Tag Archives: photonics

The Hedy Lamarr of international research: Canada’s Third assessment of The State of Science and Technology and Industrial Research and Development in Canada (2 of 2)

Taking up from where I left off with my comments on Competing in a Global Innovation Economy: The Current State of R and D in Canada or as I prefer to call it the Third assessment of Canadas S&T (science and technology) and R&D (research and development). (Part 1 for anyone who missed it).

Is it possible to get past Hedy?

Interestingly (to me anyway), one of our R&D strengths, the visual and performing arts, features sectors where a preponderance of people are dedicated to creating culture in Canada and don’t spend a lot of time trying to make money so they can retire before the age of 40 as so many of our start-up founders do. (Retiring before the age of 40 just reminded me of Hollywood actresses {Hedy] who found and still do find that work was/is hard to come by after that age. You may be able but I’m not sure I can get past Hedy.) Perhaps our business people (start-up founders) could take a leaf out of the visual and performing arts handbook? Or, not. There is another question.

Does it matter if we continue to be a ‘branch plant’ economy? Somebody once posed that question to me when I was grumbling that our start-ups never led to larger businesses and acted more like incubators (which could describe our R&D as well),. He noted that Canadians have a pretty good standard of living and we’ve been running things this way for over a century and it seems to work for us. Is it that bad? I didn’t have an  answer for him then and I don’t have one now but I think it’s a useful question to ask and no one on this (2018) expert panel or the previous expert panel (2013) seems to have asked.

I appreciate that the panel was constrained by the questions given by the government but given how they snuck in a few items that technically speaking were not part of their remit, I’m thinking they might have gone just a bit further. The problem with answering the questions as asked is that if you’ve got the wrong questions, your answers will be garbage (GIGO; garbage in, garbage out) or, as is said, where science is concerned, it’s the quality of your questions.

On that note, I would have liked to know more about the survey of top-cited researchers. I think looking at the questions could have been quite illuminating and I would have liked some information on from where (geographically and area of specialization) they got most of their answers. In keeping with past practice (2012 assessment published in 2013), there is no additional information offered about the survey questions or results. Still, there was this (from the report released April 10, 2018; Note: There may be some difference between the formatting seen here and that seen in the document),

3.1.2 International Perceptions of Canadian Research
As with the 2012 S&T report, the CCA commissioned a survey of top-cited researchers’ perceptions of Canada’s research strength in their field or subfield relative to that of other countries (Section 1.3.2). Researchers were asked to identify the top five countries in their field and subfield of expertise: 36% of respondents (compared with 37% in the 2012 survey) from across all fields of research rated Canada in the top five countries in their field (Figure B.1 and Table B.1 in the appendix). Canada ranks fourth out of all countries, behind the United States, United Kingdom, and Germany, and ahead of France. This represents a change of about 1 percentage point from the overall results of the 2012 S&T survey. There was a 4 percentage point decrease in how often France is ranked among the top five countries; the ordering of the top five countries, however, remains the same.

When asked to rate Canada’s research strength among other advanced countries in their field of expertise, 72% (4,005) of respondents rated Canadian research as “strong” (corresponding to a score of 5 or higher on a 7-point scale) compared with 68% in the 2012 S&T survey (Table 3.4). [pp. 40-41 Print; pp. 78-70 PDF]

Before I forget, there was mention of the international research scene,

Growth in research output, as estimated by number of publications, varies considerably for the 20 top countries. Brazil, China, India, Iran, and South Korea have had the most significant increases in publication output over the last 10 years. [emphases mine] In particular, the dramatic increase in China’s output means that it is closing the gap with the United States. In 2014, China’s output was 95% of that of the United States, compared with 26% in 2003. [emphasis mine]

Table 3.2 shows the Growth Index (GI), a measure of the rate at which the research output for a given country changed between 2003 and 2014, normalized by the world growth rate. If a country’s growth in research output is higher than the world average, the GI score is greater than 1.0. For example, between 2003 and 2014, China’s GI score was 1.50 (i.e., 50% greater than the world average) compared with 0.88 and 0.80 for Canada and the United States, respectively. Note that the dramatic increase in publication production of emerging economies such as China and India has had a negative impact on Canada’s rank and GI score (see CCA, 2016).

As long as I’ve been blogging (10 years), the international research community (in particular the US) has been looking over its shoulder at China.

Patents and intellectual property

As an inventor, Hedy got more than one patent. Much has been made of the fact that  despite an agreement, the US Navy did not pay her or her partner (George Antheil) for work that would lead to significant military use (apparently, it was instrumental in the Bay of Pigs incident, for those familiar with that bit of history), GPS, WiFi, Bluetooth, and more.

Some comments about patents. They are meant to encourage more innovation by ensuring that creators/inventors get paid for their efforts .This is true for a set time period and when it’s over, other people get access and can innovate further. It’s not intended to be a lifelong (or inheritable) source of income. The issue in Lamarr’s case is that the navy developed the technology during the patent’s term without telling either her or her partner so, of course, they didn’t need to compensate them despite the original agreement. They really should have paid her and Antheil.

The current patent situation, particularly in the US, is vastly different from the original vision. These days patents are often used as weapons designed to halt innovation. One item that should be noted is that the Canadian federal budget indirectly addressed their misuse (from my March 16, 2018 posting),

Surprisingly, no one else seems to have mentioned a new (?) intellectual property strategy introduced in the document (from Chapter 2: Progress; scroll down about 80% of the way, Note: The formatting has been changed),

Budget 2018 proposes measures in support of a new Intellectual Property Strategy to help Canadian entrepreneurs better understand and protect intellectual property, and get better access to shared intellectual property.

What Is a Patent Collective?
A Patent Collective is a way for firms to share, generate, and license or purchase intellectual property. The collective approach is intended to help Canadian firms ensure a global “freedom to operate”, mitigate the risk of infringing a patent, and aid in the defence of a patent infringement suit.

Budget 2018 proposes to invest $85.3 million over five years, starting in 2018–19, with $10 million per year ongoing, in support of the strategy. The Minister of Innovation, Science and Economic Development will bring forward the full details of the strategy in the coming months, including the following initiatives to increase the intellectual property literacy of Canadian entrepreneurs, and to reduce costs and create incentives for Canadian businesses to leverage their intellectual property:

  • To better enable firms to access and share intellectual property, the Government proposes to provide $30 million in 2019–20 to pilot a Patent Collective. This collective will work with Canada’s entrepreneurs to pool patents, so that small and medium-sized firms have better access to the critical intellectual property they need to grow their businesses.
  • To support the development of intellectual property expertise and legal advice for Canada’s innovation community, the Government proposes to provide $21.5 million over five years, starting in 2018–19, to Innovation, Science and Economic Development Canada. This funding will improve access for Canadian entrepreneurs to intellectual property legal clinics at universities. It will also enable the creation of a team in the federal government to work with Canadian entrepreneurs to help them develop tailored strategies for using their intellectual property and expanding into international markets.
  • To support strategic intellectual property tools that enable economic growth, Budget 2018 also proposes to provide $33.8 million over five years, starting in 2018–19, to Innovation, Science and Economic Development Canada, including $4.5 million for the creation of an intellectual property marketplace. This marketplace will be a one-stop, online listing of public sector-owned intellectual property available for licensing or sale to reduce transaction costs for businesses and researchers, and to improve Canadian entrepreneurs’ access to public sector-owned intellectual property.

The Government will also consider further measures, including through legislation, in support of the new intellectual property strategy.

Helping All Canadians Harness Intellectual Property
Intellectual property is one of our most valuable resources, and every Canadian business owner should understand how to protect and use it.

To better understand what groups of Canadians are benefiting the most from intellectual property, Budget 2018 proposes to provide Statistics Canada with $2 million over three years to conduct an intellectual property awareness and use survey. This survey will help identify how Canadians understand and use intellectual property, including groups that have traditionally been less likely to use intellectual property, such as women and Indigenous entrepreneurs. The results of the survey should help the Government better meet the needs of these groups through education and awareness initiatives.

The Canadian Intellectual Property Office will also increase the number of education and awareness initiatives that are delivered in partnership with business, intermediaries and academia to ensure Canadians better understand, integrate and take advantage of intellectual property when building their business strategies. This will include targeted initiatives to support underrepresented groups.

Finally, Budget 2018 also proposes to invest $1 million over five years to enable representatives of Canada’s Indigenous Peoples to participate in discussions at the World Intellectual Property Organization related to traditional knowledge and traditional cultural expressions, an important form of intellectual property.

It’s not wholly clear what they mean by ‘intellectual property’. The focus seems to be on  patents as they are the only intellectual property (as opposed to copyright and trademarks) singled out in the budget. As for how the ‘patent collective’ is going to meet all its objectives, this budget supplies no clarity on the matter. On the plus side, I’m glad to see that indigenous peoples’ knowledge is being acknowledged as “an important form of intellectual property” and I hope the discussions at the World Intellectual Property Organization are fruitful.

As for the patent situation in Canada (from the report released April 10, 2018),

Over the past decade, the Canadian patent flow in all technical sectors has consistently decreased. Patent flow provides a partial picture of how patents in Canada are exploited. A negative flow represents a deficit of patented inventions owned by Canadian assignees versus the number of patented inventions created by Canadian inventors. The patent flow for all Canadian patents decreased from about −0.04 in 2003 to −0.26 in 2014 (Figure 4.7). This means that there is an overall deficit of 26% of patent ownership in Canada. In other words, fewer patents were owned by Canadian institutions than were invented in Canada.

