Tag Archives: Philippines

Chen Qiufan, garbage, and Chinese science fiction stories

Garbage has been dominating Canadian news headlines for a few weeks now. First, it was Canadian garbage in the Philippines and now it’s Canadian garbage in Malaysia. Interestingly, we’re also having problems with China, since December 2018, when we detained a top executive from Huawe, a China-based international telecommunicatons company, in accordance with an official request from the US government and, in accordance, with what Prime Minister Justin Trudeau calls the ‘rule of law’. All of this provides an interesting backdrop (for Canadians anyway) on the topic of China, garbage, and science fiction.

A May 16, 2019 article by Anjie Zheng for Fast Company explores some of the latest and greatest from China’s science fiction writing community,

Like any good millennial, I think about my smartphone, to the extent that I do at all, in terms of what it does for me. It lets me message friends, buy stuff quickly, and amass likes. I hardly ever think about what it actually is—a mass of copper wires, aluminum alloys, and lithium battery encased in glass—or where it goes when I upgrade.

Chen Qiufan wants us to think about that. His debut novel, Waste Tide, is set in a lightly fictionalized version of Guiyu, the world’s largest electronic waste disposal. First published in Chinese in 2013, the book was recently released in the U.S. with a very readable translation into English by Ken Liu.

Chen, who has been called “China’s William Gibson,” is part of a younger generation of sci-fi writers who have achieved international acclaim in recent years. Liu Cixin became the first Chinese to win the prestigious Hugo Award for his Three Body Problem in 2015. The Wandering Earth, based on a short story by Liu, became China’s first science-fiction blockbuster when it was released in 2018. It was the highest-grossing film in the fastest-growing film market in the world last year and was recently scooped up by Netflix.

Aynne Kokas in a March 13, 2019 article for the Washington Post describes how the hit film, The Wandering Earth, fits into an overall Chinese-led movie industry focused on the future and Hollywood-like, i. e. like US movie industry, domination,

“The Wandering Earth,” directed by Frant Gwo, takes place in a future where the people of Earth must flee their sun as it swells into a red giant. Thousands of engines — the first of them constructed in Hangzhou, one of China’s tech hubs — propel the entire planet toward a new solar system, while everyone takes refuge from the cold in massive underground cities. On the surface, the only visible reminders of the past are markers of China’s might. The Shanghai Tower, the Oriental Pearl Tower and a stadium for the Shanghai 2044 Olympics all thrust out of the ice, having apparently survived the journey’s tsunamis, deep freeze and cliff-collapsing earthquakes.

The movie is China’s first big-budget sci-fi epic, and its production was ambitious, involving some 7,000 workers and 10,000 specially-built props. Audience excitement was correspondingly huge: Nearly half a million people wrote reviews of the film on Chinese social network site Douban. Having earned over $600 million in domestic sales, “The Wandering Earth” marks a major achievement for the country’s film industry.

It is also a major achievement for the Chinese government.

Since opening up the country’s film market in 2001, the Chinese government has aspired to learn from Hollywood how to make commercially appealing films, as I detail in my book “Hollywood Made in China.” From initial private offerings for state media companies, to foreign investment in films, studios and theme parks, the government allowed outside capital and expertise to grow the domestic commercial film industry — but not at the expense of government oversight. This policy’s underlying aim was to expand China’s cultural clout and political influence.

Until recently, Hollywood films dominated the country’s growing box office. That finally changed in 2015, with the release of major local blockbusters “Monster Hunt” and “Lost in Hong Kong.” The proliferation of homegrown hits signaled that the Chinese box office profits no longer depend on Hollywood studio films — sending an important message to foreign trade negotiators and studios.

Kokas provides some insight into how the Chinese movie industry is designed to further the Chinese government’s vision of the future. As a Canadian, I don’t see that much difference between the US and China industry’s vision. Both tout themselves as the answer to everything, both target various geographic regions for the ‘bad guys’, and both tout their national moral superiority in their films. I suppose the same can be said for most countries’ film industries but both China and the US can back themselves with economic might.

Zheng’s article delves deeper into garbage, and Chen Qiufan’s science fiction while illuminating the process of changing a ‘good guy’ into a ‘bad guy’,

Chen, 37, grew up a few miles from the real Guiyu. Mountains of scrap electronics are shipped there every year from around the world. Thousands of human workers sort through the junk for whatever can be reduced to reusable precious metals. They strip wires and disassemble circuit boards, soaking them in acid baths for bits of copper, tin, platinum, and gold. Whatever can’t be processed is burned. The water in Guiyu has been so contaminated it is undrinkable; the air is toxic. The workers, migrants from poor rural areas in China, have an abnormally high rate of respiratory diseases and cancer.

For the decades China was revving its economic engine, authorities were content to turn a blind eye to the human costs of the recycling business. It was an economic win-win. For developed countries like the U.S., it’s cheaper to ship waste to places like China than trying to recycle it themselves. And these shipments create jobs and profits for the Chinese.

In recent years, however, steps have been taken to protect workers and the environment in China. …

Waste Tide highlights the danger of “throw-away culture,” says Chen, also known in English as Stanley Chan. When our personal electronics stop serving us, whether because they break or our lust for the newest specs get the better of us, we toss them. Hopefully we’re conscientious enough to bring them to local recyclers that claim they’ll dispose of them properly. But that’s likely the end of our engagement with the trash. Out of sight, out of mind.

Fiction, and science fiction in particular, is an apt medium for Chen to probe the consequences of this arrangement. “It’s not journalism,” he says. Instead, the story is an imaginative, action-packed tale of power imbalances, and the individual characters that think they’re doing good. Waste Tide culminates, expectedly, in an insurgency of the workers against their exploitative overlords.

Guiyu has been fictionalized in Waste Tide as “Silicon Isle.” (A homophone of the Chinese character “gui” translates to “Silicon,” and “yu” is an island). The waste hell is ruled by three ruthless family clans, dominated by the Luo clan. They treat workers as slaves and derisively call them “waste people.”

