; and the time lag between investments and their returns. (p. 8)

Of course the main issue being addressed was the development of tools/instruments to assess nanotechnology’s economic impact (from the report),

Some steps have been taken towards assessing the impact of nanotechnology. Examples mentioned during the symposium include the U.S. STAR METRICS database, which uses an input/output approach to determine the outputs of federal funding of science and technology, and Brazil’s Lattes system, in which researchers, students and institutions share information about their interests and backgrounds to facilitate information sharing and collaboration. The Lattes system is also intended to aid in the design of science, technology and innovation policies and to help understand the social and economic impacts of previous investments. DEFRA (Department for Environment, Food and Rural Affairs, United Kingdom) values a given nanotechnology product in monetary terms against an incumbent and thus calculates additional value added over current technology.

Other valuation methods mentioned included the “traditional” cost/ benefit analysis (often accompanied by scenario development for immature technologies such as nanotechnology) and life cycle assessment (LCA). LCA addresses the impact of nanotechnology along the entire product value chain. It is important to conduct LCAs as early as possible in product development to define the full value of a product using nanotechnology. Value chain assessments can also help address the challenge of determining the role of nanotechnology in a final product, where economic value is most commonly assessed. (p. 9)

Participants recognised the difficulty of developing a “one size fits all” methodology. The data collected and the indicators and the methodologies chosen need to fit the situation. Precisely defining the objectives of the impact assessment is critical: “What do we want to measure?” (e.g. the impact of a specific nanotechnology investment or the impact of a nano-enabled replacement product on environmental performance). “What outcomes do we want from the analysis?” (e.g. monetary value and GDP growth or qualitative measures of environmental and social benefits).

Input indicators (e.g. R&D investment, infrastructure) are the easiest to collect; they provide information on the development of a technology in a given region, country or globally. Output indicators, such as patents and publications, provide information on the trajectories of a technology and on key areas of innovation. The most useful for policy makers are indicators of impact, but high-quality data, especially quantitative data, are difficult to collect. Indicators of impact provide a basis for assessing direct (market share, growth of companies, new products, wealth creation) and indirect impacts (welfare gains, consumer surplus). The economic and social impact of nanotechnology goes beyond what can be measured with existing statistics and traditional surveys. A pilot survey by the Russian Federation plans to examine nanotechnology issues that are not necessarily covered by traditional statistical surveys, such as technology transfer and linkages between different segments of the national innovation system. The OECD Working Party of National Experts on Science and Technology Indicators is also working on the development of a statistical framework for the measurement of emerging, enabling and general purpose technologies, which includes the notion of impact.
While quantitative measures may be preferable, impact assessments based on qualitative indicators using methods such as technology assessment scenarios and mapping of value chains can also provide valuable information.

I haven’t read the entire report yet but the material after the executive summary bears a similarity to field notes. Generally in reports like this everything is stated in an impersonal third person with the speaker being mentioned only in the header for the section  so the contents have an  authority associated with holy books. While I haven’t seen any quotes, the speakers here are noted as having said such and such, e.g., “Mr. Tassey suggested a “technology-element” model as an alternative means of driving policy and managing the R&D cycle.” (p. 15) It’s not unheard of, just unusual.

For anyone interested in the earlier reports and/or in the Canadian participation in this 2012 symposium, there’s an interview with Vanessa Clive, Industry Canada, Nanotechnology Policy Advisor in my July 23, 2012 posting where she discusses the symposium and offers links to documents used as background material for the symposium.

NanoValid invites you to a Sept. 2013 workshop on the Advanced Characterization of Nanomaterial

I received (Aug. 5, 2013) an announcement, which I’m passing on here, about a workshop taking place in Spain this coming September (2013),

The EC-funded NanoValid Project (www.nanovalid.eu) invites you to register for the last remaining places at the “Advanced Characterization of Nanomaterials” workshop organised by the University of Zaragoza and the Institute of Nanoscience of Aragon (INA).

When: September 16th – 20th 2013

Where: University of Zaragoza, Institute of Nanoscience of Aragon

BACKGROUND:

The characterization of nanomaterials is a challenging topic that requires in-depth knowledge of physicochemical techniques and state-of-the-art devices. This workshop contributes to continuous training of analytical procedures at the nanoscale for enhancing current knowledge and developing novel materials and procedures in nanotechnology.

FEATURES AND BENEFITS:

•             Addresses both PhD students and Post-Doc researchers

•             Access to advanced techniques of nanotechnology

•             Fully qualified scientific and technical personnel

•             Open poster and oral communication sessions

FEE:

€ 525:    This includes workshop fees, a welcome reception, lunches, coffee-breaks & booklet.

Optional banquet in a traditional Aragonese cuisine venue (€50)

PROGRAMME:

The full programme includes theory sessions, practical demonstrations and training sessions, as well as oral and poster presentations (…).

REGISTER HERE:

http://www.nanovalid.eu/events/ws/registration.htm

FURTHER INFORMATION:

infogroup@unizar.es

M. Pilar Lobera, PhD (plobera@unizar.es); Francisco Balas, PhD (fbalas@unizar.es)

http://ina.unizar.es

Not having previously investigated the NanoValid project, I checked out the homepage,

The EU FP7 large-scale integrating project NanoValid (contract: 263147) has been launched on the 1st of November 2011, as one of the “flagship” nanosafety projects. The project consists of 24 European partners from 14 different countries and 6 partners from Brazil, Canada, India and the US and will run from 2011 to 2015, with a total budget of more than 13 mio EUR (EC contribution 9.6 mio EUR). [emphasis mine] Main objective of NanoValid is to develop a set of reliable reference methods and materials for the fabrication, physicochemical (pc) characterization, hazard identification and exposure assessment of engineered nanomaterials (EN), including methods for dispersion control and labelling of ENs. Based on newly established reference methods, current approaches and strategies for risk and life cycle assessment will be improved, modified and further developed, and their feasibility assessed by means of practical case studies.

In cooperation with other relevant projects, such as MARINA and QNano, and relevant standardization bodies, such as the OECD [Organization for Economic Cooperation and Development] WPMN [Working Party on Manufactured Nanomaterials], existing industrial or newly designed ENs will be subjected to a rigid and comprehensive inter-laboratory validation campaign that includes the currently most advanced methods and instruments for measuring and characterizing of ENs, to generate accurate and reproducible material data and standardized method protocols, also for tracing and quantifying nanoparticles (NP) in complex matrices. The stability and behaviour of selected NP will be monitored and tested in a variety of relevant environmental samples and test media to derive optimum and reproducible fabrication, measurement and test conditions.

The validated characterization methods will be used to design well-defined certified reference materials, which in turn will help to validate, adapt, modify and further develop current biological approaches (in vitro, in vivo and in silico) for assessing hazard and exposure of ENs, and associated risks to human health and the environment. Effects of chronic and accumulative exposure and of exposure under real-life conditions, where ENPs [engineered nanoparticles] are likely to act as components of complex mixtures, will be duly taken into account.

It was a little surprising to find Canada listed as one of the project partners. I also found this map of the consortium participants which lists McGill University specifically as the Canadian participant.

I briefly mentioned NanoValid in a June 19, 2012 posting which featured a listing of Environmental, Health and Safety projects being funded by the European Union’s 7th Framework Programme.