Tag Archives: patents

Bayer MaterialScience divests itself of carbon nanotube and graphene patents

Last year’s announcement from Bayer MaterialScience about withdrawing from the carbon nanotube market (featured in my May 9, 2013 posting) has now been followed with news of the company’s sale of its intellectual property (patents) associated with carbon nanotubes (CNTs) and graphene. From a March 31, 2014 news item on Nanowerk,

After concluding its research work on carbon nanotubes (CNT) and graphenes, Bayer MaterialScience is divesting itself of fundamental intellectual property in this field. The company FutureCarbon GmbH, based in Bayreuth, Germany, will acquire, as leading provider of carbon-based composites, the bulk of the corresponding patents from the past ten years. The two parties have now signed an agreement to this effect. The financial details of the transfer will not be disclosed.

The March 31, 2014 Bayer news release, which originated the news item, describes the winning bidder,

FutureCarbon GmbH is a leading innovator and provider of novel, carbon-based composites. As a specialist in the manufacture and in particular the refinement of various carbon materials, FutureCarbon enables a broad range of strategic industries, to easily utilize the extraordinary properties of carbon materials in their products.

“We enjoy a long-standing development partnership with Bayer. We are happy that we were able to acquire the Bayer patents for further market realization of the technology. They expand our applications base substantially and open up new possibilities and business segments for us,” said Dr. Walter Schütz, managing director of the Bayreuth company.

After Bayer MaterialScience announced the conclusion of its CNT projects in May 2013, various companies indicated their interest in making concrete use of intellectual property developed before the decision was made for FutureCarbon as ideal partner for taking over the accomplished knowledge.

About FutureCarbon GmbH
FutureCarbon specializes in the development and manufacture of carbon nanomaterials and their refinement to create what are called carbon supercomposites, primary products for further industrial processing. Carbon supercomposites are combinations of materials that unfold the special characteristics of carbon nano-materials in the macroscopic world of real applications. All of our materials are manufactured on an industrial scale.

You can find out more about FutureCarbon here.

European Patent Office (EPO) explains how to patent nano

A Jan. 28, 2014 news item on Nanowerk describes the European Patent Office’s brochure on patenting nanotechnology-derived applications (Note: A link has been removed),

The number of European applications filed for nanotechnology-related inventions has more than tripled since the mid-1990s.

The interdisciplinary nature of nanotechnology poses a challenge for patent offices, legal representatives, inventors and applicants alike.

A new brochure (Nanotechnology and patents; pdf) from the European Patent Office (EPO) explains how to get started if you want to search for nanotechnology inventions in patent databases, and what to look out for if you are thinking about applying to the EPO for a nanotechnology patent yourself.

The EPO’s 16 pp. Nanotechnology and Patents brochure (PDF) can be found here.  The EPO website is here and they do have a webpage dedicated to nanotechnology,

Nanotechnology – entities with a controlled geometrical size of at least one functional component below 100 nanometres in one or more dimensions susceptible of making physical, chemical or biological effects – is considered by many to be one of the key technologies of this century, with an expected market volume of EUR 1 trillion in 2015.

Nanotechnology can occur in almost any area of science and engineering: it is just as relevant to biotechnologists and physicists as it is to electrical and mechanical engineers or materials scientists. The interdisciplinary nature of the field means that anyone interested in literature on nanotechnology, especially existing patent documents, struggles to retrieve it from the databases available.

To get to grips with this new technology, the EPO introduced the “Y01N” tags to label nanotechnology.

Y01N became B82Y

Recently all patent offices worldwide started to classify nanotechnology uniformly under the International Patent Classification (IPC) system. To make this possible, a new symbol, B82Y was introduced into the IPC on 1 January 2011, building on the Y01N system that the EPO had been using to tag nanotechnology-related patent applications.

The new B82Y symbol makes it easier to retrieve relevant patent documents in this important technical area as it is now part of both the IPC and the CPC (Cooperative Patent Classification) schemes. The EPO has moved all nanotechnology documents from the Y01N area in its databases to B82Y. The Y01N codes have been discontinued.

Unfortunately, I’ve not been able to find a publication date for the brochure. Hopefully this was produced relatively recently. One final comment, you can go here to download the PDF or order a print copy (English only) from the one of the EPO’s publication pages.

Aphios gets a patent to deliver cannabis (marijuana) at the nanoscale

A Nov. 4, 2013 news item on Nanowerk features Aphios Corporation and its successful application for a cannibis-themed patent,

Aphios Corporation today announced that it received notification of allowance for a United States Patent entitled “Nanoencapsulated Delta-9-Tetrahydrocannabinol” for the oral delivery of cannabinoids such as Δ9-THC in biodegradable polymer nanoparticles.”

According to Dr. Trevor P. Castor, co-inventor of the technology, “The patented technology will be utilized in the manufacturing of APH-0812 for pain and cachexia in AIDS and cancer patients, and APH-1305 for Multiple Sclerosis and other CNS disorders. The nanotech formulation of Δ9-THC will also have applicability in several other chronic diseases such as obesity, smoking cessation and schizophrenia.”

There is, currently, a commercially available product (Marinol®) but there are some disadvantages that the Aphios technology bypasses (from the Nov. 4, 2013 news item on FreshNews.com),

For the novel patented formulation, pharmaceutical grade Δ9-THC and other cannabinoids from Cannabis sativa with a >99% purity are first manufactured following cGMP utilizing Aphios’ patented SFS-CXP manufacturing technology platform. Our scientists and engineers then utilize Aphios’ patented SFS-PNS polymer nanospheres technology platform to encapsulate Δ9-THC in a biodegradable polymer. Nanoencapsulation protects Δ9-THC transport to the stomach, enhances its passage across the stomach lining of the gut and protects it from first pass metabolism in the liver. Nanoencapsulation slows the release of Δ9-THC, controlling the amount of drug in the bloodstream and reducing the frequency of drug administration during the day. Alternatively, the nanoformulation will be utilized to deliver Δ9-THC and other cannabinoids from a subcutaneously implanted depot.