Technology in the near-future has literally become extensions of selves and only exacerbates class inequality. Prosthetic inner ears improve balance; prosthetic limbs respond to mental directives; helmets heighten natural senses. The rich “switch body parts as easily as people used to switch phones.” Those with fewer means hack discarded prosthetics to get the same kick. When they’re no longer needed, synthetic body parts contaminated with blood and bodily fluids are added to the detritus.

At the center of the story is Mimi, a migrant worker who dreams of earning enough money to return home and live a quiet life. She strikes up a relationship with Kaizong, a Chinese-American college graduate trying to rediscover his roots. But the good times are short-lived. The boss of the Luo clan becomes convinced that Mimi holds the key to rousing his son from his coma and soon kidnaps the hapless girl.

For all the advanced science, there is a backwards superstition that animates Silicon Isle. [emphasis mine] The clan bosses subscribe to “a simple form of animism.” They pray to the wind and sea for ample supplies of waste. They sacrifice animals (and some humans) to bring them luck, and use local witches to exorcise evil spirits. Boss Luo has Mimi kidnapped and tortured in an effort to appease the gods in the hopes of waking up his comatose son. The torture of Mimi infects her with a mysterious disease that splits her consciousness. The waste people are enraged by her violation, which eventually sparks a war against the ruling clans. [emphasis mine]

A parallel narrative involves an American, Scott Brandle, who works for an environmental company. While in town trying to set up a recycling facility, he stumbles onto the truth about the virus that may have infected Mimi: a chemical weapon developed and used by the U.S. [emphasis mine] years earlier. Invented by a Japanese researcher [emphasis mine] working in the U.S., the drug is capable of causing mass hallucinations and terror. When Brandle learns that Mimi may have been infected with this virus, he wants a piece of her [emphasis mine] too, so that scientists back home can study its effects.

Despite portraying the future of China in a less-than-positive light, [emphasis mine] Waste Tide has not been banned–a common result for works that displease Beijing; instead, the book won China’s prestigious Nebula award for science fiction, and is about to be reprinted on the mainland. …

An interview with Chen (it’s worthwhile to read his take on what he’s doing) follows the plot description in this intriguing and what seems to be a sometimes disingenuous article.

The animism and the war against the ruling class? It reminds me a little of the tales told about old Chine and Mao’s campaign to overthrow the ruling classes who had kept control of the proletariat, in part, by encouraging ‘superstitious religious belief’.

As far as I’m concerned the interpretation can go either or both ways: a critique of the current government’s policies and where they might lead in the future and/or a reference back to the glorious rising of China’s communist government. Good fiction always contains ambiguity; it’s what fuels courses in literature.

Also, the bad guys are from the US and Japan, countries which have long been allied with each other and with which China has some serious conflicts.

Interesting, non? And, it’s not that different from what you’ll see in US (or any other country’s for that matter) science fiction wiring and movies, except that the heroes are Chinese.

Getting back to the garbage in the Philippines, there are 69 containers on their way back to Canada as of May 30, 2019. As for why all this furor about Canadian garbage in the Philippines and Malaysia, it’s hard to believe that Canada is the only sinner. Of course, we are in China’s bad books due to the Huawei executive’s detention here (she is living in her home in Vancouver and goes out and about as she wishes, albeit under surveillance).

Anyway, I can’t help but wonder if indirect pressure is being exerted by China or if the Philippines and Malaysia have been incentivized in some way by China. The timing has certainly been interesting.

Political speculation aside, it’s probably a good thing that countries are refusing to take our garbage. As I’m sure more than one environmentalist would be happy to point out, it’s about time we took care of our own mess.

A snout weevil at the end of the rainbow

I’ve never heard of a snout weevil before but it seems to be a marvelous creature,

Caption: Left: A photograph of the ‘rainbow’ weevil, with the rainbow-colored spots on its thorax and elytra (wing casings). Right: A microscope image of the rim of a single rainbow spot, showing the different colors of individual scales. Credit: Dr Bodo D Wilts

From a Sept. 11, 2018 news item on Nanowerk,

Researchers from Yale [University]-NUS College and the University of Fribourg in Switzerland have discovered a novel colour-generation mechanism in nature, which if harnessed, has the potential to create cosmetics and paints with purer and more vivid hues, screen displays that project the same true image when viewed from any angle, and even reduce the signal loss in optical fibres.

Yale-NUS College Assistant Professor of Science (Life Science) Vinodkumar Saranathan led the study with Dr Bodo D Wilts from the Adolphe Merkle Institute at the University of Fribourg. Dr Saranathan examined the rainbow-coloured patterns in the elytra (wing casings) of a snout weevil from the Philippines, Pachyrrhynchus congestus pavonius, using high-energy X-rays, while Dr Wilts performed detailed scanning electron microscopy and optical modelling.

They discovered that to produce the rainbow palette of colours, the weevil utilised a colour-generation mechanism that is so far found only in squid, cuttlefish, and octopuses, which are renowned for their colour-shifting camouflage.

A Sept. 11, 2018 Yale-NUS College news release (also on EurekAlert), which originated the news item, offers more on the weevil and on the research,

P. c. pavonius, or the “Rainbow” Weevil, is distinctive for its rainbow-coloured spots on its thorax and elytra (see attached image). These spots are made up of nearly-circular scales arranged in concentric rings of different hues, ranging from blue in the centre to red at the outside, just like a rainbow. While many insects have the ability to produce one or two colours, it is rare that a single insect can produce such a vast spectrum of colours. Researchers are interested to figure out the mechanism behind the natural formation of these colour-generating structures, as current technology is unable to synthesise structures of this size.

“The ultimate aim of research in this field is to figure out how the weevil self-assembles these structures, because with our current technology we are unable to do so,” Dr Saranathan said. “The ability to produce these structures, which are able to provide a high colour fidelity regardless of the angle you view it from, will have applications in any industry which deals with colour production. We can use these structures in cosmetics and other pigmentations to ensure high-fidelity hues, or in digital displays in your phone or tablet which will allow you to view it from any angle and see the same true image without any colour distortion. We can even use them to make reflective cladding for optical fibres to minimise signal loss during transmission.”

