Tag Archives: Peter Robinson

First major literary work (Chaucer’s Canterbury Tales) developed as an app

I wanted something completely different today and found it in a May 2, 2020 article, by Lucie Laumonier for University Affairs, about a multimedia app featuring the Canterbury Tales narrated in middle English,

Four historians from Canada and England have launched the General Prologue app, the first app featuring an audio performance of Geoffrey Chaucer’s The Canterbury Tales in its original 14th-century English.

“Here bygynneth the Book of the tales of Caunterbury,” says the expressive voice of the narrator. The strange Middle English words comprise the opening verse of the medieval masterpiece composed by Chaucer more than 600 years ago. The app, which launched on February 3, is available for iOS and Android users, and through a dedicated website.

A February 2, 2020 University of Saskatchewan news release (also on EurekAlert), announced news of the app’s launch and the international collaboration, which included an academic at University College London (UCL), and the late Terry Jones (of Monty Python fame),

A University of Saskatchewan-led international team has produced the first web and mobile phone app of Geoffrey Chaucer’s The Canterbury Tales–the first major literary work augmented by new scholarship, in any language, presented in an app.

“We want the public, not just academics, to see the manuscript as Chaucer would have likely thought of it–as a performance that mixed drama and humor,” said University of Saskatchewan (USask) English professor Peter Robinson, leader of the project.

“We have become convinced, over many years, that the best way to read the Tales is to hear it performed–just as we imagine that Chaucer himself might have performed it at the court of Richard II.”

The free app is the first edition in a planned series. The app features a 45-minute audio performance of the General Prologue of the Tales–the masterpiece work by the most important English writer before Shakespeare–along with the digitized original manuscript. While listening to the reading, users have access to supporting content such as a translation in modern English, commentary, notes and vocabulary explaining Middle English words used by Chaucer.

The app, an offshoot of Robinson’s 25-year work to digitize the Canterbury Tales, contains key new research work. This includes a new edited text of the Prologue created by USask sessional lecturer Barbara Bordalejo, a new reading of the Tales by former USask student Colin Gibbings, and new findings about the Tales by UCL (University College London) medievalist professor Richard North. The National Library of Wales offered its digitized version of the Prologue‘s original manuscript for the app.

The late Monty Python star Terry Jones, who was a medievalist with two influential books on Chaucer, was also instrumental in developing the content of the app. His translation of The General Prologue and his books feature in the introduction and notes. This work on the app is thought to have been the last major academic project that Jones worked on before his passing on January 21.

The app was released on Android and Apple IoS just after Jones’ birthday on February 1st, in celebration of Jones’ academic work.

“We were so pleased that Terry was able to see and hear this app in the last weeks of his life. His work and his passion for Chaucer was an inspiration to us,” said Robinson, whose work on the Tales has been supported by USask and by the federal Social Sciences and Humanities Research Council (SSHRC). “We talked a lot about Chaucer and it was his idea that the Tales would be turned into a performance.”

Because Chaucer left the Tales unfinished at his death, there is no single text of the Tales, and scholars have to re-construct the text from over 80 distinct manuscripts, mostly written by hand before 1500.

“While the app has material which should be of interest to every Chaucer scholar, it is particularly designed to be useful to people reading Chaucer for the first time. These include not only bachelor of arts university students and school children but also members of the public who have their own interest in Chaucer and his works,” said UCL’s North.

Robinson’s Canterbury Tales project, based at USask since 2010, includes several students who are transcribing all 30,000 pages of the manuscripts into the computer to discover how they are related to each other and to Chaucer’s lost original.

“The app is important for people who do not know the history behind the production of the Canterbury Tales, and to understand how the modern concept of author didn’t exist back then,” said Robinson. “We have many manuscripts copied by hand over time, and the Canterbury Tales Project hopes to establish where they come from, how they were created and who produced them as part of that history.”

Robinson said that the team has ready materials to develop at least two more apps, in particular Miller’s Tale, the second story in the Canterbury Tales.

The General Prologue app was built around the Hengwrt manuscript of the Tales, commonly regarded as the best source for Chaucer’s text and held at The National Library of Wales. The specialist preservation and digitization work undertaken at The National Library of Wales enabled the images of the original manuscript to be presented with supporting content for readers via the app.

North’s academic research on the project includes several new discoveries. For instance, he has found evidence suggesting that Chaucer’s Knight, one of the main characters of the Tales, is at the siege of Algeciras near Gilbraltar, in the south of Spain, in 1369 instead of the commonly assumed date 1342-44.

North believes that putting the Knight at this siege puts his age nearer to 50 years old when the reader encounters him with the other pilgrims in the Tabard in the General Prologue–about the age of Chaucer himself.

Brigit Katz covered the story in a February 5, 2020 article for Smithsonian Magazine. Medievallists.net also posted a story (no date) which included two trailers for the app (you’ll find a 1:39 trailer below),

Here’s where you’ll find the app and more,

Enjoy! And for those who caught it, “something completely different” was a reference to Monty Python’s “And Now for Something Completely Different.”