This is a significant change from 2003 when the deficit was only 4%. The drop is consistent across all technical sectors in the past 10 years, with Mechanical Engineering falling the least, and Electrical Engineering the most (Figure 4.7). At the technical field level, the patent flow dropped significantly in Digital Communication and Telecommunications. For example, the Digital Communication patent flow fell from 0.6 in 2003 to −0.2 in 2014. This fall could be partially linked to Nortel’s US$4.5 billion patent sale [emphasis mine] to the Rockstar consortium (which included Apple, BlackBerry, Ericsson, Microsoft, and Sony) (Brickley, 2011). Food Chemistry and Microstructural [?] and Nanotechnology both also showed a significant drop in patent flow. [p. 83 Print; p. 121 PDF]

Despite a fall in the number of parents for ‘Digital Communication’, we’re still doing well according to statistics elsewhere in this report. Is it possible that patents aren’t that big a deal? Of course, it’s also possible that we are enjoying the benefits of past work and will miss out on future work. (Note: A video of the April 10, 2018 report presentation by Max Blouw features him saying something like that.)

One last note, Nortel died many years ago. Disconcertingly, this report, despite more than one reference to Nortel, never mentions the company’s demise.

Boxed text

While the expert panel wasn’t tasked to answer certain types of questions, as I’ve noted earlier they managed to sneak in a few items.  One of the strategies they used was putting special inserts into text boxes including this (from the report released April 10, 2018),

Box 4.2
The FinTech Revolution

Financial services is a key industry in Canada. In 2015, the industry accounted for 4.4%

of Canadia jobs and about 7% of Canadian GDP (Burt, 2016). Toronto is the second largest financial services hub in North America and one of the most vibrant research hubs in FinTech. Since 2010, more than 100 start-up companies have been founded in Canada, attracting more than $1 billion in investment (Moffatt, 2016). In 2016 alone, venture-backed investment in Canadian financial technology companies grew by 35% to $137.7 million (Ho, 2017). The Toronto Financial Services Alliance estimates that there are approximately 40,000 ICT specialists working in financial services in Toronto alone.

AI, blockchain, [emphasis mine] and other results of ICT research provide the basis for several transformative FinTech innovations including, for example, decentralized transaction ledgers, cryptocurrencies (e.g., bitcoin), and AI-based risk assessment and fraud detection. These innovations offer opportunities to develop new markets for established financial services firms, but also provide entry points for technology firms to develop competing service offerings, increasing competition in the financial services industry. In response, many financial services companies are increasing their investments in FinTech companies (Breznitz et al., 2015). By their own account, the big five banks invest more than $1 billion annually in R&D of advanced software solutions, including AI-based innovations (J. Thompson, personal communication, 2016). The banks are also increasingly investing in university research and collaboration with start-up companies. For instance, together with several large insurance and financial management firms, all big five banks have invested in the Vector Institute for Artificial Intelligence (Kolm, 2017).

I’m glad to see the mention of blockchain while AI (artificial intelligence) is an area where we have innovated (from the report released April 10, 2018),

AI has attracted researchers and funding since the 1960s; however, there were periods of stagnation in the 1970s and 1980s, sometimes referred to as the “AI winter.” During this period, the Canadian Institute for Advanced Research (CIFAR), under the direction of Fraser Mustard, started supporting AI research with a decade-long program called Artificial Intelligence, Robotics and Society, [emphasis mine] which was active from 1983 to 1994. In 2004, a new program called Neural Computation and Adaptive Perception was initiated and renewed twice in 2008 and 2014 under the title, Learning in Machines and Brains. Through these programs, the government provided long-term, predictable support for high- risk research that propelled Canadian researchers to the forefront of global AI development. In the 1990s and early 2000s, Canadian research output and impact on AI were second only to that of the United States (CIFAR, 2016). NSERC has also been an early supporter of AI. According to its searchable grant database, NSERC has given funding to research projects on AI since at least 1991–1992 (the earliest searchable year) (NSERC, 2017a).

The University of Toronto, the University of Alberta, and the Université de Montréal have emerged as international centres for research in neural networks and deep learning, with leading experts such as Geoffrey Hinton and Yoshua Bengio. Recently, these locations have expanded into vibrant hubs for research in AI applications with a diverse mix of specialized research institutes, accelerators, and start-up companies, and growing investment by major international players in AI development, such as Microsoft, Google, and Facebook. Many highly influential AI researchers today are either from Canada or have at some point in their careers worked at a Canadian institution or with Canadian scholars.

As international opportunities in AI research and the ICT industry have grown, many of Canada’s AI pioneers have been drawn to research institutions and companies outside of Canada. According to the OECD, Canada’s share of patents in AI declined from 2.4% in 2000 to 2005 to 2% in 2010 to 2015. Although Canada is the sixth largest producer of top-cited scientific publications related to machine learning, firms headquartered in Canada accounted for only 0.9% of all AI-related inventions from 2012 to 2014 (OECD, 2017c). Canadian AI researchers, however, remain involved in the core nodes of an expanding international network of AI researchers, most of whom continue to maintain ties with their home institutions. Compared with their international peers, Canadian AI researchers are engaged in international collaborations far more often than would be expected by Canada’s level of research output, with Canada ranking fifth in collaboration. [p. 97-98 Print; p. 135-136 PDF]

The only mention of robotics seems to be here in this section and it’s only in passing. This is a bit surprising given its global importance. I wonder if robotics has been somehow hidden inside the term artificial intelligence, although sometimes it’s vice versa with robot being used to describe artificial intelligence. I’m noticing this trend of assuming the terms are synonymous or interchangeable not just in Canadian publications but elsewhere too.  ’nuff said.

Getting back to the matter at hand, t he report does note that patenting (technometric data) is problematic (from the report released April 10, 2018),

The limitations of technometric data stem largely from their restricted applicability across areas of R&D. Patenting, as a strategy for IP management, is similarly limited in not being equally relevant across industries. Trends in patenting can also reflect commercial pressures unrelated to R&D activities, such as defensive or strategic patenting practices. Finally, taxonomies for assessing patents are not aligned with bibliometric taxonomies, though links can be drawn to research publications through the analysis of patent citations. [p. 105 Print; p. 143 PDF]

It’s interesting to me that they make reference to many of the same issues that I mention but they seem to forget and don’t use that information in their conclusions.

There is one other piece of boxed text I want to highlight (from the report released April 10, 2018),

Box 6.3
Open Science: An Emerging Approach to Create New Linkages

Open Science is an umbrella term to describe collaborative and open approaches to
undertaking science, which can be powerful catalysts of innovation. This includes
the development of open collaborative networks among research performers, such
as the private sector, and the wider distribution of research that usually results when
restrictions on use are removed. Such an approach triggers faster translation of ideas
among research partners and moves the boundaries of pre-competitive research to
later, applied stages of research. With research results freely accessible, companies
can focus on developing new products and processes that can be commercialized.

Two Canadian organizations exemplify the development of such models. In June
2017, Genome Canada, the Ontario government, and pharmaceutical companies
invested $33 million in the Structural Genomics Consortium (SGC) (Genome Canada,
2017). Formed in 2004, the SGC is at the forefront of the Canadian open science
movement and has contributed to many key research advancements towards new
treatments (SGC, 2018). McGill University’s Montréal Neurological Institute and
Hospital has also embraced the principles of open science. Since 2016, it has been
sharing its research results with the scientific community without restriction, with
the objective of expanding “the impact of brain research and accelerat[ing] the
discovery of ground-breaking therapies to treat patients suffering from a wide range
of devastating neurological diseases” (neuro, n.d.).

This is exciting stuff and I’m happy the panel featured it. (I wrote about the Montréal Neurological Institute initiative in a Jan. 22, 2016 posting.)

More than once, the report notes the difficulties with using bibliometric and technometric data as measures of scientific achievement and progress and open science (along with its cousins, open data and open access) are contributing to the difficulties as James Somers notes in his April 5, 2018 article ‘The Scientific Paper is Obsolete’ for The Atlantic (Note: Links have been removed),

The scientific paper—the actual form of it—was one of the enabling inventions of modernity. Before it was developed in the 1600s, results were communicated privately in letters, ephemerally in lectures, or all at once in books. There was no public forum for incremental advances. By making room for reports of single experiments or minor technical advances, journals made the chaos of science accretive. Scientists from that point forward became like the social insects: They made their progress steadily, as a buzzing mass.

The earliest papers were in some ways more readable than papers are today. They were less specialized, more direct, shorter, and far less formal. Calculus had only just been invented. Entire data sets could fit in a table on a single page. What little “computation” contributed to the results was done by hand and could be verified in the same way.

The more sophisticated science becomes, the harder it is to communicate results. Papers today are longer than ever and full of jargon and symbols. They depend on chains of computer programs that generate data, and clean up data, and plot data, and run statistical models on data. These programs tend to be both so sloppily written and so central to the results that it’s [sic] contributed to a replication crisis, or put another way, a failure of the paper to perform its most basic task: to report what you’ve actually discovered, clearly enough that someone else can discover it for themselves.

Perhaps the paper itself is to blame. Scientific methods evolve now at the speed of software; the skill most in demand among physicists, biologists, chemists, geologists, even anthropologists and research psychologists, is facility with programming languages and “data science” packages. And yet the basic means of communicating scientific results hasn’t changed for 400 years. Papers may be posted online, but they’re still text and pictures on a page.

What would you get if you designed the scientific paper from scratch today? A little while ago I spoke to Bret Victor, a researcher who worked at Apple on early user-interface prototypes for the iPad and now runs his own lab in Oakland, California, that studies the future of computing. Victor has long been convinced that scientists haven’t yet taken full advantage of the computer. “It’s not that different than looking at the printing press, and the evolution of the book,” he said. After Gutenberg, the printing press was mostly used to mimic the calligraphy in bibles. It took nearly 100 years of technical and conceptual improvements to invent the modern book. “There was this entire period where they had the new technology of printing, but they were just using it to emulate the old media.”Victor gestured at what might be possible when he redesigned a journal article by Duncan Watts and Steven Strogatz, “Collective dynamics of ‘small-world’ networks.” He chose it both because it’s one of the most highly cited papers in all of science and because it’s a model of clear exposition. (Strogatz is best known for writing the beloved “Elements of Math” column for The New York Times.)

