Tag Archives: PEDOT

‘Polar bear wear’: 30% lighter than cotton and much warmer

For the same reason some people like ‘Christmas in July’ events, I like to occasionally feature a nonseasonal story. Especially since the area where I live is going through an unseasonal cold snap and will be followed shortly by anomalously hot temperatures. So, more or less fittingly, an April 10, 2023 news item announces a new fabric,

Three engineers at the University of Massachusetts Amherst have invented a fabric that concludes the 80-year quest to make a synthetic textile modeled on Polar bear fur. The results, published recently in the journal ACS Applied Materials and Interfaces, are already being developed into commercially available products. [ACS is American Chemical Society.]

Caption: Inspired by polar bears, this new textile creates an on-body “greenhouse” effect to keep you warm. Credit: Viola et al., 10.1021/acsami.2c23075

Nice to see a properly drawn polar bear. Back to the research, an April 10, 2023 University of Massachusetts Amherst news release (also on EurekAlert), which originated the news item, provides a brief history of the research and a few technical details about the current work, Note: Links have been removed,

Polar bears live in some of the harshest conditions on earth, shrugging off Arctic temperatures as low as -50 Fahrenheit. While the bears have many adaptations that allow them to thrive when the temperature plummets, since the 1940s scientists have focused on one in particular: their fur. How, the scientific community has asked, does a polar bear’s fur keep them warm?

Typically, we think that the way to stay warm is to insulate ourselves from the weather. But there’s another way: One of the major discoveries of the last few decades is that many polar animals actively use the sunlight to maintain their temperature, and polar bear fur is a well-known case in point.

Scientists have known for decades that part of the bears’ secret is their white fur. One might think that black fur would be better at absorbing heat, but it turns out that the polar bears’ fur is extremely effective at transmitting solar radiation toward the bears’ skin.

“But the fur is only half the equation,” says the paper’s senior author,  Trisha L. Andrew, associate professor of chemistry and adjunct in chemical engineering at UMass Amherst. “The other half is the polar bears’ black skin.”

As Andrew explains it, polar bear fur is essentially a natural fiberoptic, conducting sunlight down to the bears’ skin, which absorbs the light, heating the bear. But the fur is also exceptionally good at preventing the now-warmed skin from radiating out all that hard-won warmth. When the sun shines, it’s like having a thick blanket that warms itself up, and then traps that warmth next to your skin.

What Andrew and her team have done is to engineer a bilayer fabric whose top layer is composed of threads that, like polar bear fur, conduct visible light down to the lower layer, which is made of nylon and coated with a dark material called PEDOT [Poly(3,4-ethylenedioxythiophene)]. PEDOT, like the polar bears’ skin, warms efficiently.

So efficiently, in fact, that a jacket made of such material is 30% lighter than the same jacket made of cotton yet will keep you comfortable at temperatures 10 degrees Celsius colder than the cotton jacket could handle, as long as the sun is shining or a room is well lit.

“Space heating consumes huge amounts of energy that is mostly fossil fuel-derived,” says Wesley Viola, the paper’s lead author, who completed his Ph.D. in chemical engineering at UMass and is now at Andrew’s startup, Soliyarn, LLC. “While our textile really shines as outerwear on sunny days, the light-heat trapping structure works efficiently enough to imagine using existing indoor lighting to directly heat the body. By focusing energy resources on the ‘personal climate’ around the body, this approach could be far more sustainable than the status quo.”

The research, which was supported by the National Science Foundation, is already being applied, and  Soliyarn has begun production of the PEDOT-coated cloth.

Here’s a link to and a citation for the paper,

Solar Thermal Textiles for On-Body Radiative Energy Collection Inspired by Polar Animals by Wesley Viola, Peiyao Zhao, and Trisha L. Andrew. ACS Appl. Mater. Interfaces 2023, 15, 15, 19393–19402 DOI: https://doi.org/10.1021/acsami.2c23075 Publication Date: April 5, 2023 Copyright © 2023 American Chemical Society

This paper is behind a paywall.

You can find Soliyarn here.

Scientists claim off-the-shelf, power-generating clothes almost here

PEDOT-coated yarns act as “normal” wires to transmit electricity from a wall outlet to an incandescent lightbulb. Materials scientist Trisha Andrew at UMass Amherst and colleagues outline in a new paper how they have invented a way to apply breathable, pliable, metal-free electrodes to fabric and off-the-shelf clothing so it feels good to the touch and also transports electricity to power small electronics. Harvesting body motion energy generates the power. Courtesy: UMass Amherst

I’m not quite as optimistic (it’s a long way from the lab to the marketplace) as the scientists do eventually note but this does seem promising (from a May 23, 2017 news item on Nanowerk),

A lightweight, comfortable jacket that can generate the power to light up a jogger at night may sound futuristic, but materials scientist Trisha Andrew at the University of Massachusetts Amherst could make one today.

In a new paper this month, she and colleagues outline how they have invented a way to apply breathable, pliable, metal-free electrodes to fabric and off-the-shelf clothing so it feels good to the touch and also transports enough electricity to power small electronics.