Dr Saranathan and Dr Wilts examined these scales to determine that the scales were composed of a three-dimensional crystalline structure made from chitin (the main ingredient in insect exoskeletons). They discovered that the vibrant rainbow colours on this weevil’s scales are determined by two factors: the size of the crystal structure which makes up each scale, as well as the volume of chitin used to make up the crystal structure. Larger scales have a larger crystalline structure and use a larger volume of chitin to reflect red light; smaller scales have a smaller crystalline structure and use a smaller volume of chitin to reflect blue light. According to Dr Saranathan, who previously examined over 100 species of insects and spiders and catalogued their colour-generation mechanisms, this ability to simultaneously control both size and volume factors to fine-tune the colour produced has never before been shown in insects, and given its complexity, is quite remarkable. “It is different from the usual strategy employed by nature to produce various different hues on the same animal, where the chitin structures are of fixed size and volume, and different colours are generated by orienting the structure at different angles, which reflects different wavelengths of light,” Dr Saranathan explained.

The research was partly supported though the National Centre of Competence in Research “Bio-Inspired Materials” and the Ambizione program of the Swiss National Science Foundation (SNSF) to Dr Wilts, and partly through a UK Royal Society Newton Fellowship, a Linacre College EPA Cephalosporin Junior Research Fellowship, and Yale-NUS College funds to Dr Saranathan. Dr Saranathan is currently part of a research team led by Yale-NUS College Associate Professor of Science Antonia Monteiro, which has recently been awarded a separate Competitive Research Programme (CRP) grant by Singapore’s National Research Foundation (NRF) to examine the genetic basis of the colour-generation mechanism in butterflies. Dr Saranathan and Dr Monteiro are both also from the Department of Biological Sciences at the National University of Singapore (NUS) Faculty of Science. In addition, Dr Saranathan is affiliated with the NUS Nanoscience and Nanotechnology Initiative.

Here’s a link to and a citation for the paper,

Literal Elytral Rainbow: Tunable Structural Colors Using Single Diamond Biophotonic Crystals in Pachyrrhynchus congestus Weevils by Bodo D. Wilts, Vinodkumar Saranathan. Samll https://doi.org/10.1002/smll.201802328 First published: 15 August 2018

This paper is behind a paywall.

Genetic engineering: an eggplant in Bangladesh and a synthetic biology grant at Concordia University (Canada)

I have two bits of genetic engineering news.

Eggplants in Bangladesh

I always marvel at their beauty,

Bt eggplant is the first genetically engineered food crop to be successfully introduced in South Asia. The crop is helping some of the world’s poorest farmers feed their families and communities while reducing the use of pesticides. Photo by Cornell Alliance for Science.

A July 17, 2018 news item on phys.org describes a genetic engineering application,

Ansar Ali earned just 11,000 taka – about $130 U.S. dollars – from eggplant he grew last year in Bangladesh. This year, after planting Bt eggplant, he brought home more than double that amount, 27,000 taka. It’s a life-changing improvement for a subsistence farmer like Ali.

Bt eggplant, or brinjal as it’s known in Bangladesh, is the first genetically engineered food crop to be successfully introduced in South Asia. Bt brinjal is helping some of the world’s poorest farmers to feed their families and communities, improve profits and dramatically reduce pesticide use. That’s according to Tony Shelton, Cornell professor of entomology and director of the Bt brinjal project funded by the United States Agency for International Development (USAID). Shelton and Jahangir Hossain, the country coordinator for the project in Bangladesh, lead the Cornell initiative to get these seeds into the hands of the small-scale, resource-poor farmers who grow a crop consumed daily by millions of Bangladeshis.

A July 11, 2018 Cornell University news release by Krisy Gashler, which originated the news item, expands on the theme (Note: Links have been removed),

Bt brinjal was first developed by the Indian seed company Mahyco in the early 2000s. Scientists inserted a gene from the bacterium Bacillus thuringiensis (thus the name, Bt) into nine brinjal varieties. The plants were engineered to resist the fruit and shoot borer, a devastating insect whose larvae bore into the stem and fruit of an eggplant. The insects cause up to 80 percent crop loss.

The Bt protein produced by the engineered eggplant causes the fruit and shoot borer larva to stop feeding, but is safe for humans consuming the eggplant, as proven through years of biosafety trials. In fact, Bt is commonly used by organic farmers to control caterpillars but has to be sprayed frequently to be effective. The Bt eggplant produces essentially the same protein as in the spray. More than 80 percent of field corn and cotton grown in the U.S. contains a Bt gene for insect control.

“Farmers growing Bt brinjal in Bangladesh are seeing three times the production of other brinjal varieties, at half the production cost, and are getting better prices at the market,” Hossain said.

A recent survey found 50 percent of farmers in Bangladesh said that they experienced illness due to the intense spraying of insecticides. Most farmers work in bare feet and without eye protection, leading to pesticide exposure that causes skin and eye irritation, and vomiting.

“It’s terrible for these farmers’ health and the health of the environment to spray so much,” said Shelton, who found that pesticide use on Bt eggplant was reduced as much as 92 percent in commercial Bt brinjal plantings. “Bt brinjal is a solution that’s really making a difference in people’s lives.”

Alhaz Uddin, a farmer in the Tangail district, made 6,000 taka growing traditional brinjal, but had to spend 4,000 taka on pesticides to combat fruit and shoot borer.

“I sprayed pesticides several times in a week,” he said. “I got sick many times during the spray.”

Mahyco initially wanted to introduce Bt brinjal in India and underwent years of successful safety testing. But in 2010, due to pressure from anti-biotechnology groups, the Indian minister of the environment placed a moratorium on the seeds. It is still in effect today, leaving brinjal farmers there without the effective and safe method of control available to their neighbors in Bangladesh.