The Watts-Strogatz paper described its key findings the way most papers do, with text, pictures, and mathematical symbols. And like most papers, these findings were still hard to swallow, despite the lucid prose. The hardest parts were the ones that described procedures or algorithms, because these required the reader to “play computer” in their head, as Victor put it, that is, to strain to maintain a fragile mental picture of what was happening with each step of the algorithm.Victor’s redesign interleaved the explanatory text with little interactive diagrams that illustrated each step. In his version, you could see the algorithm at work on an example. You could even control it yourself….

For anyone interested in the evolution of how science is conducted and communicated, Somers’ article is a fascinating and in depth look at future possibilities.

Subregional R&D

I didn’t find this quite as compelling as the last time and that may be due to the fact that there’s less information and I think the 2012 report was the first to examine the Canadian R&D scene with a subregional (in their case, provinces) lens. On a high note, this report also covers cities (!) and regions, as well as, provinces.

Here’s the conclusion (from the report released April 10, 2018),

Ontario leads Canada in R&D investment and performance. The province accounts for almost half of R&D investment and personnel, research publications and collaborations, and patents. R&D activity in Ontario produces high-quality publications in each of Canada’s five R&D strengths, reflecting both the quantity and quality of universities in the province. Quebec lags Ontario in total investment, publications, and patents, but performs as well (citations) or better (R&D intensity) by some measures. Much like Ontario, Quebec researchers produce impactful publications across most of Canada’s five R&D strengths. Although it invests an amount similar to that of Alberta, British Columbia does so at a significantly higher intensity. British Columbia also produces more highly cited publications and patents, and is involved in more international research collaborations. R&D in British Columbia and Alberta clusters around Vancouver and Calgary in areas such as physics and ICT and in clinical medicine and energy, respectively. [emphasis mine] Smaller but vibrant R&D communities exist in the Prairies and Atlantic Canada [also referred to as the Maritime provinces or Maritimes] (and, to a lesser extent, in the Territories) in natural resource industries.

Globally, as urban populations expand exponentially, cities are likely to drive innovation and wealth creation at an increasing rate in the future. In Canada, R&D activity clusters around five large cities: Toronto, Montréal, Vancouver, Ottawa, and Calgary. These five cities create patents and high-tech companies at nearly twice the rate of other Canadian cities. They also account for half of clusters in the services sector, and many in advanced manufacturing.

Many clusters relate to natural resources and long-standing areas of economic and research strength. Natural resource clusters have emerged around the location of resources, such as forestry in British Columbia, oil and gas in Alberta, agriculture in Ontario, mining in Quebec, and maritime resources in Atlantic Canada. The automotive, plastics, and steel industries have the most individual clusters as a result of their economic success in Windsor, Hamilton, and Oshawa. Advanced manufacturing industries tend to be more concentrated, often located near specialized research universities. Strong connections between academia and industry are often associated with these clusters. R&D activity is distributed across the country, varying both between and within regions. It is critical to avoid drawing the wrong conclusion from this fact. This distribution does not imply the existence of a problem that needs to be remedied. Rather, it signals the benefits of diverse innovation systems, with differentiation driven by the needs of and resources available in each province. [pp.  132-133 Print; pp. 170-171 PDF]

Intriguingly, there’s no mention that in British Columbia (BC), there are leading areas of research: Visual & Performing Arts, Psychology & Cognitive Sciences, and Clinical Medicine (according to the table on p. 117 Print, p. 153 PDF).

As I said and hinted earlier, we’ve got brains; they’re just not the kind of brains that command respect.

Final comments

My hat’s off to the expert panel and staff of the Council of Canadian Academies. Combining two previous reports into one could not have been easy. As well, kudos to their attempts to broaden the discussion by mentioning initiative such as open science and for emphasizing the problems with bibliometrics, technometrics, and other measures. I have covered only parts of this assessment, (Competing in a Global Innovation Economy: The Current State of R&D in Canada), there’s a lot more to it including a substantive list of reference materials (bibliography).

While I have argued that perhaps the situation isn’t quite as bad as the headlines and statistics may suggest, there are some concerning trends for Canadians but we have to acknowledge that many countries have stepped up their research game and that’s good for all of us. You don’t get better at anything unless you work with and play with others who are better than you are. For example, both India and Italy surpassed us in numbers of published research papers. We slipped from 7th place to 9th. Thank you, Italy and India. (And, Happy ‘Italian Research in the World Day’ on April 15, 2018, the day’s inaugural year. In Italian: Piano Straordinario “Vivere all’Italiana” – Giornata della ricerca Italiana nel mondo.)

Unfortunately, the reading is harder going than previous R&D assessments in the CCA catalogue. And in the end, I can’t help thinking we’re just a little bit like Hedy Lamarr. Not really appreciated in all of our complexities although the expert panel and staff did try from time to time. Perhaps the government needs to find better ways of asking the questions.

***ETA April 12, 2018 at 1500 PDT: Talking about missing the obvious! I’ve been ranting on about how research strength in visual and performing arts and in philosophy and theology, etc. is perfectly fine and could lead to ‘traditional’ science breakthroughs without underlining the point by noting that Antheil was a musician, Lamarr was as an actress and they set the foundation for work by electrical engineers (or people with that specialty) for their signature work leading to WiFi, etc.***

There is, by the way, a Hedy-Canada connection. In 1998, she sued Canadian software company Corel, for its unauthorized use of her image on their Corel Draw 8 product packaging. She won.

More stuff

For those who’d like to see and hear the April 10, 2017 launch for “Competing in a Global Innovation Economy: The Current State of R&D in Canada” or the Third Assessment as I think of it, go here.

The report can be found here.

For anyone curious about ‘Bombshell: The Hedy Lamarr Story’ to be broadcast on May 18, 2018 as part of PBS’s American Masters series, there’s this trailer,

For the curious, I did find out more about the Hedy Lamarr and Corel Draw. John Lettice’s December 2, 1998 article The Rgister describes the suit and her subsequent victory in less than admiring terms,

Our picture doesn’t show glamorous actress Hedy Lamarr, who yesterday [Dec. 1, 1998] came to a settlement with Corel over the use of her image on Corel’s packaging. But we suppose that following the settlement we could have used a picture of Corel’s packaging. Lamarr sued Corel earlier this year over its use of a CorelDraw image of her. The picture had been produced by John Corkery, who was 1996 Best of Show winner of the Corel World Design Contest. Corel now seems to have come to an undisclosed settlement with her, which includes a five-year exclusive (oops — maybe we can’t use the pack-shot then) licence to use “the lifelike vector illustration of Hedy Lamarr on Corel’s graphic software packaging”. Lamarr, bless ‘er, says she’s looking forward to the continued success of Corel Corporation,  …

There’s this excerpt from a Sept. 21, 2015 posting (a pictorial essay of Lamarr’s life) by Shahebaz Khan on The Blaze Blog,

6. CorelDRAW:
For several years beginning in 1997, the boxes of Corel DRAW’s software suites were graced by a large Corel-drawn image of Lamarr. The picture won Corel DRAW’s yearly software suite cover design contest in 1996. Lamarr sued Corel for using the image without her permission. Corel countered that she did not own rights to the image. The parties reached an undisclosed settlement in 1998.

There’s also a Nov. 23, 1998 Corel Draw 8 product review by Mike Gorman on mymac.com, which includes a screenshot of the packaging that precipitated the lawsuit. Once they settled, it seems Corel used her image at least one more time.

The Hedy Lamarr of international research: Canada’s Third assessment of The State of Science and Technology and Industrial Research and Development in Canada (1 of 2)

Before launching into the assessment, a brief explanation of my theme: Hedy Lamarr was considered to be one of the great beauties of her day,

“Ziegfeld Girl” Hedy Lamarr 1941 MGM *M.V.
Titles: Ziegfeld Girl
People: Hedy Lamarr
Image courtesy mptvimages.com [downloaded from https://www.imdb.com/title/tt0034415/mediaviewer/rm1566611456]

Aside from starring in Hollywood movies and, before that, movies in Europe, she was also an inventor and not just any inventor (from a Dec. 4, 2017 article by Laura Barnett for The Guardian), Note: Links have been removed,

Let’s take a moment to reflect on the mercurial brilliance of Hedy Lamarr. Not only did the Vienna-born actor flee a loveless marriage to a Nazi arms dealer to secure a seven-year, $3,000-a-week contract with MGM, and become (probably) the first Hollywood star to simulate a female orgasm on screen – she also took time out to invent a device that would eventually revolutionise mobile communications.

As described in unprecedented detail by the American journalist and historian Richard Rhodes in his new book, Hedy’s Folly, Lamarr and her business partner, the composer George Antheil, were awarded a patent in 1942 for a “secret communication system”. It was meant for radio-guided torpedoes, and the pair gave to the US Navy. It languished in their files for decades before eventually becoming a constituent part of GPS, Wi-Fi and Bluetooth technology.

(The article goes on to mention other celebrities [Marlon Brando, Barbara Cartland, Mark Twain, etc] and their inventions.)

Lamarr’s work as an inventor was largely overlooked until the 1990’s when the technology community turned her into a ‘cultish’ favourite and from there her reputation grew and acknowledgement increased culminating in Rhodes’ book and the documentary by Alexandra Dean, ‘Bombshell: The Hedy Lamarr Story (to be broadcast as part of PBS’s American Masters series on May 18, 2018).

Canada as Hedy Lamarr

There are some parallels to be drawn between Canada’s S&T and R&D (science and technology; research and development) and Ms. Lamarr. Chief amongst them, we’re not always appreciated for our brains. Not even by people who are supposed to know better such as the experts on the panel for the ‘Third assessment of The State of Science and Technology and Industrial Research and Development in Canada’ (proper title: Competing in a Global Innovation Economy: The Current State of R&D in Canada) from the Expert Panel on the State of Science and Technology and Industrial Research and Development in Canada.

