Tag Archives: Paul Young

2013 (5th annual) Canadian Science Policy Conference announces some new (for this year) initiatives

An Oct. 29, 2013  announcement highlights some of the speakers you can expect at the 2013 (5th annual) Canadian Science Policy Conference (CSPC) being held in Toronto, Ontario from Nov. 20 – 22, 2013. The conference whose overarching theme is ScienceNext: Incubating Innovation and Ingenuity features (Note: I have bolded this year’s new initiatives),,

CSPC 2013 Welcomes Minister Rickford:
We are thrilled to announce that the Honourable Greg Rickford, [Canada's] Minister of State (Science and Technology, and Federal Economic Development Initiative for Northern Ontario) will speak at CSPC 2013, more details to follow. Be sure not to miss it, register now!

Are you the next Rick Mercer? Bill Nye?
CSPC presents its first ever humorous speech contest, Whose Science is it Anyway? Thursday, November 21st at 9pm. To enter, send your name, contact info and 2-3 lines about your story to [email protected] Attractive prizes to be won! Deadline: 5pm, Friday, Nov. 15 (Finalists will be notified Monday, Nov. 18)

CSPC is now Accepting Donations:
We are quite pleased to announce that with the generous support from Ryerson University, CSPC can issue charitable tax receipts for donations. If you wish to donate please contact us or visit cspc2013.ca for more details. www.cspc2013.ca

> CONFERENCE HIGHLIGHTS

• 600+ participants, 28 panel sessions, 150+ speakers including:

- Hon. Reza Moridi, MPP,Ontario Minister of Research and Innovation

- John Knubley, Deputy Minister, Industry Canada

- Robert Hardt, President and CEO, Siemens Canada Limited

- Wendy Cukier, Vice President of Research and Innovation, Ryerson University

- Pierre Meulien, President and CEO, Genome Canada

- Paul Young, Vice President Research, University of Toronto

More exciting names are being added to the Program.

Inauguration of the Awards of Excellence in Science Policy – a first in Canada

• 3 pre conference full day workshops/symposiums

- Science Policy Nuts and Bolts
- Science Diplomacy
- Communication of Science

> CONFERENCE HONORARY CO-CHAIRS

• The Honourable Michael H. Wilson, Chairman, Barclays Capital Canada Inc. and Chancellor, University of Toronto

• Mandy Shapansky, President and Chief Executive Officer, Xerox Canada Ltd.

> CSPC 2013 CONFERENCE THEMES

• Private Sector R&D and Innovation: New Realities and New Models

• Emerging Trends: Science & Technology in International Trade and Diplomacy

• Science and Technology Communication

• Graduate Studies and Research Training: Prospects in a Changing Environment

• Emerging Issues in Canadian Science Policy

A couple of comments. I notice that Member of Parliament (NDP) Kennedy Stewart,, the Official Opposition Critic for Science and Technology, and member of the Standing Committee on Industry, Science and Technology, is included as a feature speaker this year. Last year (2012), he held an impromptu, after official conference presentation hours sessions on science policy. Good to see that he’s been included in the official programme for 2013. Perhaps next year (2014) will see the Liberal critic for Science and Technology. Ted Hsu as a speaker.

Pierre Lapointe is another speaker whose name caught my attention as he is the President and Chief Executive Officer of FPInnovations, one of the partners behind CelluForce (the other partner is Domtar), the Canadian nanocrystalline cellulose (NCC, aka, cellulose nanocrystals, CNC) initiative. In my Oct. 3, 2013 posting,  I noted that CelluForce had stopped producing NCC as they had a stockpile of the product. Unfortunately, it doesn’t look like there’ll be any mention of the stockpile since Lapointe is on a panel organized by Genome Canada and titled: The complexity of driving the bio-economy: Genomics, Canada’s natural resources and private-public collaborations.

