Tag Archives: Perimeter Institute

2016 thoughts and 2017 hopes from FrogHeart

This is the 4900th post on this blog and as FrogHeart moves forward to 5000, I’m thinking there will be some changes although I’m not sure what they’ll be. In the meantime, here are some random thoughts on the year that was in Canadian science and on the FrogHeart blog.

Changeover to Liberal government: year one

Hopes were high after the Trudeau government was elected. Certainly, there seems to have been a loosening where science communication policies have been concerned although it may not have been quite the open and transparent process people dreamed of. On the plus side, it’s been easier to participate in public consultations but there has been no move (perceptible to me) towards open government science or better access to government-funded science papers.

Open Science in Québec

As far as I know, la crème de la crème of open science (internationally) is the Montreal Neurological Institute (Montreal Neuro; affiliated with McGill University. They bookended the year with two announcements. In January 2016, Montreal Neuro announced it was going to be an “Open Science institution (my Jan. 22, 2016 posting),

The Montreal Neurological Institute (MNI) in Québec, Canada, known informally and widely as Montreal Neuro, has ‘opened’ its science research to the world. David Bruggeman tells the story in a Jan. 21, 2016 posting on his Pasco Phronesis blog (Note: Links have been removed),

The Montreal Neurological Institute (MNI) at McGill University announced that it will be the first academic research institute to become what it calls ‘Open Science.’  As Science is reporting, the MNI will make available all research results and research data at the time of publication.  Additionally it will not seek patents on any of the discoveries made on research at the Institute.

Will this catch on?  I have no idea if this particular combination of open access research data and results with no patents will spread to other university research institutes.  But I do believe that those elements will continue to spread.  More universities and federal agencies are pursuing open access options for research they support.  Elon Musk has opted to not pursue patent litigation for any of Tesla Motors’ patents, and has not pursued patents for SpaceX technology (though it has pursued litigation over patents in rocket technology). …

Then, there’s my Dec. 19, 2016 posting about this Montreal Neuro announcement,

It’s one heck of a Christmas present. Canadian businessmen Larry Tannenbaum and his wife Judy have given the Montreal Neurological Institute (Montreal Neuro), which is affiliated with McGill University, a $20M donation. From a Dec. 16, 2016 McGill University news release,

The Prime Minister of Canada, Justin Trudeau, was present today at the Montreal Neurological Institute and Hospital (MNI) for the announcement of an important donation of $20 million by the Larry and Judy Tanenbaum family. This transformative gift will help to establish the Tanenbaum Open Science Institute, a bold initiative that will facilitate the sharing of neuroscience findings worldwide to accelerate the discovery of leading edge therapeutics to treat patients suffering from neurological diseases.

‟Today, we take an important step forward in opening up new horizons in neuroscience research and discovery,” said Mr. Larry Tanenbaum. ‟Our digital world provides for unprecedented opportunities to leverage advances in technology to the benefit of science.  That is what we are celebrating here today: the transformation of research, the removal of barriers, the breaking of silos and, most of all, the courage of researchers to put patients and progress ahead of all other considerations.”

Neuroscience has reached a new frontier, and advances in technology now allow scientists to better understand the brain and all its complexities in ways that were previously deemed impossible. The sharing of research findings amongst scientists is critical, not only due to the sheer scale of data involved, but also because diseases of the brain and the nervous system are amongst the most compelling unmet medical needs of our time.

Neurological diseases, mental illnesses, addictions, and brain and spinal cord injuries directly impact 1 in 3 Canadians, representing approximately 11 million people across the country.

“As internationally-recognized leaders in the field of brain research, we are uniquely placed to deliver on this ambitious initiative and reinforce our reputation as an institution that drives innovation, discovery and advanced patient care,” said Dr. Guy Rouleau, Director of the Montreal Neurological Institute and Hospital and Chair of McGill University’s Department of Neurology and Neurosurgery. “Part of the Tanenbaum family’s donation will be used to incentivize other Canadian researchers and institutions to adopt an Open Science model, thus strengthening the network of like-minded institutes working in this field.”

Chief Science Advisor

Getting back to the federal government, we’re still waiting for a Chief Science Advisor. Should you be interested in the job, apply here. The job search was launched in early Dec. 2016 (see my Dec. 7, 2016 posting for details) a little over a year after the Liberal government was elected. I’m not sure why the process is taking so long. It’s not like the Canadian government is inventing a position or trailblazing in this regard. Many, many countries and jurisdictions have chief science advisors. Heck the European Union managed to find their first chief science advisor in considerably less time than we’ve spent on the project. My guess, it just wasn’t a priority.

Prime Minister Trudeau, quantum, nano, and Canada’s 150th birthday

In April 2016, Prime Minister Justin Trudeau stunned many when he was able to answer, in an articulate and informed manner, a question about quantum physics during a press conference at the Perimeter Institute in Waterloo, Ontario (my April 18, 2016 post discussing that incident and the so called ‘quantum valley’ in Ontario).

In Sept. 2016, the University of Waterloo publicized the world’s smallest Canadian flag to celebrate the country’s upcoming 150th birthday and to announce its presence in QUANTUM: The Exhibition (a show which will tour across Canada). Here’s more from my Sept. 20, 2016 posting,

The record-setting flag was unveiled at IQC’s [Institute of Quantum Computing at the University of Waterloo] open house on September 17 [2016], which attracted nearly 1,000 visitors. It will also be on display in QUANTUM: The Exhibition, a Canada 150 Fund Signature Initiative, and part of Innovation150, a consortium of five leading Canadian science-outreach organizations. QUANTUM: The Exhibition is a 4,000-square-foot, interactive, travelling exhibit IQC developed highlighting Canada’s leadership in quantum information science and technology.

“I’m delighted that IQC is celebrating Canadian innovation through QUANTUM: The Exhibition and Innovation150,” said Raymond Laflamme, executive director of IQC. “It’s an opportunity to share the transformative technologies resulting from Canadian research and bring quantum computing to fellow Canadians from coast to coast to coast.”

The first of its kind, the exhibition will open at THEMUSEUM in downtown Kitchener on October 14 [2016], and then travel to science centres across the country throughout 2017.

You can find the English language version of QUANTUM: The Exhibition website here and the French language version of QUANTUM: The Exhibition website here.

There are currently four other venues for the show once finishes its run in Waterloo. From QUANTUM’S Join the Celebration webpage,

2017

  • Science World at TELUS World of Science, Vancouver
  • TELUS Spark, Calgary
  • Discovery Centre, Halifax
  • Canada Science and Technology Museum, Ottawa

I gather they’re still looking for other venues to host the exhibition. If interested, there’s this: Contact us.

