Tag Archives: Oron Catts

A tooth and art installation in Vancouver (Canada) and bodyhacking and DIY (do-it-yourself) culture in the US

After a chat with artist David Khang, about various mergings of flesh and nonliving entities, I saw his installation, Amelogenesis Imperfecta (How Deep is the Skin of Teeth)  at Vancouver’s grunt gallery with  an enhanced appreciation for the shadowy demarcation between living entities (human and nonhuman) and between living and nonliving entities (this was à propos the work being done at the SymbioticA Centre in Australia, which is mentioned in the following excerpt) and some of the social and ethical questions that arise. Robin Laurence in her Sept. 13, 2012 article for the Georgia Straight newspaper/website describes both the installation and its influences,

With Khang’s newly launched works, Amelogenesis Imperfecta (How Deep Is the Skin of Teeth), on view at the grunt gallery until September 22, and Beautox Me, at CSA Space [#5–2414 Main Street] through October 7, he has again found formally and intellectually complex ways to meld his seemingly disparate professions. The grunt gallery installation includes microscopic laser drawings on epithelial cells and an animated short of a human tooth evolving into a fearsome, all-devouring shark. This work developed out of experiments Khang conducted during his 2010 residency at SymbioticA Centre for Biological Arts in Perth, Australia. “It began as a goal-oriented project to manufacture enamel,” he says, “but ended up being a meditation on ethical interspecies relations.” Fetal calf serum, he explains, is used “to fuel” all stem-cell research.

In our far ranging discussion, Khang (whose show at the Grunt [350 E. 2nd Avenue, Vancouver, ends on Saturday, Sept. 22, 2012) and I discussed not only interspecies relations but also the integration of flesh with machine/technology,which is being explored and discussed at SymbioticA and elsewhere.

Coincidentally, one day after my chat with Khang I found this Sept. 19, 2012 article (Biohackers And DIY Cyborgs Clone Silicon Valley Innovation) by Neal Ungerleider for Fast Company (Note: I have removed links),

The grinders (DIY cybernetics enthusiasts) and their comrades in arms–biohackers working on improving human source code, quantified self enthusiasts who arm themselves with constant bodily data feeds, and independent DIY biotechnology enthusiasts–are moonlighting for now in basements, shared spaces, and makeshift labs. But they’re ultimately aiming to change the world. Think of how bionic [sic] legs like those belonging to Oscar Pistorius and cochlear implants that let the deaf hear have changed everyday life for so many people. Then multiply that by a million. A million people. And millions of dollars.

Not only has the new wave of do-it-yourself (DIY) cybernetics moved well beyond science fiction, it’s going to cause a business boom in the not-too-distant future.

I have two comments. (1) Pistorius does not have bionic legs but he does use some very high tech racing prosthetics, which I describe briefly in my July 27, 2009 posting in part 4 of a series on human enhancement. On the basis of this error, you may want to apply a little caution when reading the rest of Ungerleider’s  article. (2) Prior to this article, I hadn’t considered machine/flesh integration as a business opportunity but clearly I’ve been shortsighted.

I was particularly interested in this following passage where Ungerleider mentions the fusion of the living and of the electronic.

In Brooklyn, a small “community biolab” called Genspace is home to approximately a dozen DIY biology experimenters whose work often involves the fusion of the living and the electronic. Classes are offered to the public in synthetic biology, which engineers living organisms as if they were biological machines.

A workshop recently held at Genspace, Crude Control, showed how in-vitro meat and leather could be created via tissue engineering, and it explored the possibility of creating semi-living “products” from them. Although the Genspace workshop was for educational purposes, similar technologies are already being monetized elsewhere–Peter Thiel recently sank six figures into a startup that will make 3-D printed in vitro meat commercially available.

The teacher at the Crude Control workshop, Oron Catts, [emphasis mine] walked participants through “basic tissue culture and tissue engineering protocols, including developing some DIY tools and isolating cells from a bone we got from a local butcher.” Some of Catts’ previous projects include bioengineering a steak from pre-natal sheep cells (in his words, “steak grown from an animal that was not yet born“) and victimless leather grown from cell lines. [emphases mine]
 

I emphasized Oron Catts because he is SymbioticA Centre’s director.From his biographical page on the SynbioticA Centre website,

Oron Catts is an artist, researcher and curator whose work with the Tissue Culture and Art Project (which he founded in 1996 with Ionat Zurr) is part of the NY MoMA design collection and has been exhibited and presented internationally. In 2000 he co-founded SymbioticA, an artistic research laboratory housed within the School of Anatomy and Human Biology, The University of Western Australia. Under Oron’s leadership, SymbioticA has gone on to win the Prix Ars Electronica Golden Nica in Hybrid Art (2007) and became a Centre for Excellence in 2008.

Oron has been a researcher at The University of Western Australia since 1996 and was a Research Fellow at the Tissue Engineering and Organ Fabrication Laboratory, Harvard Medical School, Massachusetts General Hospital, Boston from 2000-2001. He worked with numerous other bio-medical laboratories around the world. In 2007 he was a visiting Scholar at the Department of Art and Art History, Stanford University. He is currently undertaking a “Synthetic Atheistic” residency which is jointly funded by the National Science Foundation (USA) and the Engineering and Physical Sciences Research Council (UK) to exploring the impactions of synthetic Biology; and is a Visiting Professor of Design Interaction, Royal College of Arts, London.

You can find out more about the SymbioticA Centre here.

As for the “steak grown from an animal that was not yet born” and “victimless leather,” the terminology hints   while the description of the work demonstrates how close we are to a new reality in our relationships with nonhumans. Some readers may find the rest of Ungerleider’s article even more eyebrow-raising/disturbing/exciting.