A little history

Before exploring the comparison to Hedy Lamarr further, here’s a bit more about the history of this latest assessment from the Council of Canadian Academies (CCA), from the report released April 10, 2018,

This assessment of Canada’s performance indicators in science, technology, research, and innovation comes at an opportune time. The Government of Canada has expressed a renewed commitment in several tangible ways to this broad domain of activity including its Innovation and Skills Plan, the announcement of five superclusters, its appointment of a new Chief Science Advisor, and its request for the Fundamental Science Review. More specifically, the 2018 Federal Budget demonstrated the government’s strong commitment to research and innovation with historic investments in science.

The CCA has a decade-long history of conducting evidence-based assessments about Canada’s research and development activities, producing seven assessments of relevance:

The State of Science and Technology in Canada (2006) [emphasis mine]
•Innovation and Business Strategy: Why Canada Falls Short (2009)
•Catalyzing Canada’s Digital Economy (2010)
•Informing Research Choices: Indicators and Judgment (2012)
The State of Science and Technology in Canada (2012) [emphasis mine]
The State of Industrial R&D in Canada (2013) [emphasis mine]
•Paradox Lost: Explaining Canada’s Research Strength and Innovation Weakness (2013)

Using similar methods and metrics to those in The State of Science and Technology in Canada (2012) and The State of Industrial R&D in Canada (2013), this assessment tells a similar and familiar story: Canada has much to be proud of, with world-class researchers in many domains of knowledge, but the rest of the world is not standing still. Our peers are also producing high quality results, and many countries are making significant commitments to supporting research and development that will position them to better leverage their strengths to compete globally. Canada will need to take notice as it determines how best to take action. This assessment provides valuable material for that conversation to occur, whether it takes place in the lab or the legislature, the bench or the boardroom. We also hope it will be used to inform public discussion. [p. ix Print, p. 11 PDF]

This latest assessment succeeds the general 2006 and 2012 reports, which were mostly focused on academic research, and combines it with an assessment of industrial research, which was previously separate. Also, this third assessment’s title (Competing in a Global Innovation Economy: The Current State of R&D in Canada) makes what was previously quietly declared in the text, explicit from the cover onwards. It’s all about competition, despite noises such as the 2017 Naylor report (Review of fundamental research) about the importance of fundamental research.

One other quick comment, I did wonder in my July 1, 2016 posting (featuring the announcement of the third assessment) how combining two assessments would impact the size of the expert panel and the size of the final report,

Given the size of the 2012 assessment of science and technology at 232 pp. (PDF) and the 2013 assessment of industrial research and development at 220 pp. (PDF) with two expert panels, the imagination boggles at the potential size of the 2016 expert panel and of the 2016 assessment combining the two areas.

I got my answer with regard to the panel as noted in my Oct. 20, 2016 update (which featured a list of the members),

A few observations, given the size of the task, this panel is lean. As well, there are three women in a group of 13 (less than 25% representation) in 2016? It’s Ontario and Québec-dominant; only BC and Alberta rate a representative on the panel. I hope they will find ways to better balance this panel and communicate that ‘balanced story’ to the rest of us. On the plus side, the panel has representatives from the humanities, arts, and industry in addition to the expected representatives from the sciences.

The imbalance I noted then was addressed, somewhat, with the selection of the reviewers (from the report released April 10, 2018),

The CCA wishes to thank the following individuals for their review of this report:

Ronald Burnett, C.M., O.B.C., RCA, Chevalier de l’ordre des arts et des
lettres, President and Vice-Chancellor, Emily Carr University of Art and Design
(Vancouver, BC)

Michelle N. Chretien, Director, Centre for Advanced Manufacturing and Design
Technologies, Sheridan College; Former Program and Business Development
Manager, Electronic Materials, Xerox Research Centre of Canada (Brampton,
ON)

Lisa Crossley, CEO, Reliq Health Technologies, Inc. (Ancaster, ON)
Natalie Dakers, Founding President and CEO, Accel-Rx Health Sciences
Accelerator (Vancouver, BC)

Fred Gault, Professorial Fellow, United Nations University-MERIT (Maastricht,
Netherlands)

Patrick D. Germain, Principal Engineering Specialist, Advanced Aerodynamics,
Bombardier Aerospace (Montréal, QC)

Robert Brian Haynes, O.C., FRSC, FCAHS, Professor Emeritus, DeGroote
School of Medicine, McMaster University (Hamilton, ON)

Susan Holt, Chief, Innovation and Business Relationships, Government of
New Brunswick (Fredericton, NB)

Pierre A. Mohnen, Professor, United Nations University-MERIT and Maastricht
University (Maastricht, Netherlands)

Peter J. M. Nicholson, C.M., Retired; Former and Founding President and
CEO, Council of Canadian Academies (Annapolis Royal, NS)

Raymond G. Siemens, Distinguished Professor, English and Computer Science
and Former Canada Research Chair in Humanities Computing, University of
Victoria (Victoria, BC) [pp. xii- xiv Print; pp. 15-16 PDF]

The proportion of women to men as reviewers jumped up to about 36% (4 of 11 reviewers) and there are two reviewers from the Maritime provinces. As usual, reviewers external to Canada were from Europe. Although this time, they came from Dutch institutions rather than UK or German institutions. Interestingly and unusually, there was no one from a US institution. When will they start using reviewers from other parts of the world?

As for the report itself, it is 244 pp. (PDF). (For the really curious, I have a  December 15, 2016 post featuring my comments on the preliminary data for the third assessment.)

To sum up, they had a lean expert panel tasked with bringing together two inquiries and two reports. I imagine that was daunting. Good on them for finding a way to make it manageable.

Bibliometrics, patents, and a survey

I wish more attention had been paid to some of the issues around open science, open access, and open data, which are changing how science is being conducted. (I have more about this from an April 5, 2018 article by James Somers for The Atlantic but more about that later.) If I understand rightly, they may not have been possible due to the nature of the questions posed by the government when requested the assessment.

As was done for the second assessment, there is an acknowledgement that the standard measures/metrics (bibliometrics [no. of papers published, which journals published them; number of times papers were cited] and technometrics [no. of patent applications, etc.] of scientific accomplishment and progress are not the best and new approaches need to be developed and adopted (from the report released April 10, 2018),

It is also worth noting that the Panel itself recognized the limits that come from using traditional historic metrics. Additional approaches will be needed the next time this assessment is done. [p. ix Print; p. 11 PDF]

For the second assessment and as a means of addressing some of the problems with metrics, the panel decided to take a survey which the panel for the third assessment has also done (from the report released April 10, 2018),

The Panel relied on evidence from multiple sources to address its charge, including a literature review and data extracted from statistical agencies and organizations such as Statistics Canada and the OECD. For international comparisons, the Panel focused on OECD countries along with developing countries that are among the top 20 producers of peer-reviewed research publications (e.g., China, India, Brazil, Iran, Turkey). In addition to the literature review, two primary research approaches informed the Panel’s assessment:
•a comprehensive bibliometric and technometric analysis of Canadian research publications and patents; and,
•a survey of top-cited researchers around the world.

Despite best efforts to collect and analyze up-to-date information, one of the Panel’s findings is that data limitations continue to constrain the assessment of R&D activity and excellence in Canada. This is particularly the case with industrial R&D and in the social sciences, arts, and humanities. Data on industrial R&D activity continue to suffer from time lags for some measures, such as internationally comparable data on R&D intensity by sector and industry. These data also rely on industrial categories (i.e., NAICS and ISIC codes) that can obscure important trends, particularly in the services sector, though Statistics Canada’s recent revisions to how this data is reported have improved this situation. There is also a lack of internationally comparable metrics relating to R&D outcomes and impacts, aside from those based on patents.

For the social sciences, arts, and humanities, metrics based on journal articles and other indexed publications provide an incomplete and uneven picture of research contributions. The expansion of bibliometric databases and methodological improvements such as greater use of web-based metrics, including paper views/downloads and social media references, will support ongoing, incremental improvements in the availability and accuracy of data. However, future assessments of R&D in Canada may benefit from more substantive integration of expert review, capable of factoring in different types of research outputs (e.g., non-indexed books) and impacts (e.g., contributions to communities or impacts on public policy). The Panel has no doubt that contributions from the humanities, arts, and social sciences are of equal importance to national prosperity. It is vital that such contributions are better measured and assessed. [p. xvii Print; p. 19 PDF]

My reading: there’s a problem and we’re not going to try and fix it this time. Good luck to those who come after us. As for this line: “The Panel has no doubt that contributions from the humanities, arts, and social sciences are of equal importance to national prosperity.” Did no one explain that when you use ‘no doubt’, you are introducing doubt? It’s a cousin to ‘don’t take this the wrong way’ and ‘I don’t mean to be rude but …’ .

Good news

This is somewhat encouraging (from the report released April 10, 2018),

Canada’s international reputation for its capacity to participate in cutting-edge R&D is strong, with 60% of top-cited researchers surveyed internationally indicating that Canada hosts world-leading infrastructure or programs in their fields. This share increased by four percentage points between 2012 and 2017. Canada continues to benefit from a highly educated population and deep pools of research skills and talent. Its population has the highest level of educational attainment in the OECD in the proportion of the population with
a post-secondary education. However, among younger cohorts (aged 25 to 34), Canada has fallen behind Japan and South Korea. The number of researchers per capita in Canada is on a par with that of other developed countries, andincreased modestly between 2004 and 2012. Canada’s output of PhD graduates has also grown in recent years, though it remains low in per capita terms relative to many OECD countries. [pp. xvii-xviii; pp. 19-20]

Don’t let your head get too big

Most of the report observes that our international standing is slipping in various ways such as this (from the report released April 10, 2018),

In contrast, the number of R&D personnel employed in Canadian businesses
dropped by 20% between 2008 and 2013. This is likely related to sustained and
ongoing decline in business R&D investment across the country. R&D as a share
of gross domestic product (GDP) has steadily declined in Canada since 2001,
and now stands well below the OECD average (Figure 1). As one of few OECD
countries with virtually no growth in total national R&D expenditures between
2006 and 2015, Canada would now need to more than double expenditures to
achieve an R&D intensity comparable to that of leading countries.