Other than the flag which is both nanoscale and microscale, they haven’t revealed what else will be included in their 4000 square foot exhibit but it will be “bilingual, accessible, and interactive.” Also, there will be stories.

Hmm. The exhibition is opening in roughly three weeks and they have no details. Strategy or disorganization? Only time will tell.

Calgary and quantum teleportation

This is one of my favourite stories of the year. Scientists at the University of Calgary teleported photons six kilometers from the university to city hall breaking the teleportation record. What I found particularly interesting was the support for science from Calgary City Hall. Here’s more from my Sept. 21, 2016 post,

Through a collaboration between the University of Calgary, The City of Calgary and researchers in the United States, a group of physicists led by Wolfgang Tittel, professor in the Department of Physics and Astronomy at the University of Calgary have successfully demonstrated teleportation of a photon (an elementary particle of light) over a straight-line distance of six kilometres using The City of Calgary’s fibre optic cable infrastructure. The project began with an Urban Alliance seed grant in 2014.

This accomplishment, which set a new record for distance of transferring a quantum state by teleportation, has landed the researchers a spot in the prestigious Nature Photonics scientific journal. The finding was published back-to-back with a similar demonstration by a group of Chinese researchers.

The research could not be possible without access to the proper technology. One of the critical pieces of infrastructure that support quantum networking is accessible dark fibre. Dark fibre, so named because of its composition — a single optical cable with no electronics or network equipment on the alignment — doesn’t interfere with quantum technology.

The City of Calgary is building and provisioning dark fibre to enable next-generation municipal services today and for the future.

“By opening The City’s dark fibre infrastructure to the private and public sector, non-profit companies, and academia, we help enable the development of projects like quantum encryption and create opportunities for further research, innovation and economic growth in Calgary,” said Tyler Andruschak, project manager with Innovation and Collaboration at The City of Calgary.

As for the science of it (also from my post),

A Sept. 20, 2016 article by Robson Fletcher for CBC (Canadian Broadcasting News) online provides a bit more insight from the lead researcher (Note: A link has been removed),

“What is remarkable about this is that this information transfer happens in what we call a disembodied manner,” said physics professor Wolfgang Tittel, whose team’s work was published this week in the journal Nature Photonics.

“Our transfer happens without any need for an object to move between these two particles.”

A Sept. 20, 2016 University of Calgary news release by Drew Scherban, which originated the news item, provides more insight into the research,

“Such a network will enable secure communication without having to worry about eavesdropping, and allow distant quantum computers to connect,” says Tittel.

Experiment draws on ‘spooky action at a distance’

The experiment is based on the entanglement property of quantum mechanics, also known as “spooky action at a distance” — a property so mysterious that not even Einstein could come to terms with it.

“Being entangled means that the two photons that form an entangled pair have properties that are linked regardless of how far the two are separated,” explains Tittel. “When one of the photons was sent over to City Hall, it remained entangled with the photon that stayed at the University of Calgary.”

Next, the photon whose state was teleported to the university was generated in a third location in Calgary and then also travelled to City Hall where it met the photon that was part of the entangled pair.

“What happened is the instantaneous and disembodied transfer of the photon’s quantum state onto the remaining photon of the entangled pair, which is the one that remained six kilometres away at the university,” says Tittel.

Council of Canadian Academies and The State of Science and Technology and Industrial Research and Development in Canada

Preliminary data was released by the CCA’s expert panel in mid-December 2016. I reviewed that material briefly in my Dec. 15, 2016 post but am eagerly awaiting the full report due late 2017 when, hopefully, I’ll have the time to critique the material, and which I hope will have more surprises and offer greater insights than the preliminary report did.

Colleagues

Thank you to my online colleagues. While we don’t interact much it’s impossible to estimate how encouraging it is to know that these people continually participate and help create the nano and/or science blogosphere.

David Bruggeman at his Pasco Phronesis blog keeps me up-to-date on science policy both in the US, Canada, and internationally, as well as, keeping me abreast of the performing arts/science scene. Also, kudos to David for raising my (and his audience’s) awareness of just how much science is discussed on late night US television. Also, I don’t know how he does it but he keeps scooping me on Canadian science policy matters. Thankfully, I’m not bitter and hope he continues to scoop me which will mean that I will get the information from somewhere since it won’t be from the Canadian government.

Tim Harper of Cientifica Research keeps me on my toes as he keeps shifting his focus. Most lately, it’s been on smart textiles and wearables. You can download his latest White Paper titled, Fashion, Smart Textiles, Wearables and Disappearables, from his website. Tim consults on nanotechnology and other emerging technologies at the international level.

Dexter Johnson of the Nanoclast blog on the IEEE (Institute of Electrical and Electronics Engineers) website consistently provides informed insight into how a particular piece of research fits into the nano scene and often provides historical details that you’re not likely to get from anyone else.

Dr. Andrew Maynard is currently the founding Director of the Risk Innovation Lab at the University of Arizona. I know him through his 2020 Science blog where he posts text and videos on many topics including emerging technologies, nanotechnologies, risk, science communication, and much more. Do check out 2020 Science as it is a treasure trove.

2017 hopes and dreams

I hope Canada’s Chief Science Advisor brings some fresh thinking to science in government and that the Council of Canadian Academies’ upcoming assessment on The State of Science and Technology and Industrial Research and Development in Canada is visionary. Also, let’s send up some collective prayers for the Canada Science and Technology Museum which has been closed since 2014 (?) due to black mold (?). It would be lovely to see it open in time for Canada’s 150th anniversary.

I’d like to see the nanotechnology promise come closer to a reality, which benefits as many people as possible.

As for me and FrogHeart, I’m not sure about the future. I do know there’s one more Steep project (I’m working with Raewyn Turner on a multiple project endeavour known as Steep; this project will involve sound and gold nanoparticles).

Should anything sparkling occur to me, I will add it at a future date.

In the meantime, Happy New Year and thank you from the bottom of my heart for reading this blog!

Prime Minister Trudeau, the quantum physicist

Prime Minister Justin Trudeau’s apparently extemporaneous response to a joking (non)question about quantum computing by a journalist during an April 15, 2016 press conference at the Perimeter Institute for Theoretical Physics in Waterloo, Ontario, Canada has created a buzz online, made international news, and caused Canadians to sit taller.