Even before the Indian moratorium, Cornell scientists hosted delegations from Bangladesh that wanted to learn about Bt brinjal and the Agricultural Biotechnology Support Project II (ABSP II), a consortium of public and private institutions in Asia and Africa intended to help with the commercial development, regulatory approval and dissemination of bio-engineered crops, including Bt brinjal.

Cornell worked with USAID, Mahyco and the Bangladesh Agricultural Research Institute to secure regulatory approval, and in 2014 the Bangladeshi government distributed a small number of Bt brinjal plants to 20 farmers in four districts. The next year 108 farmers grew Bt brinjal, and the following year the number of farmers more than doubled to 250. In 2017 the number increased to 6,512 and in 2018 to 27,012. The numbers are likely even higher, according to Shelton, as there are no constraints against farmers saving seeds and replanting.

“Farmers who plant Bt brinjal are required to plant a small perimeter of traditional brinjal around the Bt variety; research has shown that the insects will infest plants in the buffer area, and this will slow their evolutionary development of resistance to the Bt plants,” Shelton said.

In a March 2017 workshop, Bangladeshi Agriculture Minister Begum Matia Chowdhury called Bt brinjal “a success story of local and foreign collaboration.”

“We will be guided by the science-based information, not by the nonscientific whispering of a section of people,” Chowdhury said. “As human beings, it is our moral obligation that all people in our country should get food and not go to bed on an empty stomach. Biotechnology can play an important role in this effect.”

Here’s what an infested eggplant looks like,

Non-Bt eggplant infested with fruit and shoot borer. Photo by Cornell Alliance for Science

It looks more like a fig than an eggplant.

This is part of a more comprehensive project as revealed in a March 29, 2016 Cornell University news release issued on the occasion of a $4.8M, three-year grant from the U.S. Agency for International Development (USAID),

… The award supports USAID’s work under Feed the Future, the U.S. government’s global initiative to fight hunger and improve food security using agricultural science and technology.

In the Feed the Future South Asia Eggplant Improvement Partnership, Cornell will protect eggplant farmers from yield losses and improve their livelihoods in partnership with the Bangladesh Agricultural Research Institute (BARI) and the University of the Philippines at Los Baños. Eggplant, or brinjal, is a staple crop that is an important source of income and nutrition for farmers and consumers in South Asia.

Over the past decade, Cornell has led the Agricultural Biotechnology Support Project II (ABSPII), also funded by USAID, that prompted a consortium of institutions in Asia and Africa to use the tools of modern biotechnology, particularly genetic engineering, to improve crops to address major production constraints for which conventional plant breeding tools have not been effective.

In October 2013, Bangladesh became the first country in South Asia to approve commercial cultivation of a genetically engineered food crop. In February 2014, Matia Chowdhury, the Bangladesh minister of agriculture, released four varieties of Bt brinjal to 20 farmers. With the establishment of the 20 Bt brinjal demonstration plots in 2014 and 104 more in 2015, BARI reported a noticeable decrease in fruit and shoot borer infestation, increased yields, decreased use of pesticide and improved income for farmers.

The Feed the Future South Asia Eggplant Improvement Partnership addresses and integrates all elements of the commercialization process — including technology development, regulation, marketing, seed distribution, and product stewardship. It also provides strong platforms for policy development, capacity building, gender equality, outreach and communication.

Moving on from practical applications …

Canada’s synthetic biology training centre

It seems Concordia University (Montréa) is a major Canadian centre for all things ‘synthetic biological’. (from the History and Vision webpage on Concordia University’s Centre for Applied Synthetic Biology webspace),

History and vision

Emerging in 2012 from a collaboration between the Biology and Electrical and Computer Engineering Departments, the Centre received University-wide status in 2016 growing its membership to include Biochemistry, Journalism, Communication Studies, Mechanical, Industrial and Chemical Engineering.


Timeline

T17-36393-VPRG-Timeline-graphic-promo-v4

You can see the timeline does not yet include 2018 development(s). Also it started as “a collaboration between the Biology and Electrical and Computer Engineering Departments?” This suggests a vastly different approach to genetic engineering that that employed in the “eggplant” research. From a July 16, 2018 posting on the Genome Alberta blog,

The Natural Sciences and Engineering Research Council of Canada (NSERC) has committed $1.65 million dollars over six years to establish a research and training program at Concordia’s Centre for Applied Synthetic Biology.

The funds were awarded after Malcolm Whiteway (…), professor of biology and the Canada Research Chair in Microbial Genomics, and the grant application team submitted a proposal to NSERC’s Collaborative Research and Training Experience (CREATE) program.

The Synthetic Biology Applications CREATE program — or SynBioApps — will help students acquire and develop important professional skills that complement their academic education and improve their job-readiness.

‘Concordia is a natural fit’

“As the Canadian leader in synthetic biology and as the home of the country’s only genome foundry, Concordia is a natural fit for a training program in this growing area of research,” says Christophe Guy, vice-president of Research and Graduate Studies.

“In offering a program like SynBioApps, we are providing our students with both a fundamental education in science and the business skills they’ll need to transition into their professional careers.”

The program’s aims are twofold: First, it will teach students how to design and construct cells and proteins for the development of new products related to human health, green technologies, and fundamental biological investigations. Second, it will provide cross-disciplinary training and internship opportunities through the university’s District 3 Innovation Center.

SynBioApps will be open to students from biology, biochemistry, engineering, computing, and mathematics.

“The ability to apply engineering approaches to biological systems promises to revolutionize both biology and industry,” says Whiteway, who is also a member of the Centre for Applied Synthetic Biology.

“The SynBioApps program at Concordia will provide a training program to develop the students who will both investigate the biology and build these industries.”

You can find out more about Concordia’s Centre for Applied Synthetic Biology here (there are jobs listed on their home page) and you can find information about the Synthetic Biology Applications (SynBioApps) training programme here.