Low and declining business R&D expenditures are the dominant driver of this
trend; however, R&D spending in all sectors is implicated. Government R&D
expenditures declined, in real terms, over the same period. Expenditures in the
higher education sector (an indicator on which Canada has traditionally ranked
highly) are also increasing more slowly than the OECD average. Significant
erosion of Canada’s international competitiveness and capacity to participate
in R&D and innovation is likely to occur if this decline and underinvestment
continue.

Between 2009 and 2014, Canada produced 3.8% of the world’s research
publications, ranking ninth in the world. This is down from seventh place for
the 2003–2008 period. India and Italy have overtaken Canada although the
difference between Italy and Canada is small. Publication output in Canada grew
by 26% between 2003 and 2014, a growth rate greater than many developed
countries (including United States, France, Germany, United Kingdom, and
Japan), but below the world average, which reflects the rapid growth in China
and other emerging economies. Research output from the federal government,
particularly the National Research Council Canada, dropped significantly
between 2009 and 2014.(emphasis mine)  [p. xviii Print; p. 20 PDF]

For anyone unfamiliar with Canadian politics,  2009 – 2014 were years during which Stephen Harper’s Conservatives formed the government. Justin Trudeau’s Liberals were elected to form the government in late 2015.

During Harper’s years in government, the Conservatives were very interested in changing how the National Research Council of Canada operated and, if memory serves, the focus was on innovation over research. Consequently, the drop in their research output is predictable.

Given my interest in nanotechnology and other emerging technologies, this popped out (from the report released April 10, 2018),

When it comes to research on most enabling and strategic technologies, however, Canada lags other countries. Bibliometric evidence suggests that, with the exception of selected subfields in Information and Communication Technologies (ICT) such as Medical Informatics and Personalized Medicine, Canada accounts for a relatively small share of the world’s research output for promising areas of technology development. This is particularly true for Biotechnology, Nanotechnology, and Materials science [emphasis mine]. Canada’s research impact, as reflected by citations, is also modest in these areas. Aside from Biotechnology, none of the other subfields in Enabling and Strategic Technologies has an ARC rank among the top five countries. Optoelectronics and photonics is the next highest ranked at 7th place, followed by Materials, and Nanoscience and Nanotechnology, both of which have a rank of 9th. Even in areas where Canadian researchers and institutions played a seminal role in early research (and retain a substantial research capacity), such as Artificial Intelligence and Regenerative Medicine, Canada has lost ground to other countries.

Arguably, our early efforts in artificial intelligence wouldn’t have garnered us much in the way of ranking and yet we managed some cutting edge work such as machine learning. I’m not suggesting the expert panel should have or could have found some way to measure these kinds of efforts but I’m wondering if there could have been some acknowledgement in the text of the report. I’m thinking a couple of sentences in a paragraph about the confounding nature of scientific research where areas that are ignored for years and even decades then become important (e.g., machine learning) but are not measured as part of scientific progress until after they are universally recognized.

Still, point taken about our diminishing returns in ’emerging’ technologies and sciences (from the report released April 10, 2018),

The impression that emerges from these data is sobering. With the exception of selected ICT subfields, such as Medical Informatics, bibliometric evidence does not suggest that Canada excels internationally in most of these research areas. In areas such as Nanotechnology and Materials science, Canada lags behind other countries in levels of research output and impact, and other countries are outpacing Canada’s publication growth in these areas — leading to declining shares of world publications. Even in research areas such as AI, where Canadian researchers and institutions played a foundational role, Canadian R&D activity is not keeping pace with that of other countries and some researchers trained in Canada have relocated to other countries (Section 4.4.1). There are isolated exceptions to these trends, but the aggregate data reviewed by this Panel suggest that Canada is not currently a world leader in research on most emerging technologies.

The Hedy Lamarr treatment

We have ‘good looks’ (arts and humanities) but not the kind of brains (physical sciences and engineering) that people admire (from the report released April 10, 2018),

Canada, relative to the world, specializes in subjects generally referred to as the
humanities and social sciences (plus health and the environment), and does
not specialize as much as others in areas traditionally referred to as the physical
sciences and engineering. Specifically, Canada has comparatively high levels
of research output in Psychology and Cognitive Sciences, Public Health and
Health Services, Philosophy and Theology, Earth and Environmental Sciences,
and Visual and Performing Arts. [emphases mine] It accounts for more than 5% of world researchin these fields. Conversely, Canada has lower research output than expected
in Chemistry, Physics and Astronomy, Enabling and Strategic Technologies,
Engineering, and Mathematics and Statistics. The comparatively low research
output in core areas of the natural sciences and engineering is concerning,
and could impair the flexibility of Canada’s research base, preventing research
institutions and researchers from being able to pivot to tomorrow’s emerging
research areas. [p. xix Print; p. 21 PDF]

Couldn’t they have used a more buoyant tone? After all, science was known as ‘natural philosophy’ up until the 19th century. As for visual and performing arts, let’s include poetry as a performing and literary art (both have been the case historically and cross-culturally) and let’s also note that one of the great physics texts, (De rerum natura by Lucretius) was a multi-volume poem (from Lucretius’ Wikipedia entry; Note: Links have been removed).

His poem De rerum natura (usually translated as “On the Nature of Things” or “On the Nature of the Universe”) transmits the ideas of Epicureanism, which includes Atomism [the concept of atoms forming materials] and psychology. Lucretius was the first writer to introduce Roman readers to Epicurean philosophy.[15] The poem, written in some 7,400 dactylic hexameters, is divided into six untitled books, and explores Epicurean physics through richly poetic language and metaphors. Lucretius presents the principles of atomism; the nature of the mind and soul; explanations of sensation and thought; the development of the world and its phenomena; and explains a variety of celestial and terrestrial phenomena. The universe described in the poem operates according to these physical principles, guided by fortuna, “chance”, and not the divine intervention of the traditional Roman deities.[16]

Should you need more proof that the arts might have something to contribute to physical sciences, there’s this in my March 7, 2018 posting,

It’s not often you see research that combines biologically inspired engineering and a molecular biophysicist with a professional animator who worked at Peter Jackson’s (Lord of the Rings film trilogy, etc.) Park Road Post film studio. An Oct. 18, 2017 news item on ScienceDaily describes the project,

Like many other scientists, Don Ingber, M.D., Ph.D., the Founding Director of the Wyss Institute, [emphasis mine] is concerned that non-scientists have become skeptical and even fearful of his field at a time when technology can offer solutions to many of the world’s greatest problems. “I feel that there’s a huge disconnect between science and the public because it’s depicted as rote memorization in schools, when by definition, if you can memorize it, it’s not science,” says Ingber, who is also the Judah Folkman Professor of Vascular Biology at Harvard Medical School and the Vascular Biology Program at Boston Children’s Hospital, and Professor of Bioengineering at the Harvard Paulson School of Engineering and Applied Sciences (SEAS). [emphasis mine] “Science is the pursuit of the unknown. We have a responsibility to reach out to the public and convey that excitement of exploration and discovery, and fortunately, the film industry is already great at doing that.”

“Not only is our physics-based simulation and animation system as good as other data-based modeling systems, it led to the new scientific insight [emphasis mine] that the limited motion of the dynein hinge focuses the energy released by ATP hydrolysis, which causes dynein’s shape change and drives microtubule sliding and axoneme motion,” says Ingber. “Additionally, while previous studies of dynein have revealed the molecule’s two different static conformations, our animation visually depicts one plausible way that the protein can transition between those shapes at atomic resolution, which is something that other simulations can’t do. The animation approach also allows us to visualize how rows of dyneins work in unison, like rowers pulling together in a boat, which is difficult using conventional scientific simulation approaches.”

It comes down to how we look at things. Yes, physical sciences and engineering are very important. If the report is to be believed we have a very highly educated population and according to PISA scores our students rank highly in mathematics, science, and reading skills. (For more information on Canada’s latest PISA scores from 2015 see this OECD page. As for PISA itself, it’s an OECD [Organization for Economic Cooperation and Development] programme where 15-year-old students from around the world are tested on their reading, mathematics, and science skills, you can get some information from my Oct. 9, 2013 posting.)

Is it really so bad that we choose to apply those skills in fields other than the physical sciences and engineering? It’s a little bit like Hedy Lamarr’s problem except instead of being judged for our looks and having our inventions dismissed, we’re being judged for not applying ourselves to physical sciences and engineering and having our work in other closely aligned fields dismissed as less important.

Canada’s Industrial R&D: an oft-told, very sad story

Bemoaning the state of Canada’s industrial research and development efforts has been a national pastime as long as I can remember. Here’s this from the report released April 10, 2018,

There has been a sustained erosion in Canada’s industrial R&D capacity and competitiveness. Canada ranks 33rd among leading countries on an index assessing the magnitude, intensity, and growth of industrial R&D expenditures. Although Canada is the 11th largest spender, its industrial R&D intensity (0.9%) is only half the OECD average and total spending is declining (−0.7%). Compared with G7 countries, the Canadian portfolio of R&D investment is more concentrated in industries that are intrinsically not as R&D intensive. Canada invests more heavily than the G7 average in oil and gas, forestry, machinery and equipment, and finance where R&D has been less central to business strategy than in many other industries. …  About 50% of Canada’s industrial R&D spending is in high-tech sectors (including industries such as ICT, aerospace, pharmaceuticals, and automotive) compared with the G7 average of 80%. Canadian Business Enterprise Expenditures on R&D (BERD) intensity is also below the OECD average in these sectors. In contrast, Canadian investment in low and medium-low tech sectors is substantially higher than the G7 average. Canada’s spending reflects both its long-standing industrial structure and patterns of economic activity.