For anyone who missed the moment, here’s a video clip from the Canadian Broadcasting Corporation (CBC),

Aaron Hutchins in an April 15, 2016 article for Maclean’s magazine digs deeper to find out more about Trudeau and quantum physics (Note: A link has been removed),

Raymond Laflamme knows the drill when politicians visit the Perimeter Institute. A photo op here, a few handshakes there and a tour with “really basic, basic, basic facts” about the field of quantum mechanics.

But when the self-described “geek” Justin Trudeau showed up for a funding announcement on Friday [April 15, 2016], the co-founder and director of the Institute for Quantum Computing at the University of Waterloo wasn’t met with simple nods of the Prime Minister pretending to understand. Trudeau immediately started talking about things being waves and particles at the same time, like cats being dead and alive at the same time. It wasn’t just nonsense—Trudeau was referencing the famous thought experiment of the late legendary physicist Erwin Schrödinger.

“I don’t know where he learned all that stuff, but we were all surprised,” Laflamme says. Soon afterwards, as Trudeau met with one student talking about superconductivity, the Prime Minister asked her, “Why don’t we have high-temperature superconducting systems?” something Laflamme describes as the institute’s “Holy Grail” quest.

“I was flabbergasted,” Laflamme says. “I don’t know how he does in other subjects, but in quantum physics, he knows the basic pieces and the important questions.”

Strangely, Laflamme was not nearly as excited (tongue in cheek) when I demonstrated my understanding of quantum physics during our interview (see my May 11, 2015 posting; scroll down about 40% of the way to the Ramond Laflamme subhead).

As Jon Butterworth comments in his April 16, 2016 posting on the Guardian science blog, the response says something about our expectations regarding politicians,

This seems to have enhanced Trudeau’s reputation no end, and quite right too. But it is worth thinking a bit about why.

The explanation he gives is clear, brief, and understandable to a non-specialist. It is the kind of thing any sufficiently engaged politician could pick up from a decent briefing, given expert help. …

Butterworth also goes on to mention journalists’ expectations,

The reporter asked the question in a joking fashion, not unkindly as far as I can tell, but not expecting an answer either. If this had been an announcement about almost any other government investment, wouldn’t the reporter have expected a brief explanation of the basic ideas behind it? …

As for the announcement being made by Trudeau, there is this April 15, 2016 Perimeter Institute press release (Note: Links have been removed),

Prime Minister Justin Trudeau says the work being done at Perimeter and in Canada’s “Quantum Valley” [emphasis mine] is vital to the future of the country and the world.

Prime Minister Justin Trudeau became both teacher and student when he visited Perimeter Institute today to officially announce the federal government’s commitment to support fundamental scientific research at Perimeter.

Joined by Minister of Science Kirsty Duncan and Small Business and Tourism Minister Bardish Chagger, the self-described “geek prime minister” listened intensely as he received brief overviews of Perimeter research in areas spanning from quantum science to condensed matter physics and cosmology.

“You don’t have to be a geek like me to appreciate how important this work is,” he then told a packed audience of scientists, students, and community leaders in Perimeter’s atrium.

The Prime Minister was also welcomed by 200 teenagers attending the Institute’s annual Inspiring Future Women in Science conference, and via video greetings from cosmologist Stephen Hawking [he was Laflamme’s PhD supervisor], who is a Perimeter Distinguished Visiting Research Chair. The Prime Minister said he was “incredibly overwhelmed” by Hawking’s message.

“Canada is a wonderful, huge country, full of people with big hearts and forward-looking minds,” Hawking said in his message. “It’s an ideal place for an institute dedicated to the frontiers of physics. In supporting Perimeter, Canada sets an example for the world.”

The visit reiterated the Government of Canada’s pledge of $50 million over five years announced in last month’s [March 2016] budget [emphasis mine] to support Perimeter research, training, and outreach.

It was the Prime Minister’s second trip to the Region of Waterloo this year. In January [2016], he toured the region’s tech sector and universities, and praised the area’s innovation ecosystem.

This time, the focus was on the first link of the innovation chain: fundamental science that could unlock important discoveries, advance human understanding, and underpin the groundbreaking technologies of tomorrow.

As for the “quantum valley’ in Ontario, I think there might be some competition here in British Columbia with D-Wave Systems (first commercially available quantum computing, of a sort; my Dec. 16, 2015 post is the most recent one featuring the company) and the University of British Columbia’s Stewart Blusson Quantum Matter Institute.

Getting back to Trudeau, it’s exciting to have someone who seems so interested in at least some aspects of science that he can talk about it with a degree of understanding. I knew he had an interest in literature but there is also this (from his Wikipedia entry; Note: Links have been removed),

Trudeau has a bachelor of arts degree in literature from McGill University and a bachelor of education degree from the University of British Columbia…. After graduation, he stayed in Vancouver and he found substitute work at several local schools and permanent work as a French and math teacher at the private West Point Grey Academy … . From 2002 to 2004, he studied engineering at the École Polytechnique de Montréal, a part of the Université de Montréal.[67] He also started a master’s degree in environmental geography at McGill University, before suspending his program to seek public office.[68] [emphases mine]

Trudeau is not the only political leader to have a strong interest in science. In our neighbour to the south, there’s President Barack Obama who has done much to promote science since he was elected in 2008. David Bruggeman in an April 15, 2016  post (Obama hosts DNews segments for Science Channel week of April 11-15, 2016) and an April 17, 2016 post (Obama hosts White House Science Fair) describes two of Obama’s most recent efforts.

ETA April 19, 2016: I’ve found confirmation that this Q&A was somewhat staged as I hinted in the opening with “Prime Minister Justin Trudeau’s apparently extemporaneous response … .” Will Oremus’s April 19, 2016 article for Slate.com breaks the whole news cycle down and points out (Note: A link has been removed),

Over the weekend, even as latecomers continued to dine on the story’s rapidly decaying scraps, a somewhat different picture began to emerge. A Canadian blogger pointed out that Trudeau himself had suggested to reporters at the event that they lob him a question about quantum computing so that he could knock it out of the park with the newfound knowledge he had gleaned on his tour.

The Canadian blogger who tracked this down is J. J. McCullough (Jim McCullough) and you can read his Oct. 16, 2016 posting on the affair here. McCullough has a rather harsh view of the media response to Trudeau’s lecture. Oremus is a bit more measured,

… Monday brought the countertake parade—smaller and less pompous, if no less righteous—led by Gawker with the headline, “Justin Trudeau’s Quantum Computing Explanation Was Likely Staged for Publicity.”