TRIUMF looks for new Director as Nigel S. Lockyer exits for the Fermilab (US)

The circumstances around Nigel S. Lockyer’s departure as Director of Canada’s National Laboratory for Particle and Nuclear Physics, TRIUMF,  are very interesting. Just weeks ago, TRIUMF announced a major innovation for producing medical isotopes (my June 9, 2013 posting), which should have an enormous impact on cities around the world and their access to medical isotopes. (Briefly, cities with cyclotrons could produce, using the technology developed by TRIUMF,  their own medical isotopes without using material from nuclear reactors.)

Also in the recent past, Canada’s much storied McGill University joined the TRIUMF consortium (I’m surprized it took this long), from the May 10, 2013 news release,

At its recent Board of Management meeting, TRIUMF approved McGill University as an associate member of the consortium of universities that owns and operates Canada’s national laboratory for particle and nuclear physics. McGill joins 17 other Canadian universities in leading TRIUMF.

Paul Young, Chair of the Board and Vice President for Research at the University of Toronto, said, “The addition of McGill to the TRIUMF family is a great step forward. McGill brings world-class scientists and students to TRIUMF and TRIUMF brings world-leading research tools and partnerships to McGill.”

The university’s closer association with TRIUMF will allow it to participate in discussions about setting the direction of the laboratory as well provide enhanced partnerships for new research infrastructure that strengthens efforts on McGill’s campuses. Dr. Rose Goldstein, McGill Vice-Principal (Research and International Relations), said, “We are delighted to formalize our long-standing involvement in TRIUMF. It is an important bridge to international research opportunities at CERN and elsewhere. Associate membership in TRIUMF will also help McGill advance its Strategic Research Plan, especially in the priority area of exploring the natural environment, space, and the universe.”

McGill University has been involved in TRIUMF-led activities for several decades, most notably as part of the Higgs-hunting efforts at CERN. TRIUMF constructed parts of the Large Hadron Collider that ultimately produced Higgs bosons. The co-discovery was made by the ATLAS experiment for which TRIUMF led Canadian construction of several major components, and McGill played a key role in the development of the experiment’s trigger system. McGill and TRIUMF have also worked together on particle-physics projects in Japan and the U.S.

Professor Charles Gale, chair of the Department of Physics, played a key role in formalizing the relationship between TRIUMF and McGill. He said, “Our department is one of the top in North America in research, teaching, and service. Undoubtedly our work with TRIUMF has helped contribute to that and I expect both institutions to blossom even further.” Professor of physics and Canadian Research Chair in Particle Physics Brigitte Vachon added, “TRIUMF provides key resources to my students and me that make our research at CERN possible; the discovery of the Higgs boson is a perfect example of what such collaboration can achieve.”

Nigel S. Lockyer, director of TRIUMF, commented, “The addition of McGill to the TRIUMF team is welcome and long overdue. We have been working together for decades in subatomic physics and this acknowledgment of the partnership enhances both institutions and builds stronger ties in areas such as materials science and nuclear medicine.”

A scant month after McGill joins the consortium and weeks after a major announcement about medical isotopes, Lockyer announces his departure for the Fermilabs in the US, from the May 20, 2013 TRIUMF news release,

In his capacity as Chairman of the Board of Directors of Fermi Research Alliance, LLC, University of Chicago President Robert J. Zimmer today announced that TRIUMF’s director Nigel S. Lockyer has been selected to become the next director of the U.S. Department of Energy’s Fermi National Accelerator Laboratory, located outside Chicago.  Lockyer is expected to complete his work at TRIUMF this summer and begin at Fermilab in the autumn.

Paul Young, Chair of TRIUMF’s Board of Management and Vice President of Research and Innovation at the University of Toronto said, “Nigel was selected from a truly outstanding set of international candidates for this challenging and important position.  Although it will be a short-term loss, this development is a clear recognition of Nigel’s vision and passion for science and the international leadership taken by TRIUMF and Canada in subatomic physics.  On behalf of the entire TRIUMF Board, we wish Nigel, TRIUMF, and Fermilab every success in the future.”