A May 23, 2017 University of Massachusetts Amherst news release (also on EurekAlert), which originated the news item,

She says, “Our lab works on textile electronics. We aim to build up the materials science so you can give us any garment you want, any fabric, any weave type, and turn it into a conductor. Such conducting textiles can then be built up into sophisticated electronics. One such application is to harvest body motion energy and convert it into electricity in such a way that every time you move, it generates power.” Powering advanced fabrics that can monitor health data remotely are important to the military and increasingly valued by the health care industry, she notes.

Generating small electric currents through relative movement of layers is called triboelectric charging, explains Andrew, who trained as a polymer chemist and electrical engineer. Materials can become electrically charged as they create friction by moving against a different material, like rubbing a comb on a sweater. “By sandwiching layers of differently materials between two conducting electrodes, a few microwatts of power can be generated when we move,” she adds.

In the current early online edition of Advanced Functional Materials, she and postdoctoral researcher Lu Shuai Zhang in her lab describe the vapor deposition method they use to coat fabrics with a conducting polymer, poly(3,4-ethylenedioxytiophene) also known as PEDOT, to make plain-woven, conducting fabrics that are resistant to stretching and wear and remain stable after washing and ironing. The thickest coating they put down is about 500 nanometers, or about 1/10 the diameter of a human hair, which retains a fabric’s hand feel.

The authors report results of testing electrical conductivity, fabric stability, chemical and mechanical stability of PEDOT films and textile parameter effects on conductivity for 14 fabrics, including five cottons with different weaves, linen and silk from a craft store.

“Our article describes the materials science needed to make these robust conductors,” Andrew says. “We show them to be stable to washing, rubbing, human sweat and a lot of wear and tear.” PEDOT coating did not change the feel of any fabric as determined by touch with bare hands before and after coating. Coating did not increase fabric weight by more than 2 percent. The work was supported by the Air Force Office of Scientific Research.

Until recently, she and Zhang point out, textile scientists have tended not to use vapor deposition because of technical difficulties and high cost of scaling up from the laboratory. But over the last 10 years, industries such as carpet manufacturers and mechanical component makers have shown that the technology can be scaled up and remain cost-effective. The researchers say their invention also overcomes the obstacle of power-generating electronics mounted on plastic or cladded, veneer-like fibers that make garments heavier and/or less flexible than off-the-shelf clothing “no matter how thin or flexible these device arrays are.”

“There is strong motivation to use something that is already familiar, such as cotton/silk thread, fabrics and clothes, and imperceptibly adapting it to a new technological application.” Andrew adds, “This is a huge leap for consumer products, if you don’t have to convince people to wear something different than what they are already wearing.”

Test results were sometimes a surprise, Andrew notes. “You’d be amazed how much stress your clothes go through until you try to make a coating that will survive a shirt being pulled over the head. The stress can be huge, up to a thousand newtons of force. For comparison, one footstep is equal to about 10 newtons, so it’s yanking hard. If your coating is not stable, a single pull like that will flake it all off. That’s why we had to show that we could bend it, rub it and torture it. That is a very powerful requirement to move forward.”

Andrew is director of wearable electronics at the Center for Personalized Health Monitoring in UMass Amherst’s Institute of Applied Life Sciences (IALS). Since the basic work reported this month was completed, her lab has also made a wearable heart rate monitor with an off-the-shelf fitness bra to which they added eight monitoring electrodes. They will soon test it with volunteers on a treadmill at the IALS human movement facility.

She explains that a hospital heart rate monitor has 12 electrodes, while the wrist-worn fitness devices popular today have one, which makes them prone to false positives. They will be testing a bra with eight electrodes, alone and worn with leggings that add four more, against a control to see if sensors can match the accuracy and sensitivity of what a hospital can do. As the authors note in their paper, flexible, body-worn electronics represent a frontier of human interface devices that make advanced physiological and performance monitoring possible.

For the future, Andrew says, “We’re working on taking any garment you give us and turning it into a solar cell so that as you are walking around the sunlight that hits your clothes can be stored in a battery or be plugged in to power a small electronic device.”

Zhang and Andrew believe their vapor coating is able to stick to fabrics by a process called surface grafting, which takes advantage of free bonds dangling on the surface chemically bonding to one end of the polymer coating, but they have yet to investigate this fully.

Here’s a link to and a citation for the paper,

Rugged Textile Electrodes for Wearable Devices Obtained by Vapor Coating Off-the-Shelf, Plain-Woven Fabrics by Lushuai Zhang, Marianne Fairbanks, and Trisha L. Andrew. Advanced Functional Materials DOI: 10.1002/adfm.201700415 Version of Record online: 2 MAY 2017

© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

This paper is behind a paywall.

Harvesting plants for electricity

A Feb. 27, 2017 article on Nanowerk describes research which could turn living plants into solar cells and panels (Note: Links have been removed),

Plants power life on Earth. They are the original food source supplying energy to almost all living organisms and the basis of the fossil fuels that feed the power demands of the modern world. But burning the remnants of long-dead forests is changing the world in dangerous ways. Can we better harness the power of living plants today?