But few of us in the media today are immune to the forces that incentivize timeliness and catchiness over subtlety, and even Gawker’s valuable corrective ended up meriting a corrective of its own. Author J.K. Trotter soon updated his post with comments from Trudeau’s press secretary, who maintained (rather convincingly, I think) that nothing in the episode was “staged”—at least, not in the sinister way that the word implies. Rather, Trudeau had joked that he was looking forward to someone asking him about quantum computing; a reporter at the press conference jokingly complied, without really expecting a response (he quickly moved on to his real question before Trudeau could answer); Trudeau responded anyway, because he really did want to show off his knowledge.

Trotter deserves credit, regardless, for following up and getting a fuller picture of what transpired. He did what those who initially jumped on the story did not, which was to contact the principals for context and comment.

But my point here is not to criticize any particular writer or publication. The too-tidy Trudeau narrative was not the deliberate work of any bad actor or fabricator. Rather, it was the inevitable product of today’s inexorable social-media machine, in which shareable content fuels the traffic-referral engines that pay online media’s bills.

I suggest reading both McCullough’s and Oremus’s posts in their entirety should you find debates about the role of media compelling.

Convergence at Canada’s Perimeter Institute: art/science and physics

It’s a cornucopia of convergence at Canada’s Perimeter Institute (PI). First, there’s a June 16, 2015 posting by Colin Hunter about converging art and science in the person of Alioscia Hamma,

In his professional life, Hamma is a lecturer in the Perimeter Scholars International (PSI) program and an Associate Professor at China’s Tsinghua University. His research seeks new insights into quantum entanglement, quantum statistical mechanics, and other aspects of the fundamental nature of reality.

Though he dreamed during his boyhood in Naples of one day becoming a comic book artist, he pursued physics because he believed – still believes – it is our most reliable tool for decoding our universe.

“Mathematics is ideal, clean, pure, and meaningless. Natural sciences are living, concrete, dirty, and meaningful. Physics is right in the middle, like the human condition,” says Hamma.

Art too, he says, resides in the middle ground between the world of ideals and the world as it presents itself to our senses.

So he draws. …

Perimeter Institute has provided a video where Hamma shares his ideas,

This is very romantic as in literature-romantic. If I remember rightly, ‘truth is beauty and beauty is truth’ was the motto of the romantic poets, Byron, Keats, and Shelley. It’s intriguing to hear similar ideas being applied to physics, philosophy, and art.

H/t to Speaking Up For Canadian Science regarding this second ‘convergence at PI‘. From the Convergence conference page on the Perimeter Institute website,

Convergence is Perimeter’s first-ever alumni reunion and a new kind of physics conference providing a “big picture” overview of fundamental physics and its future.

Physics is at a turning point. The most sophisticated experiments ever devised are decoding our universe with unprecedented clarity — from the quantum to the cosmos — and revealing a stunning simplicity that theory has yet to explain.

Convergence will bring together many of the world’s best minds in physics to probe the field’s most exciting ideas and chart a course for 21st century physics. The event will also celebrate, through commemorative lectures, the centenaries of two defining discoveries of the 20th century: Noether’s theorem and Einstein’s theory of general relativity.

Converge with us June 20-24. [Registration is now closed]

Despite registration being closed it is still possible to attend online,

CONVERGE ONLINE

Whether you’re at Convergence in person or joining us online, there are many ways to join the conversation:

You can find PI’s Convergence blog here.

International Women’s Day March 8, 2015: Pioneering Women of Physics, Science goes to the Movies, and Transistor

In honour of International Women’s Day 2015, here are four items about women and science. The first features Canada’s Perimeter Institute (PI) and a tribute to pioneering women in physics, from a Feb. 26, 2015 PI news release,

They discovered pulsars, found the first evidence of dark matter, pioneered mathematics, radioactivity, nuclear fission, elasticity, and computer programming, and have even stopped light.

Jocelyn Bell Burnell

Rosalind Franklin

Hedy Lamarr

Wu Chien ShiungIt’s a fascinating group of women and these four provide a taste only.

The second item about women in science is also from the Perimeter Institute, which is hosting an ‘Inspiring Future Women in Science’ conference on Friday, May 6, 2015. From the PI program page,

Are you interested in turning your love of science into a career?  Perimeter Institute is inviting female high school students to participate in an inspirational half day conference on Friday March 6, 2015.  The goal is to bring together like minded young women with a strong interest in science and expose them to the rewards, challenges and possibilities of a career in science.

kEYNOTE ADDRESSES

Rima Brek – Rima is a Ubisoft veteran of 16 years and a founding team member of the Toronto studio. There, she was responsible for kick-starting the technology team and helping ship the critically-acclaimed Tom Clancy’s Splinter Cell Blacklist. She is a sought-after advisor whose guidance and leadership have directly helped Ubisoft Toronto grow to over 300 game developers in just five years.

Dianna Cowern – Dianna is a science communicator and educator. She received her degree in physics from MIT and completed a post-baccalaureate fellowship in astrophysics at Harvard. She then worked on mobile applications as a software engineer at General Electric before beginning a position at the University of California, San Diego as a physics outreach coordinator. She is the primary content creator for her educational YouTube channel, Physics Girl.

Roslyn Bern – As president of the Leacross Foundation, Roslyn Bern has been creating opportunities for women and girls throughout Canada. She has worked on initiatives for over 20 years, as an educator, a business woman, and as a philanthropist. She has focused on developing scholarships and bursaries for girls in under-represented career fields. She has been instrumental on sending teenage girls to the Arctic and Antarctic with Students on Ice, and created a partnership with colleges and corporations to certify STEM women in Electrical engineering. …

By the time this piece is posted it will be too late to attend this year’s event but interested parties could plan for next year in Waterloo, Ontario, Canada.

The third item concerns an initiative from the Public Radio Exchange, PRX. Called Transistor; a STEM [science, technology, engineering, and mathematics] audio project. From the series page,

Transistor is a transformative STEM podcast, taking the electricity of a story and channeling it to listeners. Three scientist hosts — a biologist, an astrophysicist, and a neuroscientist — report on conundrums, curiosities, and current events in and beyond their fields. Sprinkled among their episodes are the winners of the STEM Story Project, a competition we held for unique science radio.

Much as the transistor radio was a new technical leap, this Transistor features new women voices and sounds from new science producers.

PRX presents Transistor, applying our storytelling and podcast experience to science. The Sloan Foundation powers Transistor with funding and support. And listeners complete the circuit.