Prawn (shrimp) shopping bags and saving the earth

Using a material (shrimp shells) that is disposed of as waste to create a biodegradable product (shopping bags) can only be described as a major win. A Jan. 10, 2017 news item on Nanowerk makes the announcement,

Bioengineers at The University of Nottingham are trialling how to use shrimp shells to make biodegradable shopping bags, as a ‘green’ alternative to oil-based plastic, and as a new food packaging material to extend product shelf life.

The new material for these affordable ‘eco-friendly’ bags is being optimised for Egyptian conditions, as effective waste management is one of the country’s biggest challenges.

An expert in testing the properties of materials, Dr Nicola Everitt from the Faculty of Engineering at Nottingham, is leading the research together with academics at Nile University in Egypt.

“Non-degradable plastic packaging is causing environmental and public health problems in Egypt, including contamination of water supplies which particularly affects living conditions of the poor,” explains Dr Everitt.

Natural biopolymer products made from plant materials are a ‘green’ alternative growing in popularity, but with competition for land with food crops, it is not a viable solution in Egypt.

A Jan. 10, 2017 University of Nottingham press release, which originated the news item,expands on the theme,

This new project aims to turn shrimp shells, which are a part of the country’s waste problem into part of the solution.

Dr Everitt said: “Use of a degradable biopolymer made of prawn shells for carrier bags would lead to lower carbon emissions and reduce food and packaging waste accumulating in the streets or at illegal dump sites. It could also make exports more acceptable to a foreign market within a 10-15-year time frame. All priorities at a national level in Egypt.”

Degradable nanocomposite material

The research is being undertaken to produce an innovative biopolymer nanocomposite material which is degradable, affordable and suitable for shopping bags and food packaging.

Chitosan is a man-made polymer derived from the organic compound chitin, which is extracted from shrimp shells, first using acid (to remove the calcium carbonate “backbone” of the crustacean shell) and then alkali (to produce the long molecular chains which make up the biopolymer).

The dried chitosan flakes can then be dissolved into solution and polymer film made by conventional processing techniques.

Chitosan was chosen because it is a promising biodegradable polymer already used in pharmaceutical packaging due to its antimicrobial, antibacterial and biocompatible properties. The second strand of the project is to develop an active polymer film that absorbs oxygen.

Enhancing food shelf life and cutting food waste

This future generation food packaging could have the ability to enhance food shelf life with high efficiency and low energy consumption, making a positive impact on food wastage in many countries.

If successful, Dr Everitt plans to approach UK packaging manufacturers with the product.

Additionally, the research aims to identify a production route by which these degradable biopolymer materials for shopping bags and food packaging could be manufactured.

I also found the funding for this project to be of interest (from the press release),

The project is sponsored by the Newton Fund and the Newton-Mosharafa Fund grant and is one of 13 Newton-funded collaborations for The University of Nottingham.

The collaborations, which are designed to tackle community issues through science and innovation, with links formed with countries such as Brazil, Egypt, Philippines and Indonesia.

Since the Newton Fund was established in 2014, the University has been awarded a total of £4.5m in funding. It also boasts the highest number of institutional-led collaborations.

Professor Nick Miles Pro-Vice-Chancellor for Global Engagement said: “The University of Nottingham has a long and established record in global collaboration and research.

The Newton Fund plays to these strengths and enables us to work with institutions around the world to solve some of the most pressing issues facing communities.”

From a total of 68 universities, The University of Nottingham has emerged as the top awardee of British Council Newton Fund Institutional Links grants (13) and is joint top awardee from a total of 160 institutions competing for British Council Newton Fund Researcher Links Workshop awards (6).

Professor Miles added: “This is testament to the incredible research taking place across the University – both here in the UK and in the campuses in Malaysia and China – and underlines the strength of our research partnerships around the world.”

That’s it!

Of airborne nanomaterials, bacterial microbiomes, viral microbiomes, and paper sensors

There’s a Jan. 14, 2015 news item on Nanowerk from the Virginia Polytechnic Institute (Virginia Tech) which is largely a personal profile featuring some basic information (useful for those new to the topic) about airborne nanoparticles (Note: A link has been removed),

The Harvard educated undergraduate [Linsey Marr,  professor of civil and environmental engineering, Virginia Tech] who obtained her Ph.D. from University of California at Berkeley and trained as a postdoctoral researcher with a Nobel laureate of chemistry at MIT is now among a handful of researchers in the world who are addressing concerns about engineered nanomaterials in the atmosphere.

Marr is part of the National Science Foundation’s Center for the Environmental Implications of Nanotechnology and her research group has characterized airborne nanoparticles at every point of their life cycle. This cycle includes production at a commercial manufacturing facility, use by consumers in the home, and disposal via incineration.

A Jan. 14, 2015 Virginia Tech news release, which originated the news item, quotes Marr on the current thinking about airborne nanoparticles,

“Results have shown that engineered nanomaterials released into the air are often aggregated with other particulate matter, such as combustion soot or ingredients in consumer spray products, and that the size of such aggregates may range from smaller than 10 nanometers to larger than 10 microns,” Marr revealed. She was referring to studies completed by research group members Marina Quadros Vance of Florianopolis, Brazil, a research scientist with the Virginia Tech Institute of Critical Technology and Applied Science, and Eric Vejerano, of Ligao, Philippines, a post-doctoral associate in civil and environmental engineering.

Size matters if these aggregates are inhaled.

Another concern is the reaction of a nanomaterial such as a fullerene with ozone at environmentally relevant concentration levels. Marr’s graduate student, Andrea Tiwari, of Mankato, Minnesota, said the resulting changes in fullerene could lead to enhanced toxicity.

The story then segues into airborne pathogens and viruses eventually honing in on virus microbiomes and bacterial microbiomes (from the news release),

Marr is a former Ironman triathlete who obviously has strong interests in what she is breathing into her own body. So it would be natural for her to expand her study of engineered nanoparticles traveling in the atmosphere to focus on airborne pathogens.

She did so by starting to consider the influenza virus as an airborne pollutant. She applied the same concepts and tools used for studying environmental contaminants and ambient aerosols to the examination of the virus.