You can find out more about Aphios including this from the Company Overview webpage,

We are leading the way in developing green, enabling biotechnology and nanotechnology drug delivery platforms and enhanced therapeutic products for health maintenance, disease prevention and the treatment of certain cancers, infectious diseases and Central Nervous System (CNS) disorders such as Alzheimer’s Disease.

Aphios®, which means “virus-free” in Greek, was founded in 1993 as a Delaware C corporation. The company was founded by Dr. Trevor P. Castor, President and CEO, to develop enabling technology platforms around the delivery and viral safety of biologics such as human plasma and recombinant therapeutics, hence its “virus-free” name. At its founding, the Company elected to spend about 10% of its research activities on investigating natural therapeutics. This interest has evolved to the realization that in order to solve the problems of cancer and aging, we have to look to nature, marine organisms and terrestrial plants that have learned how to control cell growth and cancerous mutation, often living for hundreds to thousands of years.

There’s no question humans and other animals have benefited greatly from therapeutics derived from nature but there’s at least one case, artemisinin, where we might be better off if the therapy is delivered from its  more or less natural state, a tea brewed from the plant, rather than as a refined drug, artemisinin combination therapy (or ACT) purchased from Sanofi (aka, Sanofi-Aventis), a French, multi-national pharmaceutical company, as per the discussion in my April 12, 2013 posting.

Taiwan and its nanotechnology patents

In an Oct. 2, 2013 news item by Chung Jung-feng and Y.L. Kao for the Focus Taiwan [online] News Channel, an unnamed industry expert claimed Taiwan is ranked fourth-top in the world in terms of the number and share of granted nanotechnology patents in 2012,

With the opening of the 2013 Taiwan Nano Week and Exhibition at the Taipei World Trade Center Wednesday, an industry expert said Taiwan is ranked fourth-top in the world in terms of the number and share of granted nanotechnology patents in 2012.

Wu Chung-yu, head of the National Program on Nanotechnology (NPNT), said that nanotechnology is expected to be a main driver for the technology industry.

Wu said that currently, the European Union, the United States, Germany, Japan and South Korea are mapping out plans for the development of nanotechnology by 2020.

According to the news item, Taiwan’s NPNT currently holds 1500 patents. The government has invested almost NT$14.5B since 2009 in 860 nanotechnology transfer projects in the NPNT’s second phase (1st phase was 2003-2008).

I was not able to find any statistics that directly supported the contention that Taiwan is the fourth largest holder of patents worldwide but there was an intriguing paper, Nanotechnology Patent Survey: Who Will Be the Leaders in the Fifth Technology Revolution? by Carey C. Jordan, Iona N. Kaiser, and Valerie C. Moore,, which puts Taiwan in 5th place for patents (tied with Canada and Great Britain at 3%) in a 2011 list featuring countries only (p. 3 PDF, p. 124 print)). Also in 2011, a Taiwanese company, Hon Hai Precision Industry (computers and electronics), placed 3rd in a list of 25 top assignees in nanotechnology patent literature (p. 4 PDF; p. 125 print).

Patent for detecting, imaging, and measuring cancer cells with nanoparticles awarded

The patent awarded to Senior Scientific seems to offer a generous scope, from the May 23, 2013 news item on Nanowerk,

Senior Scientific, LLC, a unit of Manhattan Scientifics and a developer of molecular imaging and nanobiotechnology for the early detection and localization of cancer and other human diseases, today announced that the United States Patent Office (USPTO) has issued U.S. Patent No. 8,447,379 entitled “Detection, measurement, and imaging of cells such as cancer and other biologic substances using targeted nanoparticles and magnetic properties thereof.”

The patent includes claims directed to detecting and measuring biological substances such as cancer cells. The methods can be used in humans, with no harmful radiation, and can find cancers much earlier than is possible with conventional technologies.

I find this comment rather interesting, from the news item,

Dr. Flynn [Edward R. Flynn], Chief Scientist of Senior Scientific, said, “I am encouraged to see my work [based on NanoMagnetic RelaxometryTM] heading to market, and pleased that we now also have this patent to protect the business.” [emphasis mine]

I did search the USPTO website for U.S. Patent No. 8,447,379 to find this,

Detection, measurement, and imaging of cells such as cancer and other biologic substances using targeted nanoparticles and magnetic properties thereof


Abstract
The present invention can provide a method of determining the presence, location, quantity, or a combination thereof, of a biological substance, comprising: (a) exposing a sample to a plurality of targeted nanoparticles, where each targeted nanoparticle comprises a paramagnetic nanoparticle conjugated with one or more targeting agents that preferentially bind with the biological substance, under conditions that facilitate binding of the targeting agent to at least one of the one or more biological substances; (b) subjecting the sample to a magnetic field of sufficient strength to induce magnetization of the nanoparticles; (c) measuring a magnetic field of the sample after decreasing the magnetic field applied in step b below a threshold; (d) determining the presence, location, quantity, or a combination thereof, of the one or more biologic substances from the magnetic field measured in step (c).

Unfortunately, this does not clarify the situation for me. It looks as if they have granted a patent for a specific method or technique but given the nature of the ‘patent wars’ I imagine this language allows a fair degree of interpretation by the company that owns the patent. In any event, you can find out more about Manhattan Scientifics (Senior Scientific’s parent company) here.

Patent bonanza in nanotechnology (sigh)

This is more of a snippet than anything else but since it touches on patents and nanotechnology, I’ve decided to post this excerpt (from J. Steven Rutt’s Jan. 2, 2013 posting on JD Supra Law News),

The nanotechnology patent filing boom continues. In 2012, the USPTO [US Patent and Trademark Office] published 4,098 nanotechnology class 977 applications, which represents a 19.2% increase over last year. By way of comparison, in 2008, the USPTO published only 827 nanotechnology applications, and in 2009, only 1,499. Hence, the number has almost tripled in three years.

Rutt is a lawyer with Foley & Lardner LLP and he’s much happier about this news than I am. Of course, a lawyer is much likely to profit from this trend than anyone else (except maybe for a patent troll). My Nov. 23, 2012 posting (Free the nano—stop patenting publicly funded research) highlights some alternative perspectives.