The Feb. 18, 2015 PRX news release offers more details about the hosts and their first podcasts,

PRX is thrilled to announce the launch of a new weekly podcast series Transistor (official press release). Three scientist hosts — a biologist, an astrophysicist, and a neuroscientist — report on conundrums, curiosities, and current events in and beyond their fields. Sprinkled among their episodes are the winners of the PRX STEM Story Project, a competition we held for unique science radio.

Just as the transistor radio was a new technical leap, this Transistor features new women voices and their science perspectives. We’ve launched with four episodes from our three scientist hosts:

  • Dr. Michelle Thaller, an astrophysicist at NASA’s Goddard Space Flight Center, who studies binary stars and the life cycles of the stars.
    • We Are Stardust: We’re closer than ever before to discovering if we’re not alone in the universe. Astrophysicist Michelle Thaller visits the NASA lab that discovered that comets contain some of the very same chemical elements that we contain. Then, Michelle talks to a Vatican planetary scientist about how science and religion can meet on the topic of life beyond Earth.
  • Dr. Christina Agapakis, a biologist and writer based in Los Angeles. Her research focuses on the intersection of microbiology and design, exploring the symbiosis among microbes and biology, technology, and culture.
    • Food, Meet Fungus: The microbiome — the trillions of bacteria, fungi, and viruses that live in and on our body — is hot right now. We explore what we do know in the face of so much hope and hype, starting with food.
  • Dr. Wendy Suzuki, a Professor of Neural Science and Psychology in the Center for Neural Science at New York University, whose research focuses on understanding how our brains form and retain new long-term memories and the effects of aerobic exercise on memory. Her book Healthy Brain, Happy Life will be published by Harper Collins in the Spring of 2015.
    • Totally Cerebral: Untangling the Mystery of Memory: Neuroscientist Wendy Suzuki introduces us to scientists who have uncovered some of the deepest secrets about our brains. She begins by talking with experimental psychologist Brenda Milner [interviewed in her office at McGill University, Montréal, Quebéc], who in the 1950s, completely changed our understanding of the parts of the brain important for forming new long-term memories.
    • Totally Cerebral: The Man Without a Memory: Imagine never being able to form a new long term memory after the age of 27. Welcome to the life of the famous amnesic patient “HM”. Neuroscientist Suzanne Corkin studied HM for almost half a century, and gives us a glimpse of what daily life was like for him, and his tremendous contribution to our understanding of how our memories work.

Each scientist is working with a talented independent producer: Lauren Ober, Julie Burstein, and Kerry Donahue.

Subscribe to the show through iTunes or RSS, or you can stream it on PRX.org.

I listened to all four of the introductory programs which ranged in running time from about 16 mins. to 37 mins. All three hosts are obviously excited about sharing their science stories and I look forward to hearing more from them.

The last item comes from David Bruggeman’s Feb. 20, 2015 post on his Pasco Phronesis blog (Note: A link has been removed),

Science Goes to the Movies is a new program produced by the City University of New York and sponsored by the Alfred P. Sloan Foundation. … The hosts are Faith Salie, a journalist and host you might have heard before as a panelist on Wait Wait…Don’t Tell Me, and Dr. Heather Berlin, a neuroscientist whose research focuses on brain-body relationships and psychological disorders.  (In what makes for a small world, Berlin is married to Canadian rap troubadour Baba Brinkman.) …

Science Goes to the Movies can be found here where you’ll also find a video of the first episode,

Hallucinations and black holes vie for the 2015 Oscar. Co-hosts Faith Salie and Dr. Heather Berlin are joined by AMNH astrophysicist Dr. Emily Rice for a look at the science in three of the top films of the year, Birdman, The Theory of Everything, and Interstellar.

Episode 102 featuring Into the Woods and the Imitation Game will première on March 20, 2015,

Science Goes to the Movies looks at The Imitation Game and Into the Woods. With special guest cryptologist Rosario Gennaro, we discuss pattern recognition in the work of both Alan Turing and Stephen Sondheim.

Science Goes to the Movies is made possible by generous support from the Alfred P. Sloan Foundation.

Kudos to the Alfred P. Sloan foundation for funding two exciting ventures: Transistors and Science Goes to the Movies.

Getting back to where I started: Happy International Women’s Day 2015!

Graphene, Perimeter Institute, and condensed matter physics

In short, researchers at Canada’s Perimeter Institute are working on theoretical models involving graphene. which could lead to quantum computing. A July 3, 2014 Perimeter Institute news release by Erin Bow (also on EurekAlert) provides some insight into the connections between graphene and condensed matter physics (Note: Bow has included some good basic explanations of graphene, quasiparticles, and more for beginners),

One of the hottest materials in condensed matter research today is graphene.

Graphene had an unlikely start: it began with researchers messing around with pencil marks on paper. Pencil “lead” is actually made of graphite, which is a soft crystal lattice made of nothing but carbon atoms. When pencils deposit that graphite on paper, the lattice is laid down in thin sheets. By pulling that lattice apart into thinner sheets – originally using Scotch tape – researchers discovered that they could make flakes of crystal just one atom thick.

The name for this atom-scale chicken wire is graphene. Those folks with the Scotch tape, Andre Geim and Konstantin Novoselov, won the 2010 Nobel Prize for discovering it. “As a material, it is completely new – not only the thinnest ever but also the strongest,” wrote the Nobel committee. “As a conductor of electricity, it performs as well as copper. As a conductor of heat, it outperforms all other known materials. It is almost completely transparent, yet so dense that not even helium, the smallest gas atom, can pass through it.”

Developing a theoretical model of graphene

Graphene is not just a practical wonder – it’s also a wonderland for theorists. Confined to the two-dimensional surface of the graphene, the electrons behave strangely. All kinds of new phenomena can be seen, and new ideas can be tested. Testing new ideas in graphene is exactly what Perimeter researchers Zlatko Papić and Dmitry (Dima) Abanin set out to do.

“Dima and I started working on graphene a very long time ago,” says Papić. “We first met in 2009 at a conference in Sweden. I was a grad student and Dima was in the first year of his postdoc, I think.”

The two young scientists got to talking about what new physics they might be able to observe in the strange new material when it is exposed to a strong magnetic field.

“We decided we wanted to model the material,” says Papić. They’ve been working on their theoretical model of graphene, on and off, ever since. The two are now both at Perimeter Institute, where Papić is a postdoctoral researcher and Abanin is a faculty member. They are both cross-appointed with the Institute for Quantum Computing (IQC) at the University of Waterloo.