Australian peacock spiders, photonic nanostructures, and making money

Researcher Bor-Kai Hsiung’s work has graced this blog before but the topic was tarantulas and their structural colour. This time, it’s all about Australian peacock spiders and their structural colour according to a December 22, 2017 news item on ScienceDaily,

Even if you are arachnophobic, you probably have seen pictures or videos of Australian peacock spiders (Maratus spp.). These tiny spiders are only 1-5 mm long but are famous for their flamboyant courtship displays featuring diverse and intricate body colorations, patterns, and movements.

The spiders extremely large anterior median eyes have excellent color vision and combine with their bright colors to make peacock spiders cute enough to cure most people of their arachnophobia. But these displays aren’t just pretty to look at, they also inspire new ways for humans to produce color in technology.

One species of peacock spider — the rainbow peacock spider (Maratus robinsoni) is particularly neat, because it showcases an intense rainbow iridescent signal in males’ courtship displays to the females. This is the first known instance in nature of males using an entire rainbow of colors to entice females. Dr. Bor-Kai Hsiung led an international team of researchers from the US (UAkron, Cal Tech, UC San Diego, UNL [University of Nebraska-Lincoln]), Belgium (Ghent University), Netherlands (UGroningen), and Australia to discover how rainbow peacock spiders produce this unique multi-color iridescent signal.

A December 22, 2017 Ghent University (Belgium) press release on Alpha Galileo, which originated the news item, provides more technical detail,

Using a diverse array of research techniques, including light and electron microscopy, hyperspectral imaging, imaging scatterometry, nano 3D printing and optical modeling, the team found the origin of this intense rainbow iridescence emerged from specialized abdominal scales of the spiders. These scales have an airfoil-like microscopic 3D contour with nanoscale diffraction grating structures on the surface.

The interaction between the surface nano-diffraction grating and the microscopic curvature of the scales enables separation and isolation of light into its component wavelengths at finer angles and smaller distances than are possible with current manmade engineering technologies.

Inspiration from these super iridescent scales can be used to overcome current limitations in spectral manipulation, and to further reduce the size of optical spectrometers for applications where fine-scale spectral resolution is required in a very small package, notably instruments on space missions, or wearable chemical detection systems. And it could have a wide array of implications to fields ranging from life sciences and biotechnologies to material sciences and engineering.

Here’s a video of an Australian rainbow peacock spider,

Here’s more from the YouTube description published on April 13, 2017 by Peacockspiderman,

Scenes of Maratus robinsoni, a spider Peter Robinson discovered and David Hill and I named it after him in 2012. You can read our description on pages 36-41 in Peckhamia 103.2, which can be downloaded from the Peckhamia website http://peckhamia.com/peckhamia_number…. This is one of the two smallest species of peacock spider (2.5 mm long) and the only spider we know of in which colour changes occur every time it moves, this video was created to document this. Music: ‘Be Still’ by Johannes Bornlöf licensed through my MCN ‘Brave Bison’ from ‘Epidemic Sound’ For licensing inquiries please contact Brave Bison licensing@bravebison.io

The University of California at San Diego also published a December 22, 2017 news release about this work, which covers some of the same ground while providing a few new tidbits of information,

Brightly colored Australian peacock spiders (Maratus spp.) captivate even the most arachnophobic viewers with their flamboyant courtship displays featuring diverse and intricate body colorations, patterns, and movements – all packed into miniature bodies measuring less than five millimeters in size for many species. However, these displays are not just pretty to look at. They also inspire new ways for humans to produce color in technology.

One species of peacock spider – the rainbow peacock spider (Maratus robinsoni) – is particularly impressive, because it showcases an intense rainbow iridescent signal in males’ courtship displays to females. This is the first known instance in nature of males using an entire rainbow of colors to entice females to mate. But how do males make their rainbows? A new study published in Nature Communications looked to answer that question.

Figuring out the answers was inherently interdisciplinary so Bor-Kai Hsiung, a postdoctoral scholar at Scripps Institution of Oceanography at the University of California San Diego, assembled an international team that included biologists, physicists and engineers. Starting while he was a Ph.D. student at The University of Akron under the mentorship of Todd Blackledge and Matthew Shawkey, the team included researchers from UA, Scripps Oceanography, California Institute of Technology, and University of Nebraska-Lincoln, the University of Ghent in Belgium, University of Groningen in Netherlands, and Australia to discover how rainbow peacock spiders produce this unique iridescent signal.

The team investigated the spider’s photonic structures using techniques that included light and electron microscopy, hyperspectral imaging, imaging scatterometry and optical modeling to generate hypotheses about how the spider’s scale generate such intense rainbows. The team then used cutting-edge nano 3D printing to fabricate different prototypes to test and validate their hypotheses. In the end, they found that the intense rainbow iridescence emerged from specialized abdominal scales on the spiders. These scales combine an airfoil-like microscopic 3D contour with nanoscale diffraction grating structures on the surface. It is the interaction between the surface nano-diffraction grating and the microscopic curvature of the scales that enables separation and isolation of light into its component wavelengths at finer angles and smaller distances than are possible with current engineering technologies.