The State of Science and Technology in Canada, 2012 report—examined (part 2: the rest of the report)

The critiques I offered in relation to the report’s  executive summary (written in early Oct. 2012 but not published ’til now) and other materials can remain more or less intact now that I’ve read the rest of the report (State of Science and Technology in Canada, 2012 [link to full PDF report]). Overall, I think it’s a useful and good report despite what I consider to be some significant shortcomings, not least of which is the uncritical acceptance of the view Canada doesn’t patent enough of its science and its copyright laws are insufficient.

My concern regarding the technometrics (counting patents) is definitely not echoed in the report,

One key weakness of these measures is that not all types of technology development lead to patentable technologies. Some, such as software development, are typically subject to copyright instead. This is particularly relevant for research fields where software development may be a key aspect of developing new technologies such as computer sciences or digital media. Even when patenting is applicable as a means of commercializing and protecting intellectual property (IP), not all inventions are patented. (p. 18 print, p. 42 PDF)

In my view this is a little bit like fussing over the electrical wiring when the foundations of your house are  in such bad repair that the whole structure is in imminent danger of falling. As noted in my critique of the executive summary, the patent system in the US and elsewhere is in deep, deep trouble and, is in fact, hindering innovation. Here’s an interesting comment about patent issues being covered in the media (from a Dec. 27, 2012 posting by Mike Masnick for Techdirt),

There’s been a recent uptick in stories about patent trolling getting mainstream media attention, and the latest example is a recent segment on CBS’s national morning program, CBS This Morning, which explored how patent trolls are hurting the US economy …

… After the segment, done by Jeff Glor, one of the anchors specifically says to him [Austin Meyer of the Laminer company which is fighting a patent troll in court and getting coverage on the morning news]: “So it sounds like this is really stifling innovation and it hurts small businesses!”

Getting back to the report, I’m in more sympathy with the panel’s use of  bibliometrics,

As a mode of research assessment, bibliometric analysis has several important advantages. First, these techniques are built on a well-developed foundation of quantitative data. Publication in peer-reviewed journals is a cornerstone of research dissemination in most scientific and academic disciplines, and bibliometric data are therefore one of the few readily available sources of quantitative information on research activity that allow for comparisons across many fields of research. Second, bibliometric analyses are able to provide information about both research productivity (i.e., the quantity of journal articles produced) and research impact (measured through citations). While there are important methodological issues associated with these metrics (e.g., database coverage by discipline, correct procedures for normalization and aggregation, self-citations, and negative citations, etc.), [emphasis mine] most bibliometric experts agree that, when used appropriately, citation based indicators can be valid measures of the degree to which research has had an impact on later scientific work … (p. 15 print, p. 39, PDF)

Still, I do think that a positive publication bias (i.e., the tendency to publish positive results over negative or inclusive results) in the field medical research should have been mentioned as it is a major area of concern in the use  of bibliometrics and especially since one of the identified areas of  Canadian excellence is  in the field of medical research.

The report’s critique of the opinion surveys has to be the least sophisticated in the entire report,

There are limitations related to the use of opinion surveys generally. The most important of these is simply that their results are, in the end, based entirely on the opinions of those surveyed. (p. 20 print, p. 44 PDF)

Let’s see if I’ve got this right. Counting the number of citations a paper, which was peer-reviewed (i.e., a set of experts were asked for their opinions about the paper prior to publication) and which may have been published due to a positive publication, bias yields data (bibliometrics) which are by definition more reliable than an opinion. In short, the Holy Grail (a sacred object in Christian traditions) is data even though that data or ‘evidence’  is provably based on and biased by opinion which the report writers identify as a limitation. Talk about a conundrum.

Sadly the humanities, arts, and social sciences (but especially humanities and arts) posed quite the problem regarding evidence-based analysis,

While the Panel believes that most other evidence-gathering activities undertaken for this assessment are equally valid across all fields, the limitations of bibliometrics led the Panel to seek measures of the impact of HASS [Humanities, Arts, and Social Sciences] research that would be equivalent to the use of bibliometrics, and would measure knowledge dissemination by books, book chapters, international awards, exhibitions, and other arts productions (e.g., theatre, cinema, etc.). Despite considerable efforts to collect information, however, the Panel found the data to be sparse and methods to collect it unreliable, such that it was not possible to draw conclusions from the resulting data. In short, the available data for HASS-specific outputs did not match the quality and rigour of the other evidence collected for this report. As a result, this evidence was not used in the Panel’s deliberations.

Interestingly, the expert panel was led by Dr. Eliot Phillipson, Sir John and Lady Eaton Professor of Medicine Emeritus, [emphasis mine] University of Toronto, who received his MD in 1963. Evidence-based medicine is the ne plus ultra of medical publishing these days. Is this deep distress over a lack of evidence/data in other fields a reflection of the chair’s biases?  In all the discussion and critique of the methodologies, there was no discussion about reflexivity, i. e., the researcher’s or, in this case, the individual panel members’ (individually or collectively) biases and their possible impact on the report. Even with so called evidence-based medicine, bias and opinion are issues.

While the panel was not tasked to look into business-led R&D efforts (there is a forthcoming assessment focused on that question) mention was made in Chapter 3 (Research Investment) of the report. I was particularly pleased to see mention of the now defunct Nortel with its important century long contribution to Canadian R&D efforts. [Full disclosure: I did contract work for Nortel on and off for two years.]

A closer look at recent R&D expenditure trends shows that Canada’s total investment in R&D has declined in real terms between 2006 and 2010, driven mainly by declining private-sector research performance. Both government and higher education R&D expenditures increased modestly over the same five-year period (growing by 4.5 per cent and 7.1 per cent respectively), while business R&D declined by 17 per cent (see Figure 3.3). Much of this decline can be attributed to the failing fortunes and bankruptcy of Nortel Networks Corporation, which was one of Canada’s top corporate R&D spenders for many years. Between 2008 and 2009 alone, global R&D expenditure at Nortel dropped by 48 per cent, from nearly $1.7 billion to approximately $865 million (Re$earch Infosource, 2010) with significant impact on Canada. Although growth in R&D expenditure at other Canadian companies, particularly Research In Motion, partially compensated for the decline at Nortel, the overall downward trend remains. (p. 30 print, p. 54 PDF)

Chapter 4 of the report (Research Productivity and Impact) is filled with colourful tables and various diagrams and charts illustrating areas of strength and weakness within the Canadian research endeavour, my concerns over the metrics notwithstanding. I was a bit startled by our strength in Philosophy and Theology (Table 4.2 on p. 41 print, p. 65 PDF) as it was not touted in the initial publicity about the report. Of course, they can’t mention everything so there are some other pleasant surprises in here. Going in the other direction, I’m a little disturbed by the drop (down from 1.32 in 1999-2004 to 1.12 in 2005-1010) in the ICT (Information and Communication Technologies) specialization index but that is, as the report notes, a consequence of the Nortel loss and ICT scores better in other measures.