In January 2014, they published a paper in Physical Review Letters presenting new ideas about how to induce a strange but interesting state in graphene – one where it appears as if particles inside it have a fraction of an electron’s charge.

It’s called the fractional quantum Hall effect (FQHE), and it’s head turning. Like the speed of light or Planck’s constant, the charge of the electron is a fixed point in the disorienting quantum universe.

Every system in the universe carries whole multiples of a single electron’s charge. When the FQHE was first discovered in the 1980s, condensed matter physicists quickly worked out that the fractionally charged “particles” inside their semiconductors were actually quasiparticles – that is, emergent collective behaviours of the system that imitate particles.

Graphene is an ideal material in which to study the FQHE. “Because it’s just one atom thick, you have direct access to the surface,” says Papić. “In semiconductors, where FQHE was first observed, the gas of electrons that create this effect are buried deep inside the material. They’re hard to access and manipulate. But with graphene you can imagine manipulating these states much more easily.”

In the January paper, Abanin and Papić reported novel types of FQHE states that could arise in bilayer graphene – that is, in two sheets of graphene laid one on top of another – when it is placed in a strong perpendicular magnetic field. In an earlier work from 2012, they argued that applying an electric field across the surface of bilayer graphene could offer a unique experimental knob to induce transitions between FQHE states. Combining the two effects, they argued, would be an ideal way to look at special FQHE states and the transitions between them.

Once the scientists developed their theory they went to work on some experiments,

Two experimental groups – one in Geneva, involving Abanin, and one at Columbia, involving both Abanin and Papić – have since put the electric field + magnetic field method to good use. The paper by the Columbia group appears in the July 4 issue of Science. A third group, led by Amir Yacoby of Harvard, is doing closely related work.

“We often work hand-in-hand with experimentalists,” says Papić. “One of the reasons I like condensed matter is that often even the most sophisticated, cutting-edge theory stands a good chance of being quickly checked with experiment.”

Inside both the magnetic and electric field, the electrical resistance of the graphene demonstrates the strange behaviour characteristic of the FQHE. Instead of resistance that varies in a smooth curve with voltage, resistance jumps suddenly from one level to another, and then plateaus – a kind of staircase of resistance. Each stair step is a different state of matter, defined by the complex quantum tangle of charges, spins, and other properties inside the graphene.

“The number of states is quite rich,” says Papić. “We’re very interested in bilayer graphene because of the number of states we are detecting and because we have these mechanisms – like tuning the electric field – to study how these states are interrelated, and what happens when the material changes from one state to another.”

For the moment, researchers are particularly interested in the stair steps whose “height” is described by a fraction with an even denominator. That’s because the quasiparticles in that state are expected to have an unusual property.

There are two kinds of particles in our three-dimensional world: fermions (such as electrons), where two identical particles can’t occupy one state, and bosons (such as photons), where two identical particles actually want to occupy one state. In three dimensions, fermions are fermions and bosons are bosons, and never the twain shall meet.

But a sheet of graphene doesn’t have three dimensions – it has two. It’s effectively a tiny two-dimensional universe, and in that universe, new phenomena can occur. For one thing, fermions and bosons can meet halfway – becoming anyons, which can be anywhere in between fermions and bosons. The quasiparticles in these special stair-step states are expected to be anyons.

In particular, the researchers are hoping these quasiparticles will be non-Abelian anyons, as their theory indicates they should be. That would be exciting because non-Abelian anyons can be used in the making of qubits.

Graphene qubits?

Qubits are to quantum computers what bits are to ordinary computers: both a basic unit of information and the basic piece of equipment that stores that information. Because of their quantum complexity, qubits are more powerful than ordinary bits and their power grows exponentially as more of them are added. A quantum computer of only a hundred qubits can tackle certain problems beyond the reach of even the best non-quantum supercomputers. Or, it could, if someone could find a way to build stable qubits.

The drive to make qubits is part of the reason why graphene is a hot research area in general, and why even-denominator FQHE states – with their special anyons – are sought after in particular.

“A state with some number of these anyons can be used to represent a qubit,” says Papić. “Our theory says they should be there and the experiments seem to bear that out – certainly the even-denominator FQHE states seem to be there, at least according to the Geneva experiments.”

That’s still a step away from experimental proof that those even-denominator stair-step states actually contain non-Abelian anyons. More work remains, but Papić is optimistic: “It might be easier to prove in graphene than it would be in semiconductors. Everything is happening right at the surface.”

It’s still early, but it looks as if bilayer graphene may be the magic material that allows this kind of qubit to be built. That would be a major mark on the unlikely line between pencil lead and quantum computers.

Here are links for further research,

January PRL paper mentioned above: http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.112.046602

Experimental paper from the Geneva graphene group, including Abanin: http://pubs.acs.org/doi/abs/10.1021/nl5003922

Experimental paper from the Columbia graphene group, including both Abanin and Papić: http://arxiv.org/abs/1403.2112. This paper is featured in the journal Science.

Related experiment on bilayer graphene by Amir Yacoby’s group at Harvard: http://www.sciencemag.org/content/early/2014/05/28/science.1250270

The Nobel Prize press release on graphene, mentioned above: http://www.nobelprize.org/nobel_prizes/physics/laureates/2010/press.html

I recently posted a piece about some research into the ‘scotch-tape technique’ for isolating graphene (June 30, 2014 posting). Amusingly, Geim argued against coining the technique as the ‘scotch-tape’ technique, something I found out only recently.

National (Canada) livestreamed science events from Situating Science (two events) and the Perimeter Institute (one event)

The Situating Science (humanities research cluster) is preparing for a couple of events both of which will take place on April 10, 2014 as part of their Lives of Evidence lecture series . The series has been mentioned here before in a couple of previous posts (my Jan. 31, 2014 posting titled: The Press and the Press Release: Inventing the Crystal Meth-HIV Connection and my March 19, 2014 posting titled Patents, Progress, and Commercialized Medicine).

The next Lives of Evidence lectures are (from the March 25, 2014 announcement),

From the ‘Bankruptcy of Science’ to the ‘Death of Evidence’: Science and its Value
Stathis Psillos, Rotman Canada Research Chair in Philosophy of Science, Department of Philosophy, Western University
Thursday, April 10 2014, 5 PM [EST; 2 pm PST]
Room 4101, 4th floor, Desmarais Building , University of Ottawa, 55 Laurier Ave. East, Ottawa, ON
Free. Reception to follow.
“Join” our Facebook event
https://www.facebook.com/events/819874048026027/
U. Ottawa ISSP Distinguished Speakers Lecture Series.
Supported by the Canada Research Chair in Philosophy of Science and University of Ottawa Departments of Philosophy and History.

