Tag Archives: oxidative stress

“Eat up your ceramic nanoparticles” says the European Space Agency

A Sept. 4, 2020 news item on phys.org showcases some intriguing research from the European Space Agency (ESA),

“Eat your vitamins” might be replaced with “ingest your ceramic nano-particles” in the future as space research is giving more weight to the idea that nanoscopic particles could help protect cells from common causes of damage.

A Sept, 4, 2020 ESA press release, which originated the news item, fills in some of the details and raises a question,

Oxidative stress occurs in our bodies when cells lose the natural balance of electrons in the molecules that we are made of. This is a common and constant occurrence that is part of our metabolism but also plays a role in the aging process and several pathological conditions, such as heart failure, muscle atrophy and Parkinson’s disease.

The best advice for keeping your body in balance and avoiding oxidative stress is still to have a healthy diet and eat enough vitamins, but nanoparticles are showing promising results in keeping cells in shape.

When in space, astronauts have been shown to suffer from more oxidative stress due to the extra radiation they receive and as a by-product of floating in weightlessness, so researchers in Italy were keen to see if nanoparticles would have the same protective effect on cells on the International Space Station as on Earth.

They prepared muscle cells that flew to the International Space Station and were cultured in ESA’s Kubik incubator before being frozen for storage.

A year ago [emphasis mine] our frozen samples splashed down in the Pacific Ocean on the Dragon spacecraft, and after comparing the samples we saw a marked effect in the cells treated with ceramic nanoparticles,” says Gianni Ciofani from the Istituto Italiano di Tecnologia in Italy. “The effect we observed seems to imply that nanoparticles work better and longer than traditional antioxidants such as vitamins.”

“The experiment setup resulted in excellent samples to analyze using state-of-the art RNA sequencing,” continues Gianni. “Conducting space research is nothing like traditional lab work, as we have less samples, we cannot do the work ourselves and we have to work around deadlines such as launch days, landing and storing the samples, it is challenging but thrilling research!” The team even found ways to improve and simplify the process for future studies.

Baby astronauts hypothesis

The research adds weight to the baby-astronaut hypothesis of weightlessness. The changes in muscle tissue observed are similar to how babies’ tissues develop in the womb.

“Some researchers see similarities to how human bodies adapt to living in space with pre-natal conditions: there are similarities with floating in a warm environment with different oxygen intake and we consider it a possibility of return to the state,” says Giada Genchi, also of the Istituto Italiano di Tecnologia’s Smart Bio-Interfaces department.

The team’s high-quality muscle tissue samples are being further analyzed and compared to samples from similar experiments that flew earlier. There is still much more to learn, such as what is the best way to administer nano-ceramics and how long do their protective effects last as well as possible unwanted side effects.

I highlighted a “A year ago” because that should mean 2019 but the research the ESA press release linked to was published in 2018. I cannot find anything more recent. So, for the curious, here’s a link to and a citation for the 2018 research paper,

Modulation of gene expression in rat muscle cells following treatment with nanoceria in different gravity regimes by Giada Graziana Genchi, Andrea Degl’Innocenti, Alice Rita Salgarella, Ilaria Pezzini, Attilio Marino, Arianna Menciassi, Sara Piccirillo, Michele Balsamo & Gianni Ciofani. Nanomedicine Vol. 13, No. 22 Preliminary Communication DOI: https://doi.org/10.2217/nnm-2018-0316 Published Online: 18 Oct 2018 Print Version: 2018 Nov;13 (22): 2821-2833. DOI: 10.2217/nnm-2018-0316.

The paper is behind a paywall.

This image was used to illustrate the work,

Courtesy Nanomedicine (journal)

Regardless of when the research was published, it’s still pretty interesting work and I hope to hear more about it in the future.

Nanotechnology delivery system for skin disease therapies

A Feb. 29, 2016 news item on ScienceDaily announces a new development concerning free radicals that may be helpful with skin diseases and pathologies,

Researchers at The Hebrew University of Jerusalem have developed a nanotechnology-based delivery system containing a protective cellular pathway inducer that activates the body’s natural defense against free radicals efficiently, a development that could control a variety of skin pathologies and disorders.