She looked at viruses as “essentially self-assembled nanoparticles that are capable of self-replication.”

Her research team became the first to measure influenza virus concentrations in ambient air in a children’s day care center and on airplanes. When they conducted their studies, the Virginia Tech researchers collected samples from a waiting room of a health care center, two toddlers’ rooms and one babies’ area of a childcare center, as well as three cross-country flights between Roanoke, Virginia., and San Francisco. They collected 16 samples between Dec. 10, 2009 and Apr. 22, 2010.

“Half of the samples were confirmed to contain aerosolized influenza A viruses,” Marr said. The childcare samples were the most infected at 75 percent. Next, airplane samples reached 67 percent contamination, and health center numbers came in at 33 percent.

This study serves as a foundation for new work started about a year ago in her lab.

Marr collaborated with Aaron J. Prussin II, of Blacksburg, Virginia, and they successfully secured for him a postdoctoral fellowship from the Alfred P. Sloan Foundation to characterize the bacterial and viral microbiome — the ecological community of microorganisms — of the air in a daycare center.

They are now attempting to determine seasonal changes of both the viral microbiome and the bacterial microbiome in a daycare setting, and examine how changes in the microbiome are related to naturally occurring changes in the indoor environment.

“Little is known about the viral component of the microbiome and it is important because viruses are approximately 10 times more abundant than bacteria, and they help shape the bacterial community. Research suggests that viruses do have both beneficial and harmful interactions with bacteria,” Prussin said.

With Prussin and Marr working together they hope to verify their hypothesis that daycare centers harbor unique, dynamic microbiomes with plentiful bacteria and viruses. They are also looking at what seasonal changes might bring to a daycare setting.

They pointed to the effect of seasonal changes because in previous work, Marr, her former graduate student Wan Yang, of Shantou, China, and Elankumaran Subbiah, a virologist in the biomedical sciences and pathobiology department of the Virginia-Maryland College of Veterinary Medicine, measured the influenza A virus survival rate at various levels of humidity.

Their 2012 study presented for the first time the relationship between the influenza A virus viability in human mucus and humidity over a large range of relative humidities, from 17 percent to 100 percent. They found the viability of the virus was highest when the relative humidity was either close to 100 percent or below 50 percent. The results in human mucus may help explain influenza’s seasonality in different regions.

According to the news release Marr and her colleagues have developed a fast and cheap technology for detection of airborne pathogens (Note: A link has been removed),

With the urgent need to understand the dynamics of airborne pathogens, especially as one considers the threats of bioterrorism, pandemic influenza, and other emerging infectious diseases, Marr said “a breakthrough technology is required to enable rapid, low-cost detection of pathogens in air.”

Along with Subbiah and Peter Vikesland,  professor of civil and environmental engineering, they want to develop readily deployable, inexpensive, paper-based sensors for airborne pathogen detection.

In 2013 they received funding of almost $250,000 from Virginia Tech’s Institute for Critical Technology and Applied Science, a supporter of the clustering of research groups, to support their idea of creating paper-based sensors based on their various successes to date.

Marr explained the sensors “would use a sandwich approach. The bottom layer is paper containing specialized DNA that will immobilize the virus. The middle layer is the virus, which sticks to the specialized DNA on the bottom layer. The top layer is additional specialized DNA that sticks to the virus. This DNA is attached to gold nanoparticles that are easily detectable using a technique known as Raman microscopy.”

They key to their approach is that it combines high-tech with low-tech in the hopes of keeping the assay costs low. Their sampling method will use a bicycle pump, and low cost paper substrates. They hope that they will be able to incorporate smart-phone based signal transduction for the detection. Using this approach, they believe “even remote corners of the world” would be able to use the technique.

Vikesland previously received funding from the Gates Foundation to detect the polio virus via paper-based diagnostics. Polio is still found in countries on the continents of Asia and Africa.

I have previously mentioned Linsey Marr in an Oct. 18, 2013 post about the revival of the Nanotechnology Consumer Products Inventory (originally developed by the Project for Emerging Nanotechnologies) by academics at Virginia Tech and first mentioned CEINT in an Aug. 15, 2011 post about a special project featuring a mesocosm at Duke University (North Carolina).

Russians and Chinese get cozy and talk nano

The Moscow Times has a couple of interesting stories about China and Russia. The first one to catch my eye was this one about Rusnano (Russian Nanotechnologies Corporation) and its invitation to create a joint China-Russian nanotechnology investment fund. From a Sept. 9, 2014 Moscow Times news item,

Rusnano has invited Chinese partners to create a joint fund for investment in nanotechnology, Anatoly Chubais, head of the state technology enterprise, was quoted as saying Tuesday [Sept. 9, 2014] by Prime news agency.

Russia is interested in working with China on nanotechnology as Beijing already invests “gigantic” sums in that sphere, Chubais said.

Perhaps the most interesting piece of news was in the last paragraph of that news item,

Moscow is pivoting toward the east to soften the impact of Western sanctions imposed on Russia over its role in Ukraine. …

Another Sept. 9, 2014 Moscow Times news item expands on the theme of Moscow pivoting east,

Russia and China pledged on Tuesday [Sept. 9, 2014] to settle more bilateral trade in ruble and yuan and to enhance cooperation between banks, First Deputy Prime Minister Igor Shuvalov said, as Moscow seeks to cushion the effects of Western economic sanctions [as a consequence of the situation in the Ukraine].

Russia and China pledged on Tuesday to settle more bilateral trade in ruble and yuan and to enhance cooperation between banks, First Deputy Prime Minister Igor Shuvalov said, as Moscow seeks to cushion the effects of Western economic sanctions.

For China, curtailing [the] dollar’s influence fits well with its ambitions to increase the clout of the yuan and turn it into a global reserve currency one day. With 32 percent of its $4 trillion foreign exchange reserves invested in U.S. government debt, Beijing wants to curb investment risks in dollars.

….