Those Who Have the Gold Make the Evidence: The Pharmaceutical Industry and Clinical Trials
Joel Lexchin, Professor, School of Health Policy and Management, York University
Thursday, April 10 2014, 7pm [EST; 4 pm PST]
Room 2130, David Chu Centre, Western Student Services Building, Western University. 1151 Richmond St., London, ON.
Free. Reception beforehand.
“Join” our Facebook Event:
https://www.facebook.com/events/252408878265465/
Watch live online here!
Supported by the Rotman Institute of Philosophy, Western University

While it doesn’t appear that the April 10, 2014 Psillos lecture, ‘Bankruptcy of Science’ to the ‘Death of Evidence’, will be livestreamed, he will be reprising it on April 16, 2014 at the University of Toronto and, according to the chatter on the event’s Facebook page, there appears to be a possibility that one will be livestreamed and I will try to confirm that information. I expect they can’t or are having difficulties arranging two livestreamed events on one day and, for some reason, the second of the April 10, 2014 lectures, Lexchin’s ‘Those Who Have the Gold Make the Evidence’ is the one being livestreamed.

Onto the Perimeter Institute and their livestreamed Future of Physics event,on April 2, 2014 (from the March 25, 2014 announcement),

The Future of Physics: Kate Lunau of maclean’s magazine in Conversation with Emerging Talent at Perimeter Institute
Kate Lunau, Science Journalist
WEDNESDAY, April 2, 2014 AT 7:00PM
Perimeter INSTITUTE
31 Caroline STREET North, WATERLOO
The late astronomer and science popularizer Carl Sagan once said: “The great discoveries are almost entirely made by youngsters.” Sagan understood the power of youthful awe and curiosity, unbounded by established ways of thinking.

Exceptional young physicists will discuss what fascinates and motivates them during Perimeter Institute’s April 2 public lecture. A panel of top early-career scientists, moderated by journalist Kate Lunau of Maclean’s magazine, will share their unique perspectives on the big questions and the types of discoveries they believe may shape the future.

Participants will walk the audience through the “typical” day of a theoretical physicist, describe the path that brought them to the Perimeter, and explore the unprecedented challenges and opportunities that face their generation — and the generations of new scientists to follow — through the 21st century.

If you are thinking of attending the event live in Waterloo, it’s too late to get tickets which were awarded via lottery!

Africa and a quantum future at TED 2014′s All Stars session 2: Beauty and the Brain

This is my last piece for today, March 18, 2014  As I noted earlier , I wish I could cover everyone. For this session I’m covering Neil Turok, physicist and director of the Perimeter Institute, from his TED biography (Note: Links have been removed),

Neil Turok is working on a model of the universe that explains the big bang — while, closer to home, he’s founded a network of math and science academies across Africa.

Neil Turok works on understanding the universe’s very beginnings. With Stephen Hawking, he developed the Hawking-Turok instanton solutions, describing the birth of an inflationary universe — positing that, big bang or no, the universe came from something, not from utter nothingness.

Recently, with Paul Steinhardt at Princeton, Turok has been working on a cyclic model for the universe in which the big bang is explained as a collision between two “brane-worlds.” The two physicists cowrote the popular-science book Endless Universe.

In 2003, Turok, who was born in South Africa, founded the African Institute for Mathematical Sciences (AIMS) in Muizenberg, a postgraduate center supporting math and science. His TED Prize wish: Help him grow AIMS and promote the study and math and science in Africa, so that the world’s next Einstein may be African.

Turok is the Director of the Perimeter Institute for Theoretical Physics, in Ontario, Canada. In 2010, the Canadian government funded a $20million expansion of the AIMS schools, working with the Perimeter Institute to start five new AIMS schools in different African nations.

I featured Turok in an Oct.17, 2012 posting about purpose in nature and in the universe.

Thankfully, Turok was not reading aloud as he did in 2012 when he was in Vancouver with his ‘What banged?’ talk and he immediately engaged the audience with his stories about AIMS (African Institute for Mathematical Sciences) in particular about two AIMS students, Marciel (?) and Kitsis (?) who have gone on to postgraduate degrees and work respectively in the fields of tropical medicine and fluid mechanics.

He segued to quantum physics and how important quantum computing will be in the future and will change everything and how we need to help Africa prepare for the quantum future.

I was a little confused by Turok’s plea to help Africa achieve a quantum future as it seemed to me that AIMS and efforts like that would mean that Africa and Africans might lead in the future, quantum or otherwise.

That’s it for me today. This is a very intriguing session although despite its title seems primarily focused on brains over beauty, which has scarcely been mentioned.

Happy Pi Day! on March 14, 2014

It;’s no surprise that Canada’s Perimeter Institute (PI) is celebrating Pi Day. Before sharing the institute’s latest public outreach effort and for anyone like me who has a shaky understanding  of what exactly Pi is, there’s this explanation excerpted from the Pi Wikipedia essay (Note: Links have been removed),

The number π is a mathematical constant, the ratio of a circle’s circumference to its diameter, approximately equal to 3.14159. It has been represented by the Greek letter “π” since the mid-18th century though it is also sometimes spelled out as “pi” (/paɪ/).

Being an irrational number, π cannot be expressed exactly as a common fraction. Consequently its decimal representation never ends and never settles into a permanent repeating pattern. The digits appear to be randomly distributed although no proof of this has yet been discovered. Also, π is a transcendental number – a number that is not the root of any nonzero polynomial having rational coefficients. This transcendence of π implies that it is impossible to solve the ancient challenge of squaring the circle with a compass and straight-edge.

Fractions such as 22/7 and other rational numbers are commonly used to approximate π.

Someone at the Perimeter Institute has prepared a ‘facts you don’t know about Pi‘ flyer to commemorate the day, which includes these facts and more,

In the 1995 OJ Simpson trial, one witness’ credibility was called into doubt when he misstated the
value of pi. [for anyone not familiar with the trial, O. J. Simpson murder case Wikipedia entry)

Foucault’s Pendulum by Umberto Eco associates the mysterious pendulum in the novel with the intrigue of pi.

In 2005, Lu Chao of China set a world record by memorizing the first 67,890 digits of pi.

In the year 2015, Pi Day will have special significance on 3/14/15 at 9:26:53.58, with the date and time (including 1/100 seconds) representing the first 12 digits of pi.