Lockyer set TRIUMF upon a new course when he arrived six years ago, focusing the team on “Advancing isotopes for science and medicine.”  Based on TRIUMF’s existing infrastructure and talent, this initiative ranged from expanding the nuclear-medicine program so that it is now playing a leading role in resolving the medical-isotope crisis to the formulation and funding of a new flagship facility called ARIEL that will double TRIUMF’s capabilities for producing exotic isotopes used in science and for developing tomorrow’s medical isotopes.  At the heart of ARIEL is a next-generation electron accelerator using modern superconducting radio-frequency technology.

Commenting on Nigel’s leadership of TRIUMF, Paul Young added, “One look at TRIUMF’s current trajectory and you can see that this is a man of great ambition and talent.  Working with the Board and a great team at the lab, he propelled TRIUMF to new heights.  We have all been fortunate at TRIUMF to have Nigel as a colleague and leader.”

Reflecting on his time at TRIUMF and the upcoming transition to Fermilab, Nigel Lockyer said, “Knowing that TRIUMF is in good hands with a superb leadership team and seeing its growing string of accomplishments has helped make this decision a tiny bit easier.  The laboratory’s future is secure and TRIUMF knows exactly what it is doing.  I am proud to have contributed to TRIUMF’s successes and it is my hope to ignite the same energy and enthusiasm in the U.S. by heading the team at Fermilab.”  He added, “I also expect to foster a new level of partnership between the U.S. and Canada in these key areas of science and technology.”

“Nigel has had a profound impact on TRIUMF,” said David B. MacFarlane, chair of the National Research Council’s Advisory Committee on TRIUMF and Associate Laboratory Director at the U.S. SLAC National Accelerator Laboratory.  “He articulated an ambitious new vision for the laboratory and energetically set it upon a path toward an exciting world-class program in rare-isotope beams and subatomic-physics research.  When ARIEL comes online, the lab will be fulfilling the vision that Nigel and his team boldly initiated.”  David MacFarlane added, “The TRIUMF community will certainly miss his warmth, his insatiable scientific curiosity, his creativity, and his faith in the laboratory and its entire staff.  However, I fully expect these same characteristics will serve Nigel well in his new leadership role as Fermilab director.”

As per standard practice, the TRIUMF Board of Management will announce plans and timelines for the international search process and interim leadership within the next few weeks.

Before speculating on the search process and interim leadership appointment, I have a comment of sorts about the Fermilab, which was last mentioned here in my Feb. 1, 2012 posting where I excerpted this interesting comment from a news release,

From the Feb. 1, 2012 news release on EurekAlert,

In this month’s Physics World, reviews and careers editor, Margaret Harris, visits the Fermi National Accelerator Laboratory (Fermilab) to explore what future projects are in the pipeline now that the Tevatron particle accelerator has closed for good.

After 28 years of ground-breaking discoveries, the Tevatron accelerator has finally surrendered to the mighty Large Hadron Collider (LHC) at CERN [European Laboratory for Particle Physics], placing Fermilab, in some people’s mind, on the brink of disappearing into obscurity. [emphasis mine]

It seems the Fermilab is in eclipse and Lockyer is going there to engineer a turnaround. It makes one wonder what the conditions were when he arrived at TRIUMF six years ago (2006?). Leading on from that thought, the forthcoming decisions as to whom will be the interim Director and/or the next Director should be intriguing.

Usually an interim position is filled by a current staff member, which can lead to some fraught moments amongst internal competitors.  That action, however fascinating, does not tend to become fodder for public consumption.

Frankly, I’m more interested in the board’s perspective. What happens if they pick an internal candidate while they prepare for the next stage when they’re conducting their international search? Based on absolutely no inside information whatsoever, I’m guessing that Tim Meyer, Head, Strategic Planning & Communications for TRIUMF, would be a viable internal candidate for interim director.