I very much appreciated the inclusion of the questions used in the surveys and the order in which they were asked, a practice which seems to be disappearing elsewhere. The discussion about possible biases and how the data was weighted to account for biases is interesting,

Because the responding population was significantly different than the sample population (p<0.01) for some countries, the data were weighted to correct for over- or under-representation. For example, Canadians accounted for 4.4 per cent of top-cited researchers, but 7.0 per cent of those that responded. After weighting, Canadians account for 4.4 per cent in the analyses that follow. This weighting changed overall results of how many people ranked each country in the top five by less than one per cent.

Even with weighting to remove bias in choice to respond, there could be a perception that self-selection is responsible for some results. Top-cited Canadian researchers in the population sample were not excluded from the survey but the results for Canada cannot be explained by self-promotion since 37 per cent of all respondents identified Canada among the top five countries in their field, but only 7 per cent (4.4 per cent after weighting) of respondents were from Canada. Similarly, 94 per cent of respondents identified the United States as a top country in their field, yet only 33 per cent (41 per cent after weighting) were from the United States. Furthermore, only 9 per cent of respondents had either worked or studied in Canada, and 28 per cent had no personal experience of, or association with, Canada or Canadian researchers (see Table 5.2). It is reasonable to conclude that the vast majority of respondents based their evaluation of Canadian S&T on its scientific contributions and reputation alone. (p. 65 print, p. 89 PDF)

There is another possible bias  not mentioned in the report and that has to do with answering the question: What do you think my strengths and weaknesses are? If somebody asks you that question and you are replying directly, you are likely to focus on their strong points and be as gentle as possible about their weaknesses. Perhaps the panel should consider having another country ask those questions about Canadian research. We might find the conversation becomes a little more forthright and critical.

Chapter 6 of the report discusses research collaboration which is acknowledged as poorly served by bibliometrics. Of course, collaboration is a strategy which Canadians have succeeded with not least because we simply don’t have the resources to go it alone.

One of the features I quite enjoyed in this report are the spotlight features. For example, there’s the one on stem cell research,

Spotlight on Canadian Stem Cell Research

Stem cells were discovered by two Canadian researchers, Dr. James Till and the late Dr. Ernest McCulloch, at the University of Toronto over 50 years ago. This great Canadian contribution to medicine laid the foundation for all stem cell research, and put Canada firmly at the forefront of this field, an international leadership position that is still maintained.

Stem cell research, which is increasingly important to the future of cell replacement therapy for diseased or damaged tissues, spans many disciplines. These disciplines include biology, genetics, bioengineering, social sciences, ethics and law, chemical biology, and bioinformatics. The research aims to understand the mechanisms that govern stem cell behaviour, particularly as it relates to disease development and ultimately treatments or cures.

Stem cell researchers in Canada have a strong history of collaboration that has been supported and strengthened since 2001 by the Stem Cell Network (SCN) (one of the federal Networks of Centres of Excellence), a network considered to be a world leader in the field. Grants awarded through the SCN alone have affected the work of more than 125 principal investigators working in 30 institutions from Halifax to Vancouver. Particularly noteworthy institutions include the Terry Fox Laboratory at the BC Cancer Agency; the Hotchkiss Brain Institute in Calgary; Toronto’s Hospital for Sick Children, Mount Sinai Hospital, University Health Network, and the University of Toronto; the Sprott Centre for Stem Cell Research in Ottawa; and the Institute for Research in Immunology and Cancer in Montréal. In 2010, a new Centre for the Commercialization of Regenerative Medicine was formed to further support stem cell initiatives of interest to industry partners.

Today, Canadian researchers are among the most influential in the stem cell and regenerative medicine field. SCN investigators have published nearly 1,000 papers since 2001 in areas such as cancer stem cells; the endogenous repair of heart, muscle, and neural systems; the expansion of blood stem cells for the treatment of a variety of blood-borne diseases; the development of biomaterials for the delivery and support of cellular structures to replace damaged tissues; the direct conversion of skin stem cells to blood; the evolutionary analysis of leukemia stem cells; the identification of pancreatic stem cells; and the isolation of multipotent blood stem cells capable of forming all cells in the human blood system. (p. 96 print, p. 120 PDF)

Getting back to the report and my concerns, Chapter 8 on S&T capacity focuses on science training and education,

• From 2005 to 2009, there were increases in the number of students graduating from Canadian universities at the college, undergraduate, master’s and doctoral levels, with the largest increase at the doctoral level.

• Canada ranks first in the world for its share of population with post-secondary education.

• International students comprise 11 per cent of doctoral students graduating from Canadian universities. The fields with the largest proportions of international students include Earth and Environmental Sciences; Mathematics and Statistics; Agriculture, Fisheries, and Forestry; and Physics and Astronomy.

• From 1997 to 2010, Canada experienced a positive migration flow of researchers, particularly in the fields of Clinical Medicine, Information and Communication Technologies (ICT), Engineering, and Chemistry. Based on Average Relative Citations, the quality of researchers emigrating and immigrating was comparable.

• In three-quarters of fields, the majority of top-cited researchers surveyed thought Canada has world-leading research infrastructure or programs. (p. 118 print, p. 142 PDF)

Getting back to more critical matters, I don’t see a reference to jobs in this report. It’s all very well to graduate a large number of science PhDs, which we do,  but what’s the point if they can’t find work?