“Who knew that such a small critter would create such an intense iridescence using extremely sophisticated mechanisms that will inspire optical engineers,” said Dimitri Deheyn, Hsuing’s advisor at Scripps Oceanography and a coauthor of the study.

For Hsiung, the finding wasn’t quite so unexpected.

“One of the main questions that I wanted to address in my Ph.D. dissertation was ‘how does nature modulate iridescence?’ From a biomimicry perspective, to fully understand and address a question, one has to take extremes from both ends into consideration. I purposefully chose to study these tiny spiders with intense iridescence after having investigated the non-iridescent blue tarantulas,” said Hsiung.

The mechanism behind these tiny rainbows may inspire new color technology, but would not have been discovered without research combining basic natural history with physics and engineering, the researchers said.

“Nanoscale 3D printing allowed us to experimentally validate our models, which was really exciting,” said Shawkey. “We hope that these techniques will become common in the future.”

“As an engineer, what I found fascinating about these spider structural colors is how these long evolved complex structures can still outperform human engineering,” said Radwanul Hasan Siddique, a postdoctoral scholar at Caltech and study coauthor. “Even with high-end fabrication techniques, we could not replicate the exact structures. I wonder how the spiders assemble these fancy structural patterns in the first place!”

Inspiration from these super iridescent spider scales can be used to overcome current limitations in spectral manipulation, and to reduce the size of optical spectrometers for applications where fine-scale spectral resolution is required in a very small package, notably instruments on space missions, or wearable chemical detection systems.

In the end, peacock spiders don’t just produce nature’s smallest rainbows.They could also have implications for a wide array of fields ranging from life sciences and biotechnologies to material sciences and engineering.

Before citing the paper and providing a link, here’s a story by Robert F. Service for Science magazine about attempts to capitalize on ‘spider technology’, in this case spider silk,

The hype over spider silk has been building since 1710. That was the year François Xavier Bon de Saint Hilaire, president of the Royal Society of Sciences in Montpellier, France, wrote to his colleagues, “You will be surpriz’d to hear, that Spiders make a Silk, as beautiful, strong and glossy, as common Silk.” Modern pitches boast that spider silk is five times stronger than steel yet more flexible than rubber. If it could be made into ropes, a macroscale web would be able to snare a jetliner.

The key word is “if.” Researchers first cloned a spider silk gene in 1990, in hopes of incorporating it into other organisms to produce the silk. (Spiders can’t be farmed like silkworms because they are territorial and cannibalistic.) Today, Escherichia coli bacteria, yeasts, plants, silkworms, and even goats have been genetically engineered to churn out spider silk proteins, though the proteins are often shorter and simpler than the spiders’ own. Companies have managed to spin those proteins into enough high-strength thread to produce a few prototype garments, including a running shoe by Adidas and a lightweight parka by The North Face. But so far, companies have struggled to mass produce these supersilks.

Some executives say that may finally be about to change. One Emeryville, California-based startup, Bolt Threads, says it has perfected growing spider silk proteins in yeast and is poised to turn out tons of spider silk thread per year. In Lansing, Michigan, Kraig Biocraft Laboratories says it needs only to finalize negotiations with silkworm farms in Vietnam to produce mass quantities of a combination spider/silkworm silk, which the U.S. Army is now testing for ballistics protection. …

I encourage you to read Service’s article in its entirety if the commercialization prospects for spider silk interest you as it includes gems such as this,

Spider silk proteins are already making their retail debut—but in cosmetics and medical devices, not high-strength fibers. AMSilk grows spider silk proteins in E. coli and dries the purified protein into powders or mixes it into gels, for use as additives for personal care products, such as moisture-retaining skin lotions. The silk proteins supposedly help the lotions form a very smooth, but breathable, layer over the skin. Römer says the company now sells tons of its purified silk protein ingredients every year.

Finally, here’s a citation for and a link to the paper about Australian peacock spiders and nanophotonics,

Rainbow peacock spiders inspire miniature super-iridescent optics by Bor-Kai Hsiung, Radwanul Hasan Siddique, Doekele G. Stavenga, Jürgen C. Otto, Michael C. Allen, Ying Liu, Yong-Feng Lu, Dimitri D. Deheyn, Matthew D. Shawkey, & Todd A. Blackledge. Nature Communications 8, Article number: 2278 (2017) doi:10.1038/s41467-017-02451-x Published online: 22 December 2017

This paper is open access.

As for Bor-Kai Hsiung’s other mentions here:

How tarantulas get blue (December 7, 2015 posting)

Noniridescent photonics inspired by tarantulas (October 19, 2016 posting)

More on the blue tarantula noniridescent photonics (December 28, 2016 posting)