R&D investment patterns in Canada appear to be evolving in response to global and domestic shifts. While small and medium-sized enterprises continue to perform a greater share of industrial R&D in Canada than in the United States, between 2009 and 2013, there was a shift in R&D from smaller to larger firms. Canada is an increasingly attractive place to conduct R&D. Investment by foreign-controlled firms in Canada has increased to more than 35% of total R&D investment, with the United States accounting for more than half of that. [emphasis mine]  Multinational enterprises seem to be increasingly locating some of their R&D operations outside their country of ownership, possibly to gain proximity to superior talent. Increasing foreign-controlled R&D, however, also could signal a long-term strategic loss of control over intellectual property (IP) developed in this country, ultimately undermining the government’s efforts to support high-growth firms as they scale up. [pp. xxii-xxiii Print; pp. 24-25 PDF]

Canada has been known as a ‘branch plant’ economy for decades. For anyone unfamiliar with the term, it means that companies from other countries come here, open up a branch and that’s how we get our jobs as we don’t have all that many large companies here. Increasingly, multinationals are locating R&D shops here.

While our small to medium size companies fund industrial R&D, it’s large companies (multinationals) which can afford long-term and serious investment in R&D. Luckily for companies from other countries, we have a well-educated population of people looking for jobs.

In 2017, we opened the door more widely so we can scoop up talented researchers and scientists from other countries, from a June 14, 2017 article by Beckie Smith for The PIE News,

Universities have welcomed the inclusion of the work permit exemption for academic stays of up to 120 days in the strategy, which also introduces expedited visa processing for some highly skilled professions.

Foreign researchers working on projects at a publicly funded degree-granting institution or affiliated research institution will be eligible for one 120-day stay in Canada every 12 months.

And universities will also be able to access a dedicated service channel that will support employers and provide guidance on visa applications for foreign talent.

The Global Skills Strategy, which came into force on June 12 [2017], aims to boost the Canadian economy by filling skills gaps with international talent.

As well as the short term work permit exemption, the Global Skills Strategy aims to make it easier for employers to recruit highly skilled workers in certain fields such as computer engineering.

“Employers that are making plans for job-creating investments in Canada will often need an experienced leader, dynamic researcher or an innovator with unique skills not readily available in Canada to make that investment happen,” said Ahmed Hussen, Minister of Immigration, Refugees and Citizenship.

“The Global Skills Strategy aims to give those employers confidence that when they need to hire from abroad, they’ll have faster, more reliable access to top talent.”

Coincidentally, Microsoft, Facebook, Google, etc. have announced, in 2017, new jobs and new offices in Canadian cities. There’s a also Chinese multinational telecom company Huawei Canada which has enjoyed success in Canada and continues to invest here (from a Jan. 19, 2018 article about security concerns by Matthew Braga for the Canadian Broadcasting Corporation (CBC) online news,

For the past decade, Chinese tech company Huawei has found no shortage of success in Canada. Its equipment is used in telecommunications infrastructure run by the country’s major carriers, and some have sold Huawei’s phones.

The company has struck up partnerships with Canadian universities, and say it is investing more than half a billion dollars in researching next generation cellular networks here. [emphasis mine]

While I’m not thrilled about using patents as an indicator of progress, this is interesting to note (from the report released April 10, 2018),

Canada produces about 1% of global patents, ranking 18th in the world. It lags further behind in trademark (34th) and design applications (34th). Despite relatively weak performance overall in patents, Canada excels in some technical fields such as Civil Engineering, Digital Communication, Other Special Machines, Computer Technology, and Telecommunications. [emphases mine] Canada is a net exporter of patents, which signals the R&D strength of some technology industries. It may also reflect increasing R&D investment by foreign-controlled firms. [emphasis mine] [p. xxiii Print; p. 25 PDF]

Getting back to my point, we don’t have large companies here. In fact, the dream for most of our high tech startups is to build up the company so it’s attractive to buyers, sell, and retire (hopefully before the age of 40). Strangely, the expert panel doesn’t seem to share my insight into this matter,

Canada’s combination of high performance in measures of research output and impact, and low performance on measures of industrial R&D investment and innovation (e.g., subpar productivity growth), continue to be viewed as a paradox, leading to the hypothesis that barriers are impeding the flow of Canada’s research achievements into commercial applications. The Panel’s analysis suggests the need for a more nuanced view. The process of transforming research into innovation and wealth creation is a complex multifaceted process, making it difficult to point to any definitive cause of Canada’s deficit in R&D investment and productivity growth. Based on the Panel’s interpretation of the evidence, Canada is a highly innovative nation, but significant barriers prevent the translation of innovation into wealth creation. The available evidence does point to a number of important contributing factors that are analyzed in this report. Figure 5 represents the relationships between R&D, innovation, and wealth creation.

The Panel concluded that many factors commonly identified as points of concern do not adequately explain the overall weakness in Canada’s innovation performance compared with other countries. [emphasis mine] Academia-business linkages appear relatively robust in quantitative terms given the extent of cross-sectoral R&D funding and increasing academia-industry partnerships, though the volume of academia-industry interactions does not indicate the nature or the quality of that interaction, nor the extent to which firms are capitalizing on the research conducted and the resulting IP. The educational system is high performing by international standards and there does not appear to be a widespread lack of researchers or STEM (science, technology, engineering, and mathematics) skills. IP policies differ across universities and are unlikely to explain a divergence in research commercialization activity between Canadian and U.S. institutions, though Canadian universities and governments could do more to help Canadian firms access university IP and compete in IP management and strategy. Venture capital availability in Canada has improved dramatically in recent years and is now competitive internationally, though still overshadowed by Silicon Valley. Technology start-ups and start-up ecosystems are also flourishing in many sectors and regions, demonstrating their ability to build on research advances to develop and deliver innovative products and services.

You’ll note there’s no mention of a cultural issue where start-ups are designed for sale as soon as possible and this isn’t new. Years ago, there was an accounting firm that published a series of historical maps (the last one I saw was in 2005) of technology companies in the Vancouver region. Technology companies were being developed and sold to large foreign companies from the 19th century to present day.

Part 2

University of Washington (state) is accelerating nanoscale research with Institute for Nano-Engineered Systems

A December 5, 2017 news item on Nanowerk announced a new research institute at the University of Washington (state),

The University of Washington [UW} has launched a new institute aimed at accelerating research at the nanoscale: the Institute for Nano-Engineered Systems, or NanoES. Housed in a new, multimillion-dollar facility on the UW’s Seattle campus, the institute will pursue impactful advancements in a variety of disciplines — including energy, materials science, computation and medicine. Yet these advancements will be at a technological scale a thousand times smaller than the width of a human hair.

The institute was launched at a reception Dec. 4 [2017] at its headquarters in the $87.8-million Nano Engineering and Sciences Building. During the event, speakers including UW officials and NanoES partners celebrated the NanoES mission to capitalize on the university’s strong record of research at the nanoscale and engage partners in industry at the onset of new projects.

A December 5, 2017 UW news release, which originated the news item, somewhat clarifies the declarations in the two excerpted paragraphs in the above,

The vision of the NanoES, which is part of the UW’s College of Engineering, is to act as a magnet for researchers in nanoscale science and engineering, with a focus on enabling industry partnership and entrepreneurship at the earliest stages of research projects. According to Karl Böhringer, director of the NanoES and a UW professor of electrical engineering and bioengineering, this unique approach will hasten the development of solutions to the field’s most pressing challenges: the manufacturing of scalable, high-yield nano-engineered systems for applications in information processing, energy, health and interconnected life.

“The University of Washington is well known for its expertise in nanoscale materials, processing, physics and biology — as well as its cutting-edge nanofabrication, characterization and testing facilities,” said Böhringer, who stepped down as director of the UW-based Washington Nanofabrication Facility to lead the NanoES. “NanoES will build on these strengths, bringing together people, tools and opportunities to develop nanoscale devices and systems.”

The centerpiece of the NanoES is its headquarters, the Nano Engineering and Sciences Building. The building houses 90,300 square feet of research and learning space, and was funded largely by the College of Engineering and Sound Transit. It contains an active learning classroom, a teaching laboratory and a 3,000-square-foot common area designed expressly to promote the sharing and exchanging of ideas. The remainder includes “incubator-style” office space and more than 40,000 square feet of flexible multipurpose laboratory and instrumentation space. The building’s location and design elements are intended to limit vibrations and electromagnetic interference so it can house sensitive experiments.

NanoES will house research in nanotechnology fields that hold promise for high impact, such as:

  • Augmented humanity, which includes technology to both aid and replace human capability in a way that joins user and machine as one – and foresees portable, wearable, implantable and networked technology for applications such as personalized medical care, among others.
  • Integrated photonics, which ranges from single-photon sensors for health care diagnostic tests to large-scale, integrated networks of photonic devices.
  • Scalable nanomanufacturing, which aims to develop low-cost, high-volume manufacturing processes. These would translate device prototypes constructed in research laboratories into system- and network-level nanomanufacturing methods for applications ranging from the 3-D printing of cell and tissue scaffolds to ultrathin solar cells.

A ribbon cutting ceremony.

Cutting the ribbon for the NanoES on Dec. 4. Left-to-right: Karl Böhringer, director of the NanoES and a UW professor of electrical engineering and bioengineering; Nena Golubovic, physical sciences director for IP Group; Mike Bragg, Dean of the UW College of Engineering; Jevne Micheau-Cunningham, deputy director of the NanoES.Kathryn Sauber/University of Washington

Collaborations with other UW-based institutions will provide additional resources for the NanoES. Endeavors in scalable nanomanufacturing, for example, will rely on the roll-to-roll processing facility at the UW Clean Energy Institute‘s Washington Clean Energy Testbeds or on advanced surface characterization capabilities at the Molecular Analysis Facility. In addition, the Washington Nanofabrication Facility recently completed a three-year, $37 million upgrade to raise it to an ISO Class 5 nanofabrication facility.