  • From 2005 to 2009, there were increases in the number of students graduating from Canadian universities at the college, undergraduate, master’s and doctoral levels, with the largest increase at the doctoral level.
  • Canada ranks first in the world for its share of population with post-secondary education.
  • International students comprise 11 per cent of doctoral students graduating from Canadian universities. The fields with the largest proportions of international students include Earth and Environmental Sciences; Mathematics and Statistics; Agriculture, Fisheries, and Forestry; and Physics and Astronomy.
  • From 1997 to 2010, Canada experienced a positive migration flow of researchers, particularly in the fields of Clinical Medicine, Information and Communication Technologies (ICT), Engineering, and Chemistry. Based on Average Relative Citations, the quality of researchers emigrating and immigrating was comparable.
  • In three-quarters of fields, the majority of top-cited researchers surveyed thought Canada has world-leading research infrastructure or programs. (p. 118 print, p. 142 PDF)

The Black Whole blog on the University Affairs website has discussed and continues to discuss the dearth of jobs in Canada for science graduates.

Chapter 9 of the report breaks down the information on a regional (provincial) bases. As you might expect, the research powerhouses are Ontario, Québec, Alberta and BC. Chapter 10 summarizes the material on a field basis, i.e., Biology; Chemistry; Agriculture, Fisheries, and Forestry; Econ0mics; Social Sciences; etc.  and those results were widely discussed at the time and are mentioned in part 1 of this commentary.

One of the most striking results in the report is Chapter 11: Conclusions,

The geographic distribution of the six fields of strength is difficult to determine with precision because of the diminished reliability of data below the national level, and the vastly different size of the research enterprise in each province.

The most reliable data that are independent of size are provincial ARC scores. Using this metric, the leading provinces in each field are as follows:

  • Clinical Medicine: Ontario, Quebec, British Columbia, Alberta
  • Historical Studies: New Brunswick, Ontario, British Columbia
  • ICT: British Columbia, Ontario
  •  Physics and Astronomy: British Columbia, Alberta, Ontario, Quebec
  • Psychology and Cognitive Sciences: British Columbia, Nova Scotia, Ontario
  • Visual and Performing Arts: Quebec [emphasis mine] (p. 193 print, p. 217 PDF)

Canada has an international reputation in visual and performing which is driven by one province alone.

As for our national fading reputation in natural resources and environmental S&T that seems predictable by almost any informed observer given funding decisions over the last several years.

The report does identify some emerging strengths,

Although robust methods of identifying emerging areas of S&T are still in their infancy, the Panel used new bibliometric techniques to identify research clusters and their rates of growth. Rapidly emerging research clusters in Canada have keywords relating, most notably, to:

• wireless technologies and networking,

• information processing and computation,

• nanotechnologies and carbon nanotubes, and

• digital media technologies.

The Survey of Canadian S&T Experts pointed to personalized medicine and health care, several energy technologies, tissue engineering, and digital media as areas in which Canada is well placed to become a global leader in development and application. (p. 195 print; p. 219 PDF)

I wish I was better and faster at crunching numbers because I’d like to spend time examining the data more closely but the reality is that all data is imperfect so this report like any snapshot is an approximation. Still, I would have liked to have seen some mention of changing practices in science. For example, there’s the protein-folding game, Foldit, which has attracted over 50,000 players (citizen scientists) who have answered questions and posed possibilities that had not occurred to scientists. Whether this trend will continue to disappear is to be answered in the future. What I find disconcerting is how thoroughly this and other shifting practices (scientists publishing research in blogs) and thorny issues such as the highly problematic patent system were ignored. Individual panel members or the report writers themselves may have wanted to include some mention but we’ll never know because the report is presented as a singular, united authority.

In any event, Bravo! to the expert panel and their support team as this can’t have been an easy job.

If you have anything to say about this commentary or the report please do comment, I would love to hear more opinions.

The State of Science and Technology in Canada, 2012 report—examined (part 1: the executive summary)

In my Sept. 27, 2012 posting about its launch,  we celebrated the Council of Canadian Academies, The State of science and Technology in Canada, 2012 report unconditionally. Today (Dec. , 2012), it’s time for a closer look.

I’m going to start with the report’s executive summary and some of the background information. Here’s the question the 18-member expert panel attempted to answer,

What is the current state of science and technology in Canada?

Additional direction was provided through two sub-questions:

Considering both basic and applied research fields, what are the scientific disciplines and technological applications in which Canada excels? How are these strengths distributed geographically across the country? How do these trends compare with what has been taking place in comparable countries?

In which scientific disciplines and technological applications has Canada shown the greatest improvement/decline in the last five years? What major trends have emerged? Which scientific disciplines and technological applications have the potential to emerge as areas of prominent strength for Canada?  (p. xi paper, p. 13 PDF)

Here’s more general information about the expert panel,

The Council appointed a multidisciplinary expert panel (the Panel) to address these questions. The Panel’s mandate spanned the full spectrum of fields in engineering, the natural sciences, health sciences, social sciences, the arts, and humanities. It focused primarily on research performed in the higher education sector, as well as the government and not-for-profit sectors. The mandate specifically excluded an examination of S&T performed in the private sector (which is the subject of a separate Council assessment on the state of industrial research and development). The Panel’s report builds upon, updates, and expands the Council’s 2006 report, The State of Science and Technology in Canada. (p. xi paper, p. 13 PDF)

As I noted in my Sept. 27, 2012 posting, the experts have stated,

  • The six research fields in which Canada excels are: clinical medicine, historical studies, information and communication technologies (ICT), physics and astronomy, psychology and cognitive sciences, and visual and performing arts.
  • Canadian science and technology is healthy and growing in both output and impact. With less than 0.5 per cent of the world’s population, Canada produces 4.1 per cent of the world’s research papers and nearly 5 per cent of the world’s most frequently cited papers.
  • In a survey of over 5,000 leading international scientists, Canada’s scientific research enterprise was ranked fourth highest in the world, after the United States, United Kingdom, and Germany.
  • Canada is part of a network of international science and technology collaboration that includes the most scientifically advanced countries in the world. Canada is also attracting high-quality researchers from abroad, such that over the past decade there has been a net migration of researchers into the country.
  • Ontario, Quebec, British Columbia and Alberta are the powerhouses of Canadian science and technology, together accounting for 97 per cent of total Canadian output in terms of research papers. These provinces also have the best performance in patent-related measures and the highest per capita numbers of doctoral students, accounting for more than 90 per cent of doctoral graduates in Canada in 2009.
  • Several fields of specialization were identified in other provinces, such as: agriculture, fisheries, and forestry in Prince Edward Island and Manitoba; historical studies in New Brunswick; biology in Saskatchewan; as well as earth and environmental sciences in Newfoundland and Labrador and Nova Scotia.