From a purely speculative position, let’s assume he makes a successful play to become the interim Director. At this point, the board will have to consider what direction is the right one for TRIUMF while weighing up the various candidates for the permanent position.  Assuming the interim Director is ambitious and wants to become the permanent Director, the dynamics could get very interesting indeed.

From the board’s perspective, you want the best candidate and you want to keep your staff. In Canada, there’s one TRIUMF; there are no other comparable institutions in the country.  Should an internal candidate such as Meyer get the interim position but not the permanent one (assuming he’d want to be the permanent Director) he would have very few options in Canada.

Based on this speculation, I can safety predict some very interesting times ahead for TRIUMF and its board. In the meantime, I wish Lockyer all the best as he moves back to the US to lead the Fermilab.

Simon Fraser University completes a successful mating dance while TRIUMF (Canada’s national laboratory for particle and nuclear physics) gets its groove on

The Federal Government of Canada in the guise of the Canada Foundation for Innovation has just awarded $7.7M to Simon Fraser University (SFU) and its partners for a global innovation hub. From the Jan. 15, 2013 Canada Foundation for Innovation news release,

British Columbia’s research-intensive universities are coming together to create a global hub for materials science and engineering. Simon Fraser University, the University of Victoria, the University of British Columbia and the British Columbia Institute of Technology have received $7.7 million in funding from the Canada Foundation of Innovation to create the Prometheus Project — a research hub for materials science and engineering innovation and commercialization.

“Our goal with the Prometheus Project is to turn our world-class research capacity into jobs and growth for the people of British Columbia,” said Neil Branda, Canada Research Chair in Materials Science at Simon Fraser University and leader of the Prometheus Project. “We know that materials science is changing the way we create energy and fight disease. We think it can also help B.C.’s economy evolve.”

This project builds on a strong collective legacy of collaborating with industry. Researchers involved in the Prometheus Project have created 13 spin-off companies, filed 67 patents and have generated 243 new processes and products. [emphasis mine] Branda himself has founded a company called Switch Materials that seizes the power of advanced chemistry to create smarter and more efficient window coatings.

This funding will allow members of the research team to build their capacity in fabrication, device testing and advanced manufacturing, ensuring that they have the resources and expertise they need to compete globally.

There’s a bit more information about the Prometheus project in a Jan.15, 2013 backgrounder supplied by SFU,

Led by Neil Branda, a Canada Research Chair in Materials Science and SFU chemistry professor, The Prometheus Project is destined to become a research hub for materials science and engineering innovation, and commercialization globally.

It brings together 10 principal researchers, including Branda, co-founder of SFU’s 4D LABS (a materials research facility with capabilities at the nanoscale], and 20 other scientists at SFU, University of British Columbia, the University of Victoria and the British Columbia Institute of Technology. They will create new materials science and engineering (MS&E) technology innovations, which will trigger and support sustained economic growth by creating, transforming and making obsolete entire industries.

Working with internationally recognized industrial, government, hospital and academic collaborators, scientists at the Prometheus partners’ labs, including 4D LABS, a $40 million materials science research institute, will deliver innovations in three areas. The labs will:

  • Develop new solar-industry related materials and devices, including novel organic polymers, nanoparticles, and quantum dots, which will be integrated in low cost, high efficiency solar cell devices. The goal is to create a new generation of efficient solar cells that can compete in terms of cost with non-renewable technologies, surpassing older ones in terms of miniaturization and flexibility.
  • Develop miniaturized biosensors that can be used by individuals in clinical settings or at home to allow early detection of disease and treatment monitoring. They will be integrated into flexible electronic skins, allowing health conditions to be monitored in real-time.
  • Develop spintronics (magnetic devices) and quantum computing and information devices that will enable new approaches to significantly improve encrypted communication and security in financial transactions.