Fish and Chips: Singapore style and Australia style

A*STAR’s Institute of Bioengineering and Nanotechnology (IBN), located in Singapore, has announced a new platform for testing drug applications. From the April 4, 2012 news item on Nanowerk,

A cheaper, faster and more efficient platform for preclinical drug discovery applications has been invented by scientists at the Institute of Bioengineering and Nanotechnology (IBN), the world’s first bioengineering and nanotechnology research institute. Called ‘Fish and Chips’, the novel multi-channel microfluidic perfusion platform can grow and monitor the development of various tissues and organs inside zebrafish embryos for drug toxicity testing. This research, published recently in Lab on a Chip (“Fish and Chips: a microfluidic perfusion platform for monitoring zebrafish development”) …

From the IBN April 4, 2012 media release,

The conventional way of visualizing tissues and organs in embryos is a laborious process, which includes first mounting the embryos in a viscous medium such as gel, and then manually orienting the embryos using fine needles. The embryos also need to be anesthetized to restrict their motion and a drop of saline needs to be continuously applied to prevent the embryos from drying. These additional precautions could further complicate the drug testing results.

The IBN ‘Fish and Chips’ has been designed for dynamic long-term culturing and live imaging of the zebrafish embryos. The microfluidic platform comprises three parts: 1) a row of eight fish tanks, in which the embryos are placed and covered with an oxygen permeable membrane, 2) a fluidic concentration gradient generator to dispense the growth medium and drugs, and 3) eight output channels for the removal of the waste products (see Image 2). The novelty of the ‘Fish and Chips’ lies in its unique diagonal flow architecture, which allows the embryos to be continually submerged in a uniform and consistent flow of growth medium and drugs (…), and the attached gradient generator, which can dispense different concentrations of drugs to eight different embryos at the same time for dose-dependent drug studies.

Professor Hanry Yu, IBN Group Leader, who led the research efforts at IBN, said, “Toxicity is a major cause of drug failures in clinical trials and our novel ‘Fish and Chips’ device can be used as the first step in drug screening during the preclinical phase to complement existing animal models and improve toxicity testing. The design of our platform can also be modified to accommodate more zebrafish embryos, as well as the embryos of other animal models. Our next step will involve investigating cardiotoxicity and hepatoxicity on the chip.”

As a pragmatist I realize that, to date, we have no substitute for testing drugs on animals prior to clinical human trials so this ‘type of platform’ is necessary but it always gives me pause. Just as the relationship between human and animals did the first time I came across a ‘Fish and Chips’ project in the context of a performance at the 2001 Ars Electronica event in Linz, Austria. As I recall Fish and Chips was made up fish neurons grown on silicon chips then hooked up to hardware and software to create a performance both visual and auditory.

Here’s an image of the 2001 Fish and Chips performance at Ars Electronica,

Ars Electronica Festival 2001: Fish & Chips / SymbioticA Research Group, Oron Catts, Ionat Zurr, Guy Ben-Ary

You can find a full size version of the image here on Flickr along with the Creative Commons Licence.

The Fish and Chips performance was developed at SymbioticA (University of Western Australia). From SymbioticA’s Research page,

SymbioticA is a research facility dedicated to artistic inquiry into knowledge and technology in the life sciences.

Our research embodies:

  • identifying and developing new materials and subjects for artistic manipulation
  • researching strategies and implications of presenting living-art in different contexts
  • developing technologies and protocols as artistic tool kits.

Having access to scientific laboratories and tools, SymbioticA is in a unique position to offer these resources for artistic research. Therefore, SymbioticA encourages and favours research projects that involve hands on development of technical skills and the use of scientific tools.

The research undertaken at SymbioticA is speculative in nature. SymbioticA strives to support non-utilitarian, curiosity based and philosophically motivated research.

They list six research areas:

  • Art and biology
  • Art and ecology
  • Bioethics
  • Neuroscience
  • Tissue engineering
  • Sleep science

SymbioticA’s Fish and Chips project has since been retitled MEART, from the SymbioticA Research Group (SARG) page,

Meart – The semi-living artist

The project was originally entitled Fish and Chips and later evolved into MEART – the semi living artist. The project is by the SymbioticA Research group in collaboration with the Potter Lab.

The Potter Lab or Potter Group is located at the Georgia (US) Institute of Technology. Here’s some more information about MEART from the  Potter Group MEART page,

The Semi living artist

Its ‘brain’ of dissociated rat neurons is cultured on an MEA in our lab in Atlanta while the geographically detached ‘body’ lives in Perth. The body itself is a set of pneumatically actuated robotic arms moving pens on a piece of paper …

A camera located above the workspace captures the progress of drawings created by the neurally-controlled movement of the arms. The visual data then instructed stimulation frequencies for the 60 electrodes on the MEA.

The brain and body talk through the internet over TCP/IP in real time providing closed loop communication for a neurally controlled ‘semi-living artist’. We see this as a medium from which to address various scientific, philosophical, and artistic questions.

Getting back to SymbioticA, my most recent mention of them was in a Dec. 28, 2011 posting about Boo Chapple’s (resident at SymbioticA) Transjuicer installation at Dublin’s Science Gallery (I’ve excerpted a portion of an interview with Chapple where she describes what she’s doing),

I’m not sure that Transjuicer is so much about science as it is about belief, the economy of human-animal relations, and the politics of material transformation.

On that note I leave you with these fish and chips (from the Wikipedia essay about the menu item Fish and Chips),

Cod and chips in Horseshoe Bay, B.C., Canada, December 2010. Credit: Robin Miller