UW faculty and outside collaborators will build new research programs in the Nano Engineering and Sciences Building. Eric Klavins, a UW professor of electrical engineering, recently moved part of his synthetic biology research team to the building, adjacent to his collaborators in the Molecular Engineering & Sciences Institute and the Institute for Protein Design.

“We are extremely excited about the interdisciplinary and collaborative potential of the new space,” said Klavins.

The NanoES also has already produced its first spin-out company, Tunoptix, which was co-founded by Böhringer and recently received startup funding from IP Group, a U.K.-based venture capital firm.

“IP Group is very excited to work with the University of Washington,” said Nena Golubovic, physical sciences director for IP Group. “We are looking forward to the new collaborations and developments in science and technology that will grow from this new partnership.”

A woman speaking at a podium.

Nena Golubovic, physical sciences director for IP Group, delivering remarks at the Dec. 4 opening of NanoES.Kathryn Sauber/University of Washington

“We are eager to work with our partners at the IP Group to bring our technology to the market, and we appreciate their vision and investment in the NanoES Integrated Photonics Initiative,” said Tunoptix entrepreneurial lead Mike Robinson. “NanoES was the ideal environment in which to start our company.”

The NanoES leaders hope to forge similar partnerships with researchers, investors and industry leaders to develop technologies for portable, wearable, implantable and networked nanotechnologies for personalized medical care, a more efficient interconnected life and interconnected mobility. In addition to expertise, personnel and state-of-the-art research space and equipment, the NanoES will provide training, research support and key connections to capital and corporate partners.

“We believe this unique approach is the best way to drive innovations from idea to fabrication to scale-up and testing,” said Böhringer. “Some of the most promising solutions to these huge challenges are rooted in nanotechnology.”

The NanoES is supported by funds from the College of Engineering and the National Science Foundation, as well as capital investments from investors and industry partners.

You can find out more about Nano ES here.

Luminous electronic tiles (lumentile)

A Dec. 19, 2016 news item on Nanowerk introduces a ceramic tile that can be given a different look at the touch of a fingertip,

Using pioneering photonics technology, The ‘Luminous Electronic Tile’, or LUMENTILE, project mixes the simplicity of a plain ceramic tile with the complexity of today’s sophisticated touch screen technology, creating a light source and unparalleled interaction. All it takes is one tap to change the colour, look or mood of any room in your house.

This is the first time anyone has tried to embed electronics into ceramics or glass for a large-scale application. With the ability to play videos or display images, the tiles allow the user to turn their walls into a large ‘cinema’ screen, where each unit acts as a set of pixels of the overall display.

An undated Horizon 2020 webpage describes the ‘digital wallpaper’ in more detail,

Scientists from Italy have created ‘digital wallpaper’, allowing for a constant change in design and aesthetic controlled via a smartphone, tablet or computer.

Each Luminous Electronic Tile – or Lumentile – acts as a touch screen which can change colour, pattern or light intensity, play videos or display images.

If numerous tiles are arranged together, they can create a ‘cinema’ screen with each tile acting as a set of pixels for the overall display.

The combination of ceramic, glass and electronics could allow the user to have interchangeable control of the look and design of their surroundings by tapping the tile.

Each tile can be arranged to completely or partially cover walls of a room, floor or ceiling.

However, they can also be transferred to the exterior of buildings, as either flat or curved tiles to fit around columns or uneven surfaces.

Project co-ordinator Professor Guido Giuliani, said: “It may sound like the stuff of James Bond but external tiles would create a ‘chameleonic skin’ or instant camouflage.

“Although we are a long way off this yet, this would allow a car or building to blend completely into its surroundings, and hence ‘disappear’.”

Although these tiles cannot be purchased yet, they hope to be available to users in two years, with mass production by the end of 2020.

Lumentile received a grant of more than €2.4m from the Horizon 2020 programme via the Photonics Public Private Partnership. Created in Italy by the Universita Degli Studi Di Pavia, the Lumentile project also has a number of European partners from Finland, Switzerland and Spain.

A combination of ceramic, glass and organic electronics, the luminous tile includes structural materials, solid-state light sources and electronic chips and can be controlled with a central computer, a smart phone or tablet. [downloaded from http://www.nanowerk.com/nanotechnology-news/newsid=45417.php]

You can find a bit more information on the Lumentile project website.

Noniridescent photonics inspired by tarantulas

Last year, I was quite taken with a structural colour story centering on tarantulas which was featured in my Dec. 7, 2015 posting.

Cobalt Blue Tarantula [downloaded from http://www.tarantulaguide.com/tarantula-pictures/cobalt-blue-tarantula-4/]

Cobalt Blue Tarantula [downloaded from http://www.tarantulaguide.com/tarantula-pictures/cobalt-blue-tarantula-4/]

On Oct. 17, 2016 I was delighted to receive an email with the latest work from the same team who this time around crowdfunded resources to complete their research. Before moving on to the paper, here’s more from the team’s crowdfunder on Experiment was titled “The Development of Non-iridescent Structurally Colored Material Inspired by Tarantula Hairs,”

Many vibrant colors in nature are produced by nanostructures rather than pigments. But their application is limited by iridescence – changing hue and brightness with viewing angles. This project aims to mimic the nanostructures that tarantulas use to produce bright, non-iridescent blue colors to inspire next-generation, energy efficient, wide-angle color displays. Moreover, one day non-iridescent structural colorants may replace costly and toxic pigments and dyes.

What is the context of this research?

We recently discovered that some tarantulas produce vivid blue colors using unique nanostructures not found in other blue organisms like birds and Morpho butterflies. We described a number of different nanostructures that help explain how blue color evolved at least eight times within tarantulas. These colors are also remarkably non-iridescent so that they stay bright blue even at wide viewing angles, unlike the “flashy” structural colors seen in many birds and butterflies. We hypothesize that although the hue is produced by multilayer nanostructure, it is the hierarchical morphology of the hairs controls iridescence. We would like to validate our results from preliminary optical simulations by making nano-3D printed physical prototypes with and without key features of the tarantula hairs.

What is the significance of this project?

While iridescence can make a flashy signal to a mating bird or butterfly, it isn’t so useful in optical technology. This limits the application of structural colors in human contexts, even though they can be more vibrant and resist fading better than traditional pigment-based colors. For example, despite being energy efficient and viewable in direct sunlight, this butterfly-inspired color display, that utilizes principles of structural colors, has never made it into the mainstream because iridescence limits its viewing angle. We believe this limitation could be overcome using tarantula-inspired nanostructures that could be mass-produced in an economically viable way through top-down approaches. Those nanostructures may even be used to replace pigments and dyes someday!

What are the goals of the project?

We have designed five models that vary in complexity, incorporating successively more details of real tarantula hairs. We would like to fabricate those five designs by 3D nano-printing, so that we can test our hypothesis experimentally and determine which features produce blue and which remove iridescence. We’ll start making those designs as soon as we reach our goal and the project is fully funded. Once these designs are made, we will compare the angle-dependency of the colors produced by each design through angle-resolved reflectance spectrometry. We’ll also compare them visually through photography by taking series of shots from different angles similar to Fig. S4. Through those steps, we’ll be able to identify how each feature of the complex nanostructure contributes to color.

Budget
Ultra-high resolution (nano-scale) 3D printing
$6,000
To fund nano 3D printing completely
$1,700

This project has been designed using Biomimicry Thinking, and is a follow-up to our published, well-received tarantula research. In order to test our hypothesis, we are planning to use Photonic Professional GT by nanoscribe to fabricate tarantula hair-inspired prototypes by 3D printing nanostructures within millimeter sized swatches. To be able to 3D print nanostructures across these relatively large-sized swatches is critical to the success of our project. Currently, there’s no widely-accessible technology out there that meets our needs other than Photonic Professional GT. However, the estimated cost just for 3D printing those nanostructures alone is $20,000. So far, we have successfully raised and allocated $13,000 of research funds through conventional means, but we are still $7,000 short. Initial trial of our most complex prototype was a success. Therefore, we’re here, seeking your help. Please help us make this nano fabrication happen, and make this project a success! Thank you!

The researchers managed to raise $7, 708.00 in total, making this paper possible,

Tarantula-Inspired Noniridescent Photonics with Long-Range Order by Bor-Kai Hsiung, Radwanul Hasan Siddique, Lijia Jiang, Ying Liu, Yongfeng Lu, Matthew D. Shawkey, and Todd A. Blackledge. Advanced Materials DOI: 10.1002/adom.201600599 Version of Record online: 11 OCT 2016

© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

This paper is behind a paywall but I did manage to get my hands on a copy. So here are a few highlights from the paper,

Pigment-based colorants are used for applications ranging from textiles to packaging to cosmetics.[1] However, structural-based alternatives can be more vibrant, durable, and eco-friendly relative to pigmentary colors.[2] Moreover, optical nanostructures are highly tunable, they can achieve a full color gamut by slight alterations to spacing.[3] However, light interference and/or diffraction from most photonic structures results in iridescence,[4] which limits their broader applications. Iridescent colors that change hue when viewed from different directions are useful for niche markets, such as security and anticounterfeiting, {emphasis mine} [5] but are not desirable for most applications, such as paints, coatings, electronic displays, and apparels. Hence, fabricating a photonic structure that minimizes iridescence is a key step to unlocking the potential applications of structural colors.