Over on the Guardian science blogs (Alex’s Adventures in Nunberland blog), Alex Bellos shares Pi artwork in his March 14, 2014 posting, here’s a sample,

Artist: Cristian Vasile

Artist: Cristian Vasile

In this work, Vasile converted pi into base 16. The sixteen segments around the circle represent the 16 digits of this base. He then traced pi for 3600 digits, going from segment to segment based on the value of the digit. A fuller explanation is here and Vasile’s art can be bought here.

Have a happy Pi Day and a good weekend!

Silence of the Labs (exposé) a Canadian Broadcasting Corporation (CBC) television event scheduled for January 10, 2014

I’ve perhaps overstated the case by calling the upcoming telecast ‘Silence of the Labs’ an event,. For many people in the Canadian science community, it will be an event but for most of the television audience it’s simply the first new episode of the Fifth Estate’s 2014 schedule. (For anyone unfamiliar with the Fifth Estate, it’s the Canadian Broadcasting Corporation’s [CBC] longest running, 39th season, and most prestigious investigative journalism television programme.)

Assuming there are some people who haven’t been following this story about the ‘silencing’ of Canada’s scientists or censorship as it has been called, here’s a précis (and if you’ve been following it more closely than I have and note any errors or have any additions, please do use the commenting option (Note: Due to spam issues, I moderate comments so it may take a few hours or more [I don’t usually check the blog on the weekends]  before your comments appear.)

I think my earliest mention of the topic was in 2009 (Sept. 21, 2009; scroll down to the last paragraph). At this point, the Conservative government  had put a ‘muzzle’ on government scientists working for Environment Canada not allowing them to speak directly to media representatives about their work. All questions were to be directed to ministry communications officers. In fact, the muzzle was first discussed in a National Post Jan. 31, 200-8 article by Margaret Munro (which predates this blog’s existence by a few months). In a Sept. 16, 2013 posting, I featured the then recent muzzling of Natural Resources Canada, a story which was first covered by Margaret Munro. My understanding is that Health Canada had also been ‘muzzled’ but that was done earlier by the Liberal government when it was in power.

My colleague, David Bruggemen (Pasco Phronesis blog) disagrees with the contention by many in the Canadian science community that these ‘muzzles’ constitute a form of censorship. In addition to the postings he has made on his blog he also commented on my March 7, 2012 posting (I linked to one of David’s postings on the topic and included an excerpt from it) where I discussed my failure to get answers to questions from an institution located on the University of British Columbia lands and linked it to the ‘muzzle’. In that context,, I mused about censorship.

Since 2012 the focus seems to have shifted from media representatives being able to get direct and uninhibited access to scientists to the public’s right to know and attempts to ‘shut down’ scientific inquiry. In July 2012, there was a rally in Ottawa called Death of Evidence (discussed in both my July 10, 2012 posting and my July 13, 2012 posting followed by a 2013 cross Canada event, Stand up for Science described in my Oct. 4, 2013 posting. As I noted in that posting, most of the science being ‘censored’ or ‘attacked’ is environmental. Institutions such as the Perimeter Institute (theoretical physics)  in Ontario and TRIUMF, Canada’s National Laboratory for Particle and Nuclear Physics in British Columbia have done very well under the Conservative government.

with all that, here’s a preview (51 seconds) of the Silence of the Labs,

You can find out more about the episode here and, if you should miss the telecast, you’ll probably be able to watch later on the Fifth Estate’s CBC  Player webpage. As for the ‘Silence of the Labs” (hat off for the pun), I believe it will be broadcast at 9 pm regardless of timezone on the local CBC channel across most of the country; I assume that as usual Newfoundland will enjoy the telecast at 9:30 pm.

Three Canadian subatomic physics powerhouses invite graduate students to apply for summer 2013 TRISEP in Vancouver (Canada)

It’s not the first time I’ve been puzzled by a TRIUMF (Canada’s National Particle and Nuclear Physics Laboratory) news release but now I have to break my silence: please, please hire me or someone else or anyone else to help you write these things. Putting the reason (or call to action) for the news release in its last line at the very end is not good practice.

Particle physics graduate students from anywhere in the world are invited to apply for an opportunity to attend the Tri-Institute Summer School on Elementary Particles (TRISEP) sponsored by Canada’s big three subatomic physics research institutions, TRIUMF, Perimeter Institute (PI), and SNOLAB.

From TRIUMF’s Apr. 12, 2013 news release,

… master the pioneering topics of collider physics, neutrino physics, dark matter, Monte-Carlo simulation, and physics beyond the Standard Model.

The new international summer school is convened by Canada’s three subatomic physics powerhouses: TRIUMF in experimental particle physics, Perimeter Institute in theoretical physics, and SNOLAB in deep underground physics. Taken together, these three institutions not only give Canada a competitive advantage on the world stage, but they also give international students an opportunity to learn about and then pursue the hottest science topics with
some of the leaders.

One of the incentives for attending, according to the news release, is this,

A recent independent analysis by the Council of Canadian Academies showed that Canada is one of the world’s top six national performers in terms of physics and astronomy (driven by particle and nuclear physics) as measured by bibliometric analysis and surveys of international scientists.

I’m not quite as impressed by that assessment as the folks at the ‘big three’ since there are problems with bibliometric analysis in general which I noted in part of two of my commentary on the report (The State of Science and Technology in Canada, 2012 report—examined (part 2: the rest of the report).

I find this bit from the TRISEP home page (Note: Some links have been removed) a little more exciting,

TRISEP will feature lectures by leading experts in the field of particle physics and is designed to be very interactive with ample time for questions, discussions and interaction with the speakers. Students will also have the opportunity to present a poster describing their research topic. The summer school can also be taken for graduate course credit, more details are available here

The key note speaker will be Hitoshi Murayama, UC Berkeley/Kavli IPMU

Lecturers at the summer school include:
Richard Baartman, TRIUMF
André de Gouvêa, NorthWestern University
Ashutosh Kotwal, Duke University
Heather Logan, Carleton University
Tsuyoshi Nakaya, Kyoto University
Scott Oser, University of British Columbia
Torbjörn Sjöstrand, Lund University
Tim Tait, University of California, Irvine
Viktor Zacek, Université de Montréal

The deadline for applications as listed on the TRISEP home is Friday, June 1, 2013, which is a little confusing since June 1, 2013 is on a Saturday. Presumably you should have your application submitted by Friday, May 31, 2013.