“This project will allow B.C.’s four most research intensive institutes to collaborate on fundamental materials research projects with a wide range of potential commercial applications,” notes Branda. “By engaging with a large community of industry, government and NGO partners, we will move this research out of the lab and into society to solve current and future challenges in important areas such as energy, health and communications.”

The Prometheus team already has a strong network of potential end users of resulting technologies. It is based on its members’ relationships with many of more than 25 companies in BC commercializing solar, biomedical and quantum computing devices.

Researchers and industries worldwide will be able to access Prometheus’s new capabilities on an open-access basis. [emphasis mine]

There are a few things I’d like to point out (a) 13 spin-off companies? There’s no mention as to whether they were successful, i.e., created jobs or managed a life beyond government funding. (b) Patents as an indicator for innovation? As I’ve noted many, many times that’s a very problematic argument to make. (c) New processes and products? Sounds good but there are no substantiating details.  (d) Given the emphasis on commercializing discoveries and business, can I assume that open-access to Prometheus’ capabilities means that anyone willing and able to pay can have access?

In other exciting SFU news which also affects TRIUMF, an additional $1M is being awarded by the Canada Foundation for Innovation to upgrade the ATLAS Tier-1 Data Analysis Centre. From the SFU backgrounder,

Led by Mike Vetterli, a physics professor at SFU and TRIUMF, this project involves collaborating with scientists internationally to upgrade a component of a global network of always-on computing centres. Collectively, they form the Worldwide Large Hadron Collider Computing Grid (WLCG).

The Canadian scientists collaborating with Vetterli on this project are at several research-intensive universities. They include Carleton University, McGill University, University of British Columbia, University of Alberta, University of Toronto, University of Victoria, Université de Montréal, and York University, as well as TRIUMF. It’s Canada’s national lab for particle and nuclear physics research.

The grid, which has 10 Tier-1 centres internationally, is essentially a gigantic storage and processing facility for data collected from the ATLAS  experiment. The new CFI funding will enable Vetterli and his research partners to purchase equipment to upgrade the Tier-1 centre at TRIUMF in Vancouver, where the equipment will remain.

ATLAS is a multi-purpose particle detector inside a massive atom-smashing collider housed at CERN, the world’s leading laboratory for particle physics in Geneva, Switzerland.

More than 3,000 scientists internationally, including Vetterli and many others at SFU, use ATLAS to conduct experiments aimed at furthering global understanding of how the universe was physically formed and operates.

The detector’s fame for being a window into nature’s true inner workings was redoubled last year. It helped scientists, including Vetterli and others at SFU, discover a particle that has properties consistent with the Higgs boson.

Peter Higgs, a Scottish physicist, and other scientists theorized in 1964 about the existence of the long-sought-after particle that is central to the mechanism that gives subatomic particles their mass.

Scientists now need to upgrade the WLCG to accommodate the massive volume of data they’re reviewing to confirm that the newly discovered particle is the Higgs boson. If it is, it will revolutionize the way we see mass in physics.

“This project will enable Canadian scientists to continue to play a leading role in ATLAS physics analysis projects such as the Higgs boson discovery,” says Vetterli. “Much more work and data are required to learn more about the Higgs-like particle and show that it is indeed the missing link to our understanding of the fundamental structure of matter.

There is one more Canada Foundation for Innovation grant to be announced here, it’s a $1.6M grant for research that will be performed at TRIUMF, according to the Jan. 13, 2013 news release from St. Mary’s University (Halifax, Nova Scotia),

Dr. Rituparna Kanungo’s newest research collaboration has some lofty goals: improve cancer research, stimulate the manufacturing of high-tech Canadian-made instrumentation and help explain the origin of the cosmos.

The Saint Mary’s nuclear physicist’s goal moved one step closer to reality today when the federal government announced $1.6 million in support for an advanced research facility that will allow her to recreate, purify, and condition rare isotopes that haven’t existed on the planet for millions of years.