The Council did release a backgrounder describing the methodology the experts used to arrive at their conclusions,

In total, the Panel used a number of different methodologies to conduct this assessment, including: bibliometrics (the study of patterns in peer-reviewed journal articles); technometrics (the analysis of patent statistics and indicators), an analysis of highly qualified and skilled personnel; and opinion surveys of Canadian and international experts.

• To draw comparisons among the results derived through the different methodologies, and to integrate the findings, a common classification system was required. The Panel selected a classification system that includes 22 research fields composed of 176 sub-fields, which included fields in the humanities, arts, and social sciences.

Recognizing that some measurement tools used by the Panel (e.g. bibliometric measures) are a less relevant way of measuring science and technology strength in the humanities, arts, and social sciences, where research advances may be less often communicated in peer-reviewed journal articles, the Panel made considerable attempts to evaluate measures such as books and book chapters, exhibitions, and esteem measures such as international awards. However, the Panel was hampered by a lack of available data. As a result, the information and data collected did not meet the Council’s high standards and was excluded from the assessment.

• The Panel determined two measures of quality, a field’s international average relative citations (ARC) rank and its rank in the international survey, to be the most relevant in determining the field’s position compared with other advanced countries. Based on these measures of quality, the

Bibliometric Analysis (the study of patterns in peer-reviewed journal articles)

• Bibliometric analysis has several advantages, namely, that it is built on a well-developed foundation of quantitative data and it is able to provide information on research productivity and impact.

• For this assessment, the Panel relied heavily on bibliometrics to inform their deliberations. The Panel commissioned a comprehensive analysis of Canadian and world publication trends. It included consideration of many different indicators of output and impact, a study of collaboration patterns, and an analysis of researcher migration. Overall, the resulting research was extensive and critical for determining the research fields in which Canada excels.

• Standard bibliometrics do not identify patterns of collaboration among researchers, and may not adequately capture research activity within an interdisciplinary realm. Therefore, the Panel used advanced bibliometric techniques that allow for the identification of patterns of collaboration between Canadian researchers and those in other countries (based on the co-authorship of research papers); and clusters of related research papers, as an alternative approach to assessing Canada’s research strengths.

Technometrics (analysis of patent statistics and indicators)

• Technometrics is an important tool for determining trends in applied research. This type of analysis is routinely used by the Organisation for Economic Co-operation and Development (OECD) and other international organizations in comparing and assessing science and technology outputs across countries.

• In 2006, the Expert Panel on Science and Technology used technometrics to inform their work. In an effort to ensure consistency between the 2006 and the 2012 assessments, technometrics were once again used as a measurement tool.

• The 2012 Panel commissioned a full analysis of Canadian and international patent holdings in the United States Patent and Trademark Office (USPTO) to capture information about Canada’s patent stock and production of intellectual property relative to other advanced economies. Canadians accounted for 18,000 patented inventions in the USPTO, compared to 12,000 at the Canadian Intellectual Property Office during the period 2005-2010.

Opinion Surveys

• To capture a full range of Canadian science and technology activities and strengths, two extensive surveys were commissioned to gather opinions from Canadian experts and from the top one per cent of cited researchers from around the world.

• A survey of Canadian science and technology experts was conducted for the 2006 report. In

2012 this exercise was repeated, however, the survey was modified with three key changes:

o respondents were pre-chosen to ensure those responding were experts in Canadian science and technology;

o to allow comparisons of bibliometric data, the survey was based on the taxonomy of 22 scientific fields and 176 sub-fields; and

o a question regarding the identification of areas of provincial science and technology strength was added.

• To obtain the opinions of international science and technology experts regarding Canada’s science and technology strengths, the Panel conducted a survey of the top cited one percent of international researchers. Over 5,000 responded to the survey, including Canadians. This survey, combined with the results from the bibliometric analysis were used to determine the top six fields of research in which Canada excels.

..

Research Capacity

• The Panel conducted an analysis related to Canadian research capacity. This analysis drew evidence from a variety of sources including bibliometric data and existing information from publications by organizations such as the OECD and Statistics Canada.

• The Panel was also able to look at various Canadian research capacities which included research infrastructure and facilities, trends in Canada’s research faculty and student populations, the degree of collaboration among researchers in Canada and other countries, and researcher migration between Canada and other countries.

To sum it up, they used bibliometrics (how many citations, publications in peer-reviewed journals, etc.), technometrics (the number of patents filed, etc.), and opinion surveys, along with data from other publications. it sounds very impressive but I am wondering why Canada is so often unmentioned as a top research country in analyses produced outside of Canada. In the 2011 OECD (Organization for Economic Cooperation and Development) Science, Technology, and Industry scorecard, we didn’t place all that well according to my Sept. 27, 2011 posting,

Other topics were covered as well, the page hosting the OECD scorecard information boasts a couple of animations, one of particular interest to me (sadly I cannot embed it here). The item of interest is the animation featuring 30 years of R&D investments in OECD and non-OECD countries. It’s a very lively 16 seconds and you may need to view it a few times. You’ll see some countries rocket out of nowhere to make their appearance on the chart (Finland and Korea come to mind) and you’ll see some countries progress steadily while others fall back. The Canadian trajectory shows slow and steady growth until approximately 2000 when we fall back for a year or two after which we remain stagnant. [emphasis added here]

Notably, the 2012 State of Canadian Science and Technology does not mention investment in this sector as they do in the OECD scorecard and  even though that’s usually one of the measures for assessing the health of your science and technology sector.