A Feb. 29, 2016 Hebrew University of Jerusalem press release on EurekAlert, which originated the news item, expands on the theme,

The human skin is constantly exposed to various pollutants, UV rays, radiation and other stressors that exist in our day-to-day environment. When they filter into the body they can create Reactive Oxygen Species (ROS) – oxygen molecules known as Free Radicals, which are able to damage and destroy cells, including lipids, proteins and DNA.

In the skin – the largest organ of the body – an excess of ROS can lead to various skin conditions, including inflammatory diseases, pigmenting disorders, wrinkles and some types of skin cancer, and can also affect internal organs. This damage is known as Oxidative Stress.

The body is naturally equipped with defense mechanisms to counter oxidative stress. It has anti-oxidants and, more importantly, anti-oxidant enzymes that attack the ROS before they cause damage.

In a review article published in the journal Cosmetics, a PhD student from The Hebrew University of Jerusalem, working in collaboration with researchers at the Technion – Israel Institute of Technology, suggested an innovative way to invigorate the body to produce antioxidant enzymes, while maintaining skin cell redox balance – a gentle equilibrium between Reactive Oxygen Species and their detoxification.

“The approach of using the body’s own defense system is very effective. We showed that activation of the body’s defense system with the aid of a unique delivery system is feasible, and may leverage dermal cure,” said Hebrew University researcher Maya Ben-Yehuda Greenwald.

Ben-Yehuda Greenwald showed that applying nano-size droplets of microemulsion liquids containing a cellular protective pathway inducer into the skin activates the natural skin defense systems.

“Currently, there are many scientific studies supporting the activation of the body’s defense mechanisms. However, none of these studies has demonstrated the use of a nanotechnology-based delivery system to do so,” Ben-Yehuda Greenwald said.

Production of antioxidant enzymes in the body is signaled in the DNA by activation of Nrf2 – a powerful protein that exists in every cell in our body. This Nrf2 cellular-protective signaling pathway is a major intersection of many other signaling pathways affecting each other and determining cell functionality and fate. Nrf2 is capable of coordinating the cellular response to internal as well as external stressors by tight regulation of phase-II protective enzymes, such as the antioxidant enzymes.

Ben-Yehuda Greenwald has also discovered a new family of compounds capable of activating the Nrf2 pathway. Moreover, by incorporating them into the unique delivery system she has developed, she managed to efficiently stimulate the activation of the Nrf2 pathway and mimic the activity of the body’s’ natural way of coping with a variety of stress conditions.

“The formula we have created could be used in topical medication for treating skin conditions. Our formula could be used both as preventive means and for treatment of various skin conditions, such as infections, over-exposure to UV irradiation, inflammatory conditions, and also internal disease,” she said.

While the researchers focused on the skin, the formulation could prove to be effective in enhancing the body’s natural protection against the damaging effects of ROS in other parts of the body, such as inflammation in cardiovascular diseases, heart attack, cancer, multiple sclerosis and Alzheimer’s.

Here’s an image provided by Ben-Yehuda Greenwald illustrating the team’s work,

Caption: These are the consequences of skin exposure to stressors. Credit: Maya Ben-Yehuda Greenwald

Caption: These are the consequences of skin exposure to stressors. Credit: Maya Ben-Yehuda Greenwald

Here’s a link to and a citation for the paper,

Skin Redox Balance Maintenance: The Need for an Nrf2-Activator Delivery System by Maya Ben-Yehuda Greenwald, Shmuel Ben-Sasson, Havazelet Bianco-Peled, and Ron Kohen. Cosmetics 2016, 3(1), 1; doi:10.3390/cosmetics3010001 Published: 15 January 2016

This paper appears to be open access.