One way might be to turn plants into natural solar power stations that could convert sunlight into energy far more efficiently. To do this, we’d need a way of getting the energy out in the form of electricity. One company has found a way to harvest electrons deposited by plants into the soil beneath them. But new research (PNAS, “In vivo polymerization and manufacturing of wires and supercapacitors in plants”) from Finland looks at tapping plants’ energy directly by turning their internal structures into electric circuits.

A Feb. 27, 2017 essay by Stuart Thompson for The Conversation (which originated the article) explains the principles underlying the research (Note: A link has been removed),

Plants contain water-filled tubes called “xylem elements” that carry water from their roots to their leaves. The water flow also carries and distributes dissolved nutrients and other things such as chemical signals. The Finnish researchers, whose work is published in PNAS, developed a chemical that was fed into a rose cutting to form a solid material that could carry and store electricity.

Previous experiments have used a chemical called PEDOT to form conducting wires in the xylem, but it didn’t penetrate further into the plant. For the new research, they designed a molecule called ETE-S that forms similar electrical conductors but can also be carried wherever the stream of water travelling though the xylem goes.

This flow is driven by the attraction between water molecules. When water in a leaf evaporates, it pulls on the chain of molecules left behind, dragging water up through the plant all the way from the roots. You can see this for yourself by placing a plant cutting in food colouring and watching the colour move up through the xylem. The researchers’ method was so similar to the food colouring experiment that they could see where in the plant their electrical conductor had travelled to from its colour.

The result was a complex electronic network permeating the leaves and petals, surrounding their cells and replicating their pattern. The wires that formed conducted electricity up to a hundred times better than those made from PEDOT and could also store electrical energy in the same way as an electronic component called a capacitor.

I recommend reading Thompson’s piece in its entirety.

McGill University researchers get closer to making organic nanoelectronics a reality

You can’t rush out and buy products with organic nanoelectronic components yet but one day you will and you’ll have Dr. Dmitrii Perepichka at McGill University (Montréal, Canada), Dr. Federico Rosei of the Institut national de la recherche scientifique and the members of their international research team to thank for it. From the McGill University news release,

Although they could revolutionize a wide range of high-tech products such as computer displays or solar cells, organic materials do not have the same ordered chemical composition as inorganic materials, preventing scientists from using them to their full potential. But an international team of researchers led by McGill’s Dr. Dmitrii Perepichka and the Institut national de la recherche scientifique’s Dr. Federico Rosei have published research that shows how to solve this decades-old conundrum. The team has effectively discovered a way to order the molecules in the PEDOT, the single most industrially important conducting polymer.

This is an important step forward for anyone who owns a computer or a mobile phone or anything with transistors. In the 1960s a fellow called Gordon Moore (he went on to co-found Intel) made a prediction (from Intel’s Moore’s Law web page),

Intel co-founder Gordon Moore is a visionary. In 1965, his prediction, popularly known as Moore’s Law, states that the number of transistors on a chip will double about every two years. And Intel has kept that pace for nearly 40 years.

We are almost at the physical limits given our current technologies which is why this new type of organic component is important. Perepichka while noting that there’s still a considerable amount of work to be done before being able to create organic nanoelectronic components speculates about future uses,

By using molecular materials instead of silicon semiconductor, we could one day build transistors that are ten times smaller than what currently exists.” The chips would in fact be only one molecule thick.

The groundbreaking technique used to achieve this capability,

… sounds deceptively simple. The team used an inorganic material – a crystal of copper – as a template. When molecules are dropped onto the crystal, the crystal provokes a chemical reaction and creates a conducting polymer. By using a scanning probe microscope that enabled them to see surfaces with atomic resolution, the researchers discovered that the polymers had imitated the order of the crystal surface. The team is currently only able to produce the reaction in one dimension, i.e. to make a string or line of molecules. The next step will be to add a second dimension in order to make continuous sheets (“organic graphite”) or electronic circuits.

Here are images of the polymer with its chemical composition (at the left),

This image shows the polymers that were created at a resolution of 5 nanometres (the average strand of human hair is 80,000 nanometres wide) Source: Dept. of Chemistry, McGill University

I was interested to note that part of the funding for this project comes from the US Air Force since they also recently funded work on integrating memristors in electronic components (my blog posting here). Here’s my last excerpt from the news release details about the researchers’ affiliations, where the study was published, and the funding sources for the work,

Perepichka is affiliated with McGill University’s department of chemistry and Rosei is affiliated with Institut national de la recherche scientifique – Énergie Matériaux Télécommunications Center, a member of the Université du Québec network. Their research was published online by the Proceedings of the National Academy of Sciences and was funded by the Natural Sciences and Engineering Research Council of Canada, the Air Force Office of Scientific Research and Asian Office of Aerospace Research and Development of the USA, the Petroleum Research Fund of the American Chemical Society, the Fonds québécois de recherche sur la nature et les technologies, and the Ministère du Développement économique, de l’Innovation et de l’Exportation of Quebec.