For reasons that are somewhat of a mystery to me, the report indicates dissatisfaction with Canada’s patent performance (we don’t patent often enough),

In contrast to the nation’s strong performance in knowledge generation is its weaker performance in patents and related measures. Despite producing 4.1 per cent of the world’s scientific papers, Canada holds only 1.7 per cent of world patents, and in 2010 had a negative balance of nearly five billion dollars in royalties and licensing revenues. Despite its low quantity of patents, Canada excels in international comparisons of quality, with citations to patents (ARC scores), ranking second in the world, behind the United States. (p. xiii print, p. 15 PDF)

I have written extensively about the problems with the patent system, especially the system in the US, as per Billions lost to patent trolls; US White House asks for comments on intellectual property (IP) enforcement; and more on IP, in my June 28, 2012 posting and many others. As an indicator or metric for excellence in science and technology, counting your patents (or technometrics as defined by the Council of Canadian Academies) seems problematic. I appreciate this is a standard technique practiced by other countries but couldn’t the panel have expressed some reservations about the practice? Yes, they mention problems with the methodology but they seem unaware that there is growing worldwide dissatisfaction with patent practices.

Thankfully this report is not just a love letter to ourselves. There was an acknowledgement that some areas of excellence have declined since the 2006 report. For those following the Canadian science and technology scene, it can’t be a surprise to see that natural resources and environmental science and technology (S&T) are among the declining areas (not so coincidentally there is less financial investment by the federal government),

This assessment is, in part, an update of the Council’s 2006 assessment of the state of S&T in Canada. Results of the two assessments are not entirely comparable due to methodological differences such as the bibliometric database and classification system used in the two studies, and the survey of top-cited international researchers which was not undertaken in the 2006 assessment. Nevertheless, the Panel concluded that real improvements have occurred in the magnitude and quality of Canadian S&T in several fields including Biology, Clinical Medicine, ICT, Physics and Astronomy, Psychology and Cognitive Sciences, Public Health and Health Services, and Visual and Performing Arts. Two of the four areas identified as strengths in the 2006 report — ICT and health and related life sciences and technologies — have improved by most measures since 2006.

The other two areas identified as strengths in the 2006 report — natural resources and environmental S&T — have not experienced the same improvement as Canadian S&T in general. In the current classification system, these broad areas are now represented mainly by the fields of Agriculture, Fisheries, and Forestry; and Earth and Environmental Sciences. The Panel mapped the current classification system for these fields to the 2006 system and is confident that the overall decline in these fields is real, and not an artefact of different classifications. Scientific output and impact in these fields were either static or declined in 2005–2010 compared to 1994–2004. It should be noted, however, that even though these fields are declining relative to S&T in general, both maintain considerable strength, with Canadian research in Agriculture, Fisheries, and Forestry ranked second in the world in the survey of international researchers, and Earth and Environmental Sciences ranked fourth.

I’m not sure when I’ll get to part 2 of this as I have much on my plate at the moment but I will get back to this.

New thinking applied to nail polish

According to a Dec. 15, 2012 news item on Nanowerk, a nanotechnology-enabled nail polish has received a provisional patent,

Nano Labs Corp. announced it has been awarded a provisional patent number61,735,705 for its original nano nail polish and lacquer, the third advanced nanotechnology product the Company has introduced in as many months.

“We’ve brought new thinking to a whole new product,” said Dr. Victor Castano, CEO of Innovation at Nano Labs. “The nano lacquer – or nail polish – is a nanohybrid compound, which is a rather new concept. In the past, bringing different chemical mixtures together could be problematic. … With the nail polish, we’ve taken ceramics – which provide excellent hardness and high scratch and chip resistance – and mixed them with polymer and metallic nano particles. The result is a material that is flexible but strong, non-toxic, and eco-friendly. Not to mention it can hold a great range of colours and sheen.”

Nano Labs promotes the nail polish as twice as durable conventional products. It dries to a very hard state, and resists shock, cracking, scratching, and chipping. It offers superior ease of application, quick drying film formation, and high coverage and adhesion, with bright, vivid colours and high gloss. It also offers the flexibility of a wide spectrum of colour – introduced at the nano level – with pigments including gold, silver, titanium, and other metals and oxides with a wide range of tones. Its elasticity allows for easy and effective application to nail curves without cracking. Nano Labs has also removed toxic solvents from the nail polish equation thanks to material that quickly evaporates, with no toxicity.

Nano Labs noticed that existing products produce a physical adhesion to the natural or plastic nail. The new nano nail polish produces a chemical adhesion which is about a 1,000 times stronger and requires significantly less coverage. Therefore you are getting a better color, coat, and longer-lasting finish.

The removal of the nail polish also required a new way of thinking. How to create a solution to remove the nano nail polish that wasn’t harsh on the nails or the person as traditional cleaners. While conventional nail polish removers will remove the nano nail polish, Dr. Castano and his team created a non-toxic, solvent which removes the nano nail polish without the traditional harsh effects and toxicity of conventional cleaners.

There are no more technical details in the news item or on the company (Nano Labs) website. In fact, the company website  doesn’t yet (as of Dec. 17, 2012 1000 hours PST) have a posted news release about this development. According to the news item on Nanowerk,

At the request of a major American manufacturer and distributor the company has completed its nano-technological lacquer research and filed patent applications (File Number – 61,735,705). Further disclosure will be made upon completion of the pending licensing agreement with the 3rd parties. [emphasis mine]

“The nano nail polish is a very important example of Nano Labs in action and the importance of our patents.” explains Mr. Bernardo Camacho, President of Nano Labs, “Without going into the technical data and formulas, there is a very narrow range of chemical properties, compositions, phase separations, and segregations that need to applied to create these types of products correctly. The only way to put these items together is in this narrow band, which is complicated, and is protected in our patent. [emphasis mine] We look forward to introducing the product to the global marketplace with partners in the cosmetic industry.”

The emphasis on the narrow band within which this nail polish innovation can occur and the company’s soon-to-be patent protection seems at odds with the company philosophy as stated by Dr. Castano,

“Our philosophy of green chemistry and using friendly organics allows us to focus on sustainable products that are less toxic and harmful to customers who are trending more and more toward healthier, environmentally sound consumer options,” Dr. Castano said.

The issue isn’t the patent so much as what appears to be an attempt by the company to ‘own’ all innovation in a niche they have defined in their patent. If the focus is “healthier, environmentally sound consumer options,” then surely, the company wants a patent that allows them to profit from their innovation while spurring more ‘green options’.

One final note, Nano Labs is a very young company having been founded in Oct. 2012.