The federal fiscal support from the Canada Foundation for Innovation together with additional provincial and private sector investment will allow the $4.5 million project to be operational in 2015.

“The facility will dramatically advance Canada’s capabilities for isolating, purifying, and studying short-lived isotopes that hold the key not only for understanding the rules that govern the basic ingredients of our everyday lives but also for crafting new therapies that could target and annihilate cancers cell-by-cell within the human body, “ said Dr Kanungo.

The CANadian Rare-isotope facility with Electron-Beam ion source (CANREB) project is led by Saint Mary’s University partnering with the University of Manitoba and Advanced Applied Physics Solutions, Inc. in collaboration with the University of British Columbia, the University of Guelph, Simon Fraser University, and TRIUMF. TRIUMF is Canada’s national laboratory for particle and nuclear physics. It is owned and operated as a joint venture by a consortium of Canadian universities that includes Saint Mary’s University.

As one of the nation’s top nuclear researchers (she was one of only two Canadians invited to speak at a Nobel Symposium last June about exotic isotopes), Dr. Kanungo has been conducting research at the TRIUMF facility for many years, carrying out analyses from her office at Saint Mary’s University together with teams of students. Her students also often spend semesters at the Vancouver facility.

As the project leader for the new initiative, she said TRIUMF is the ideal location because of its world leading isotope-production capabilities and its ability to produce clean, precise, controlled beams of selected exotic isotopes not readily available anywhere else in the world.

In recent studies in the U.S., some of these isotopes have been shown to have dramatic impact in treating types of cancer, by delivering radioactive payloads directly to the cancerous cells. Canada’s mastery of the technology to isolate, study, and control these isotopes will change the course of healthcare.

An integral part of the project is the creation of a new generation of high resolution spectrometer using precision magnets. Advanced Cyclotron Systems, Inc. a company in British Columbia, has been selected for the work with the hope that the expertise it develops during the venture will empower it to design and build precision-magnet technology products for cutting-edge projects all around the world.

Exciting stuff although it does seem odd that the federal government is spreading largesse when there’s no election in sight. In any case, bravo!

There’s one last piece of news, TRIUMF is welcoming a new member to its board, from its Jan. 14, 2013 news release,

Dr. Sylvain Lévesque, Vice-President of Corporate Strategy at Bombardier Inc., a world-leading manufacturer of innovative transportation solutions, has joined the Board of Management for TRIUMF, Canada’s national laboratory for particle and nuclear physics, for a three-year term.  Owned and operated by a consortium of 17 Canadian universities with core operating funds administered via a contribution agreement through National Research Council Canada, TRIUMF is guided by a Board that includes university vice-presidents of research, prestigious scientists, and leading members of Canada’s private sector.

Paul Young, Chair of TRIUMF’s Board and Vice President, Research at the University of Toronto, said, “We welcome the participation of Sylvain and his extensive experience at Bombardier.  TRIUMF is a national resource for basic research and yet we also fulfill a technological innovation mission for Canada.  Dr. Lévesque will be a valuable addition to the Board.”

Dr. Sylvain Lévesque earned his Ph.D. from MIT in Engineering and worked at McKinsey & Company before joining Bombardier in 1999.  He brings deep experience with large, technical organizations and a passion for science and engineering. [emphasis mine]  He said, “I am excited to work more closely with TRIUMF.  It has a track record of excellence and I am eager to provide guidance on where Canada’s industrial sector might draw greater strength from the laboratory.”

TRIUMF’s Board of Management reflects the unique status of TRIUMF, a laboratory operating for more than forty years as a joint venture from Canada’s leading research universities.  The consortium includes universities from Halifax to Victoria.

Is deep experience like wide experience or is it a whole new kind of experience helpful for ‘getting one’s groove on’? For anyone who’s curious, ‘getting one’s groove on’ involves dancing.