Silicon dioxide nanoparticles may affect the heart

This is an interesting piece of research although it’s difficult to draw conclusions since the testing was ‘in vitro’, which literally means ‘in glass’ and in practice means testing cells in a test tube, a petri dish or, possibly, on a slide. That said, this work centering on silicon dioxide nanoparticles, which are increasingly used in biomedical applications, suggests further investigation is warranted. From a Jan. 9, 2015 news item on Azonano,

Nanoparticles, extremely tiny particles measured in billionths of a meter, are increasingly everywhere, and especially in biomedical products. Their toxicity has been researched in general terms, but now a team of Israeli scientists has for the first time found that exposure nanoparticles (NPs) of silicon dioxide (SiO2) can play a major role in the development of cardiovascular diseases when the NP cross tissue and cellular barriers and also find their way into the circulatory system.

A Jan. 8, 2015American Technion Society news release by Kevin Hattori, which originated the news item, describes the research in more detail,

“Environmental exposure to nanoparticles is becoming unavoidable due to the rapid expansion of nanotechnology,” says the study’s lead author, Prof. Michael Aviram, of the Technion Faculty of Medicine, “This exposure may be especially chronic for those employed in research laboratories and in high tech industry where workers handle, manufacture, use and dispose of nanoparticles. Products that use silica-based nanoparticles for biomedical uses, such as various chips, drug or gene delivery and tracking, imaging, ultrasound therapy, and diagnostics, may also pose an increased cardiovascular risk for consumers as well.” [emphasis mine]

In this study, researchers exposed cultured laboratory mouse cells resembling the arterial wall cells to NPs of silicon dioxide and investigated the effects. SiO2 NPs are toxic to and have significant adverse effects on macrophages. a type of white blood cell that take up lipids, leading to atherosclerotic lesion development and its consequent cardiovascular events, such as heart attack or stroke. Macrophages accumulation in the arterial wall under atherogenic conditions such as high cholesterol, triglycerides, oxidative stress – are converted into lipids, or laden “foam cells” which, in turn, accelerate atherosclerosis development.

“Macrophage foam cells accumulation in the arterial wall are a key cell type in the development of atherosclerosis, which is an inflammatory disease” says co-author Dr. Lauren Petrick. “The aims of our study were to gain additional insight into the cardiovascular risk associated with silicon dioxide nanoparticle exposure and discover the mechanisms behind Si02’s induced atherogenic effects on macrophages. We also wanted to use nanoparticles as a model for ultrafine particle (UFP) exposure as cardiovascular disease risk factors.”

Both NPs and UFPs can be inhaled and induce negative biological effects. [emphasis mine] However, until this study, their effect on the development of atherosclerosis has been largely unknown. Here, researchers have discovered for the first time that the toxicity of silicon dioxide nanoparticles has a “significant and substantial effect on the accumulation of triglycerides in the macrophages,” at all exposure concentrations analyzed, and that they also “increase oxidative stress and toxicity.”

A recent update from the American Heart Association also suggested that “fine particles” in air pollution leads to elevated risk for cardiovascular diseases. However, more research was needed to examine the role of “ultrafine particles” (which are much smaller than “fine particles”) on atherosclerosis development and cardiovascular risk.

“The number of nano-based consumer products has risen a thousand fold in recent years, with an estimated world market of $3 trillion by the year 2020,” conclude the researchers. “This reality leads to increased human exposure and interaction of silica-based nanoparticles with biological systems. Because our research demonstrates a clear cardiovascular health risk associated with this trend, steps need to be taken to help ensure that potential health and environmental hazards are being addressed at the same time as the nanotechnology is being developed.

Unfortunately, there seems to be a little exaggeration at work in this news release. For example, I’m not sure how a consumer would go about inhaling a computer chip or more specifically the silicon dioxide nanoparticles embedded in the chip although I can see how someone involved in the manufacture of the chip might be exposed and inhale silicon dioxide nanoparticles. I’m not trying to negate the research but do want to point out that it has limitations.

Here’s a link to and a citation for the paper,

Silicon dioxide nanoparticles increase macrophage atherogenicity: Stimulation of cellular cytotoxicity, oxidative stress, and triglycerides accumulation by Lauren Petrick, Mira Rosenblat, Nicole Paland, and Michael Aviram. Article first published online: 28 NOV 2014 DOI: 10.1002/tox.22084

Copyright © 2014 Wiley Periodicals, Inc.

This article is behind a paywall.