Free the nano—stop patenting publicly funded research

Joshua Pearce, a professor at Michigan Technological University, has written a commentary on patents and nanotechnology for Nature magazine which claims the current patent regimes strangle rather than encourage innovation. From the free article,  Physics: Make nanotechnology research open-source by Joshua Pearce in Nature 491, 519–521 (22 November 2012) doi:10.1038/491519a (Note: I have removed footnotes),

Any innovator wishing to work on or sell products based on single-walled carbon nanotubes in the United States must wade through more than 1,600 US patents that mention them. He or she must obtain a fistful of licences just to use this tubular form of naturally occurring graphite rolled from a one-atom-thick sheet. This is because many patents lay broad claims: one nanotube example covers “a composition of matter comprising at least about 99% by weight of single-wall carbon molecules”. Tens of others make overlapping claims.

Patent thickets occur in other high-tech fields, but the consequences for nanotechnology are dire because of the potential power and immaturity of the field. Advances are being stifled at birth because downstream innovation almost always infringes some early broad patents. By contrast, computing, lasers and software grew up without overzealous patenting at the outset.

Nanotechnology is big business. According to a 2011 report by technology consultants Cientifica, governments around the world have invested more than US$65 billion in nanotechnology in the past 11 years [my July 15, 2011 posting features an interview with Tim Harper, Cientfica CEO and founder, about the then newly released report]. The sector contributed more than $250 billion to the global economy in 2009 and is expected to reach $2.4 trillion a year by 2015, according to business analysts Lux Research. Since 2001, the United States has invested $18 billion in the National Nanotechnology Initiative; the 2013 US federal budget will add $1.8 billion more.

This investment is spurring intense patent filing by industry and academia. The number of nanotechnology patent applications to the US Patent and Trademark Office (USPTO) is rising each year and is projected to exceed 4,000 in 2012. Anyone who discovers a new and useful process, machine, manufacture or composition of matter, or any new and useful improvement thereof, may obtain a patent that prevents others from using that development unless they have the patent owner’s permission.

Pearce makes some convincing points (Note: I have removed a footnote),

Examples of patents that cover basic components include one owned by the multinational chip manufacturer Intel, which covers a method for making almost any nanostructure with a diameter less than 50 nm; another, held by nanotechnology company NanoSys of Palo Alto, California, covers composites consisting of a matrix and any form of nanostructure. And Rice University in Houston, Texas, has a patent covering “composition of matter comprising at least about 99% by weight of fullerene nanotubes”.

The vast majority of publicly announced IP licence agreements are now exclusive, meaning that only a single person or entity may use the technology or any other technology dependent on it. This cripples competition and technological development, because all other would-be innovators are shut out of the market. Exclusive licence agreements for building-block patents can restrict entire swathes of future innovation.

Pearce’s argument for open source,

This IP rush assumes that a financial incentive is necessary to innovate, and that without the market exclusivity (monopoly) offered by a patent, development of commercially viable products will be hampered. But there is another way, as decades of innovation for free and open-source software show. Large Internet-based companies such as Google and Facebook use this type of software. Others, such as Red Hat, make more than $1 billion a year from selling services for products that they give away for free, like Red Hat’s version of the computer operating system Linux.

An open-source model would leave nanotechnology companies free to use the best tools, materials and devices available. Costs would be cut because most licence fees would no longer be necessary. Without the shelter of an IP monopoly, innovation would be a necessity for a company to survive. Openness reduces the barrier for small, nimble entities entering the market.

John Timmer in his Nov. 23, 2012 article for Wired.co.uk expresses both support and criticism,

Some of Pearce’s solutions are perfectly reasonable. He argues that the National Science Foundation adopt the NIH model of making all research it funds open access after a one-year time limit. But he also calls for an end of patents derived from any publicly funded research: “Congress should alter the Bayh-Dole Act to exclude private IP lockdown of publicly funded innovations.” There are certainly some indications that Bayh-Dole hasn’t fostered as much innovation as it might (Pearce notes that his own institution brings in 100 times more money as grants than it does from licensing patents derived from past grants), but what he’s calling for is not so much a reform of Bayh-Dole as its elimination.

Pearce wants changes in patenting to extend well beyond the academic world, too. He argues that the USPTO should put a moratorium on patents for “nanotechnology-related fundamental science, materials, and concepts.” As we described above, the difference between a process innovation and the fundamental properties resulting in nanomaterial is a very difficult thing to define. The USPTO has struggled to manage far simpler distinctions; it’s unrealistic to expect it to manage a moratorium effectively.

While Pearce points to the 3-D printing sector admiringly, there are some issues even there, as per Mike Masnick’s Nov.  21, 2012 posting on Techdirt.com (Note:  I have removed links),

We’ve been pointing out for a while that one of the reasons why advancements in 3D printing have been relatively slow is because of patents holding back the market. However, a bunch of key patents have started expiring, leading to new opportunities. One, in particular, that has received a fair bit of attention was the Formlabs 3D printer, which raised nearly $3 million on Kickstarter earlier this year. It got a ton of well-deserved attention for being one of the first “low end” (sub ~$3,000) 3D printers with very impressive quality levels.

Part of the reason the company said it could offer such a high quality printer at a such a low price, relative to competitors, was because some of the key patents had expired, allowing it to build key components without having to pay astronomical licensing fees. A company called 3D Systems, however, claims that Formlabs missed one patent. It holds US Patent 5,597,520 on a “Simultaneous multiple layer curing in stereolithography.” While I find it ridiculous that 3D Systems is going legal, rather than competing in the marketplace, it’s entirely possible that the patent is valid. It just highlights how the system holds back competition that drives important innovation, though.

3D Systems claims that Formlabs “took deliberate acts to avoid learning” about 3D Systems’ live patents. The lawsuit claims that Formlabs looked only for expired patents — which seems like a very odd claim. Why would they only seek expired patents? …

I strongly suggest reading both Pearce’s and Timmer’s articles as they both provide some very interesting perspectives about nanotechnology IP (intellectual property) open access issues. I also recommend Mike Masnick’s piece for exposure to a rather odd but unfortunately not uncommon legal suit designed to limit competition in a relatively new technology (3-D printers).