China and Russia signed a $400 billion gas supply deal in May [2014], securing the world’s top energy user a major source of cleaner fuel and opening a new market for Moscow as it risks losing European clients over the Ukraine crisis.

This is an interesting turn of events given that China and Russia (specifically the entity known as Soviet Union) have not always had the friendliest of relations almost going to war in 1969 over territorial disputes (Wikipedia entries: Sino-Soviet border conflict and China-Russian Border).

In any event, China may have its own reasons for turning to Russia at this time. According to Jack Chang of Associated Press (Sept. 11, 2014 article on the American Broadcasting News website), there is a major military buildup taking place in Asia as the biggest defence budget in Japan’s history has been requested, Vietnam doubles military spending, and the Philippines assembles a larger naval presence. In addition, India and South Korea are also investing in their military forces. (I was at a breakfast meeting [scroll down for the speaker’s video] in Jan. 2014 about Canada’s trade relations with Asia when a table companion [who’d worked for the Canadian International Development Agency, knew the Asian region very well, and had visited recently] commented that many countries such as Laos and Cambodia were very tense about China’s resurgence and its plans for the region.)

One final tidbit, this comes at an interesting juncture in the US science enterprise. After many years of seeing funding rise, the US National Nanotechnology Initiative (NNI) saw its 2015 budget request shrink by $200M US from its 2014 budget allotment (first mentioned here in a March 31, 2014 posting).

Sometimes an invitation to create a joint investment fund isn’t just an invitation.

Nickel-eating plant in the Philippines

For anyone interested in phytoremediation and/or phytomining, this news from the Philippines is quite exciting (from a May 9, 2014 news release on EurekAlert, Note: A link has been removed, (also on ScienceDaily),

Scientists from the University of the Philippines, Los Baños (UPLB) have discovered a new plant species with an unusual lifestyle — it eats nickel for a living — accumulating up to 18,000 ppm of the metal in its leaves without itself being poisoned, says Professor Edwino Fernando, lead author of the report. Such an amount is a hundred to a thousand times higher than in most other plants. The study was published in the open access journal PhytoKeys.

The new species is called Rinorea niccolifera, reflecting its ability to absorb nickel in very high amounts. Nickel hyperaccumulation is such a rare phenomenon with only about 0.5–1% of plant species native to nickel-rich soils having been recorded to exhibit the ability. Throughout the world, only about 450 species are known with this unusual trait, which is still a small proportion of the estimated 300,000 species of vascular plants.

A May 9, 2014 Penfold Publishers news release, which originated the items elsewhere, provides more details and an image of the nickel-eating plant,

The new species, according to Dr Marilyn Quimado, one of the lead scientists of the research team, was discovered on the western part of Luzon Island in the Philippines, an area known for soils rich in heavy metals.

“Hyperacccumulator plants have great potentials for the development of green technologies, for example, ‘phytoremediation’ and ‘phytomining'”, explains Dr Augustine Doronila of the School of Chemistry, University of Melbourne, who is also co-author of the report.

Phytoremediation refers to the use of hyperacccumulator plants to remove heavy metals in contaminated soils. Phytomining, on the other hand, is the use of hyperacccumulator plants to grow and harvest in order to recover commercially valuable metals in plant shoots from metal-rich sites. [emphasis mine]

In a previous piece about phytomining and in contrast to this news release, I suggested that phytoremediation could also function as phytomining (an idea I found elsewhere), my March 5, 2013 posting. There are also a November 22, 2012 posting and a Sept. 26, 2012 posting on the topic of phyto-mining (anyone keen to read everything here on this topic, may want to search the term both with and without hyphens).

Here is the nickel-eating plant,

Caption: This photo shows the newly described metal-eating plant, Rinorea niccolifera. Credit: Dr. Edwino S. Fernando Usage Restrictions: CC-BY 4.0

Caption: This photo shows the newly described metal-eating plant, Rinorea niccolifera.
Credit: Dr. Edwino S. Fernando
Usage Restrictions: CC-BY 4.0

Here’s a link to and a citation for the paper,

Rinorea niccolifera (Violaceae), a new, nickel-hyperaccumulating species from Luzon Island, Philippines by Edwino Fernando, Marilyn Quimado, and Augustine Doronila. PhytoKeys 37: 1–13. doi: 10.3897/phytokeys.37.7136

This paper is open access.

In a burst of curiosity I checked out the University of Philippines website and found some research bearing similarity to today’s (May 9, 2014) piece although in this case the metal being discussed is gold and the researchers are investigating the possibility of using bacteria to produce gold nanoparticles. From an April 16, 2014 article written by Miguel Victor T. Durian for the university’s Horizon magazine,

A pioneering nanotechnology study conducted by scientists at the UPLB National Institute of Molecular Biology and Biotechnology (BIOTECH) is exploring the potentials of plantgrowth- promoting bacteria (PGPB) in the biosynthesis of nanogold.

Dr. Lilia M. Fernando, Dr. Florinia E. Merca, and Dr. Erlinda S. Paterno are looking at how nanogold could be produced in large quantities using PGPB as this could bring down medical diagnostic and treatment costs especially against a dreaded disease – cancer.

“Our study primarily aimed to find a less expensive source of gold through the biosynthesis of the element by microorganisms.” Dr. Fernando explained. “Gold costs around 200 to 300 US dollars (or about Php9,000 to Php14,000), …,” Ms. Fernando added.

Furthermore, PGPB is abundantly available in the soils of the Philippines. In fact, the researchers carried out their collection of PGPB in Tarlac and Bohol. Moreover, cultivation of PGPB does not require any special incubation procedures in order to maintain its nano-size because it can survive at room temperature. This makes the cultivation of PGPB easier and less expensive compared to other microorganisms.

I look forward to hearing more about these projects as they develop.

Origins of Pacific sea life: crowdfunding a scientific expedition to the Danajon Bank

The Danajon (pronounced Dana [as in dada] hon) Bank, a reef  in the Philippines, is believed to be where much of Pacific marine life originated. According to a March 5, 2013 University of British Columbia news release, a team of researchers and photographers have started a crowdfunding campaign on indiegogo to document and raise awareness of the beautiful and endangered Danajon Bank,

Marine scientists and the world’s top nature photographers are teaming up to reveal for the first time the beauty of a rare double-barrier reef in the Philippines – and the imminent threats it faces – with the help of citizens around the world.

One of only six double-barrier reefs in the world, Danajon Bank is an important evolutionary birthplace of fish and other animal species found all over the Pacific Ocean today. However, Danajon Bank suffers from overfishing and other human pressures, and is home to nearly 200 threatened species.

Expedition: Danajon Bank will send a team of conservationists and award-winning photographers to document this “centre of the centre” of biodiversity, with the ultimate goal of legally protecting the fragile reef system.

“Not many people have heard of Danajon Bank. We plan to change that,” says Prof. Amanda Vincent, director of Project Seahorse, a UBC-Zoological Society of London initiative. “Crowdfunding is a fantastic way to raise funds and inspire the public to take ownership of issues such as marine conservation, so we thought: why not start there?”

“There really is no better way to communicate the urgent need for marine conservation than through images that hit you in the head and the heart,” says Thomas P. Peschak, an International League of Conservation Photographers Fellow and one of the expedition photographers. His résumé includes multiple BBC Wildlife Photographer of the Year and World Press Photo awards.

The team is requesting $30,000 to fund their expedition, which will take place April 5 – 15, 2013, and each level of donation promises rewards, all of them photographic in nature (wordplay intended).

Sample photo by ILCP photographer Luciano Candisani, who is part of Expedition: Danajon Bank. (Photo: Luciano Candisani/ILCP) [downloaded from http://www.publicaffairs.ubc.ca/2013/03/05/ubc-scientists-nature-photographers-launch-philippines-expedition-with-crowdfunding/]

Sample photo by ILCP photographer Luciano Candisani, who is part of Expedition: Danajon Bank. (Photo: Luciano Candisani/ILCP) [downloaded from http://www.publicaffairs.ubc.ca/2013/03/05/ubc-scientists-nature-photographers-launch-philippines-expedition-with-crowdfunding/]

Here’s a little more about the team from the University of British Columbia (UBC) news release,

The Expedition: Danajon Bank team also includes world-renowned photographers Luciano Candisani, Claudio Contreras, and Michael Ready. Project Seahorse co-founders Amanda Vincent (UBC), Heather Koldewey (ZSL [Zoological Society of London]) and Nicholas Hill (ZSL) will act as scientific advisors.

In April, the expedition team will blog from the field at danajon-bank.tumblr.com, and you can follow their exploits on Twitter @projectseahorse and @ilcp.

Beginning in June, the photographs will be shown in a series of public exhibitions in Chicago, Hong Kong, Manila and London and published in a new book.

I wonder why Vancouver is not included as a stop for one of the public exhibitions. After all, Vancouver is between Hong Kong and Manila to the west and Chicago to the east. As well, it is a little unexpected to note the involvement of Project Seahorse as the campaign notes don’t make the reasons for that group’s participation obvious but the campaign video clarifies matters somewhat,

As of today, March 5, 2013 at 3:15 pm PST, they have raised $225 towards their goal with 28 days remaining. Surprisingly, the team doesn’t offer any ‘science’ rewards. You can get photographs, the project’s book of photographs, postcards, etc. but not a single reward features a chat with one of the scientists, or a special visit to a facility such as the Shedd Aquarium in Chicago, or an opportunity to be a member of the expedition.

In any event, I wish the expedition the best of luck both with raising funds and with their work.

Mind Museum opens in the Philippines

The model for The Mind Museum at Taguig (Philippines) is gorgeous.

Philippines Mind Museum (at Taguig)

Christina Chaey’s Nov. 21, 2011 news bit about the museum for Fast Company notes a number of architectural features including one grass roof and another roof designed to prevent wind tunneling by directing gusts upward.

The Mind Museum’s About page lists five galleries,

  1. The Story of the Universe: Its Beginning and Majesty
  2. The Story of the Earth: Its Story Across the Breadth of Time
  3. The Story of Life: The Exuberant Varieties of Life
  4. The Story of the Atom: The Strange World of the Very Small
  5. The Story of Technology: The Showcase of Human Ingenuity

in an indoor exhibition area of approximately 3560 sq metres. There is also an 800 sq metre Science in the Park area immediately adjacent to the museum. (I’m betting they have some information about nanotechnology as part of the ‘Story of the Atom’.)

There were some 50 designers and scientists involved in this museum. The lead architect was Ed Calma of Lor Calma Design Inc.  The museum was scheduled to open Dec. 15, 2011 and the event was covered by Dexter R. Matilla for the Philippine Daily Enquirer in a Dec. 21, 2011 article,

For so long, the arts have been the driving force for the city of the Bonifacio Global City (BGC). Larger-than-life pieces from some of the country’s top artistic names make up BGC’s Art Walk. With the opening of The Mind Museum at Taguig, it’s safe to say that the Arts and Sciences finally have a place all their own.

The Mind Museum was made possible through private donations from corporate sponsors, family and individual donors who believe in giving the Philippines a center for the public understanding of science, in particular science at its most basic.

“Science is all about understanding how things work,” said The Mind Museum’s managing director Manny Blas. “People need to understand the basic science. What is a cell or a DNA? What makes up the universe? How do telescopes or MRI work? If you understand the principles of science, you know how to apply it. If students can come in here and then go out and consider becoming a scientist or an engineer, then we would have done our job.”

The country’s first world-class science museum is a P1 billion project that had inputs in its planning stage from international experts like Jack Rouse and Associates and the Science Centre Singapore. Its futuristic yet organic design, however, is by a team of architects from Lor Calma & Partners headed by architect Ed Calma.

I gather the Dec. 15, 2011 opening is a ‘soft’ opening as the museum website notes that it is being opened to the public in March 2012.