Noniridescent structural colors in nature are produced by coherent scattering of light by quasi-ordered, amorphous photonic structures (i.e., photonic glass),[6–10] or photonic polycrystals [9,11–14] that possess only short-range order. Iridescence is thought to be a fundamental component of photonic structures with long-range order, such as multilayers.[4] However, the complexity of short-range order photonic structures prohibits their design and fabrication using top-down approaches while bottom-up synthesis using colloidal suspension[15,16] or self-assembly[17–20] lack the tight controls over the spatial and temporal scales needed for industrial mass production. Photonic structures with long-range order are easier to model mathematically. Hence, long-range order photonic structures are intrinsically suitable for top-down fabrication, where precise feature placement and scalability can be guaranteed.

Recently, we found blue color produced by multilayer interference on specialized hairs from two species of blue tarantulas (Poecilotheria metallica (Figure 1a,b) and Lampropelma violaceopes) that was largely angle independent.[21] We hypothesize that the iridescent effects of the multilayer are reduced by hierarchical structuring of the hairs. Specifically, the hairs have: (1) high degrees of rotational symmetry, (2) hierarchy—with subcylindrical multilayers surrounding a larger, overarching multilayer cylinder, and (3) nanoscale surface grooves. Because all of these structures co-occur on the tarantulas, it is impossible to decouple them simply by observing nature. Here, we use optical simulation and nano-3D rapid prototyping to demonstrate that introducing design features seen in these tarantulas onto a multilayer photonic structure nearly eliminates iridescence. As far as we are aware, this is the first known example of a noniridescent structural color produced by a photonic structure with both short and long-range order. This opens up an array of new possibilities for photonic structure design and fabrication to produce noniridescent structural colors and is a key first step to achieving economically viable solutions for mass production of noniridescent structural color.  … (p. 1 PDF)

There is a Canadian security and anti-counterfeiting company (Nanotech Security Corp.), inspired by the Morpho butterfly and its iridescent blue, which got its start in Bozena Kaminska’s laboratory at Simon Fraser University (Vancouver, Canada).

Getting back to the paper, after a few twists and turns, they conclude with this,

This approach of producing noniridescent structural colors using photonic structures with long-range order (i.e., modified multilayer) has, to our knowledge, not been explored previously. Our findings reaffirm the value of using nature and the biomimetic process as a tool for innovation and our approach also may help to overcome the current inability of colloidal self-assembly to achieve pure noniridescent structural red due to single-particle scattering and/or multiple scattering.[25] As a result, our research provides a new and easy way for designing structural colorants with customizable hues (see Figure S6, Supporting Information, as one of the potential examples) and iridescent effects to satisfy the needs of different applications. While nano-3D printing of these nanostructures is not viable for mass production, it does identify the key features that are necessary for top-down fabrication. With promising nanofabrication techniques, such as preform drawing[26]—a generally scalable methodology that has been demonstrated for fabricating particles with complex internal architectures and continuously tunable diameters down to nanometer scale[27] – it is possible to mass produce these “designer structural colorants” in an economically viable manner. Our discovery of how to produce noniridescent structural colors using long-range order may therefore lead to a more sustainable future that does not rely upon toxic and wasteful synthetic pigments and dyes. (p. 5)

I’m glad to have gotten caught up with the work. Thank you, Bor-Kai Hsiung.

Phenomen: a future and emerging information technology project

A Sept. 19, 2016 news item on Nanowerk describes a new research project incorporating photonics, phononics, and radio frequency signal processing,

HENOMEN is a ground breaking project designed to harness the potential of combined phononics, photonics and radio-frequency (RF) electronic signals to lay the foundations of a new information technology. This new Project, funded though the highly competitive H2020 [the European Union’s Horizon 2020 science funding programme] FET [Future and Emerging Technologies]-Open call, joins the efforts of three leading research institutes, three internationally recognised universities and a high-tech SME. The Consortium members kick-offed the project with a meeting on Friday September 16, 2016, at the Catalan Institute of Nanoscience and Nanotechnology (ICN2), coordinated by ICREA Research Prof Dr Clivia M. Sotomayor-Torres, of the ICN2’ Phononic and Photonic Nanostructures (P2N) Group.

A Sept. 16, 2016 ICN2 press release, which originated the news item, provides more detail,

Most information is currently transported by electrical charge (electrons) and by light (photons). Phonons are the quanta of lattice vibrations with frequencies covering a wide range up to tens of THz and provide coupling to the surrounding environment. In PHENOMEN the core of the research will be focused on phonon-based signal processing to enable on-chip synchronisation and transfer information carried between optical channels by phonons.

This ambitious prospect could serve as a future scalable platform for, e.g., hybrid information processing with phonons. To achieve it, PHENOMEN proposes to build the first practical optically-driven phonon sources and detectors including the engineering of phonon lasers to deliver coherent phonons to the rest of the chip pumped by a continuous wave optical source. It brings together interdisciplinary scientific and technology oriented partners in an early-stage research towards the development of a radically new technology.

The experimental implementation of phonons as information carriers in a chip is completely novel and of a clear foundational character. It deals with interaction and manipulation of fundamental particles and their intrinsic dual wave-particle character. Thus, it can only be possible with the participation of an interdisciplinary consortium which will create knowledge in a synergetic fashion and add value in the form of new theoretical tools,  develop novel methods to manipulate coherent phonons with light and build all-optical phononic circuits enabled by optomechanics.

The H2020 FET-Open call “Novel ideas for radically new technologies” aims to support the early stages of joint science and technology research for radically new future technological possibilities. The call is entirely non-prescriptive with regards to the nature or purpose of the technologies that are envisaged and thus targets mainly the unexpected. PHENOMEN is one of the 13 funded Research & Innovation Actions and went through a selection process with a success rate (1.4%) ten times smaller than that for an ERC grant. The retained proposals are expected to foster international collaboration in a multitude of disciplines such as robotics, nanotechnology, neuroscience, information science, biology, artificial intelligence or chemistry.

The Consortium

The PHENOMEN Consortium is made up by:

  • 3 leading research institutes:
  • 3 universities with an internationally recognised track-record in their respective areas of expertise:
  • 1 industrial partner:

Replicating brain’s neural networks with 3D nanoprinting

An announcement about European Union funding for a project to reproduce neural networks by 3D nanoprinting can be found in a June 10, 2016 news item on Nanowerk,

The MESO-BRAIN consortium has received a prestigious award of €3.3million in funding from the European Commission as part of its Future and Emerging Technology (FET) scheme. The project aims to develop three-dimensional (3D) human neural networks with specific biological architecture, and the inherent ability to interrogate the network’s brain-like activity both electrophysiologically and optically. It is expected that the MESO-BRAIN will facilitate a better understanding of human disease progression, neuronal growth and enable the development of large-scale human cell-based assays to test the modulatory effects of pharmacological and toxicological compounds on neural network activity. The use of more physiologically relevant human models will increase drug screening efficiency and reduce the need for animal testing.

A June 9, 2016 Institute of Photonic Sciences (ICFO) press release (also on EurekAlert), which originated the news item, provides more detail,

About the MESO-BRAIN project

The MESO-BRAIN project’s cornerstone will use human induced pluripotent stem cells (iPSCs) that have been differentiated into neurons upon a defined and reproducible 3D scaffold to support the development of human neural networks that emulate brain activity. The structure will be based on a brain cortical module and will be unique in that it will be designed and produced using nanoscale 3D-laser-printed structures incorporating nano-electrodes to enable downstream electrophysiological analysis of neural network function. Optical analysis will be conducted using cutting-edge light sheet-based, fast volumetric imaging technology to enable cellular resolution throughout the 3D network. The MESO-BRAIN project will allow for a comprehensive and detailed investigation of neural network development in health and disease.

Prof Edik Rafailov, Head of the MESO-BRAIN project (Aston University) said: “What we’re proposing to achieve with this project has, until recently, been the stuff of science fiction. Being able to extract and replicate neural networks from the brain through 3D nanoprinting promises to change this. The MESO-BRAIN project has the potential to revolutionise the way we are able to understand the onset and development of disease and discover treatments for those with dementia or brain injuries. We cannot wait to get started!”

The MESO-BRAIN project will launch in September 2016 and research will be conducted over three years.

About the MESO-BRAIN consortium

Each of the consortium partners have been chosen for the highly specific skills & knowledge that they bring to this project. These include technologies and expertise in stem cells, photonics, physics, 3D nanoprinting, electrophysiology, molecular biology, imaging and commercialisation.

Aston University (UK) Aston Institute of Photonic Technologies (School of Engineering and Applied Science) is one of the largest photonic groups in UK and an internationally recognised research centre in the fields of lasers, fibre-optics, high-speed optical communications, nonlinear and biomedical photonics. The Cell & Tissue Biomedical Research Group (Aston Research Centre for Healthy Ageing) combines collective expertise in genetic manipulation, tissue engineering and neuronal modelling with the electrophysiological and optical analysis of human iPSC-derived neural networks. Axol Bioscience Ltd. (UK) was founded to fulfil the unmet demand for high quality, clinically relevant human iPSC-derived cells for use in biomedical research and drug discovery. The Laser Zentrum Hannover (Germany) is a leading research organisation in the fields of laser development, material processing, laser medicine, and laser-based nanotechnologies. The Neurophysics Group (Physics Department) at University of Barcelona (Spain) are experts in combing experiments with theoretical and computational modelling to infer functional connectivity in neuronal circuits. The Institute of Photonic Sciences (ICFO) (Spain) is a world-leading research centre in photonics with expertise in several microscopy techniques including light sheet imaging. KITE Innovation (UK) helps to bridge the gap between the academic and business sectors in supporting collaboration, enterprise, and knowledge-based business development.

For anyone curious about the FET funding scheme, there’s this from the press release,

Horizon 2020 aims to ensure Europe produces world-class science by removing barriers to innovation through funding programmes such as the FET. The FET (Open) funds forward-looking collaborations between advanced multidisciplinary science and cutting-edge engineering for radically new future technologies. The published success rate is below 1.4%, making it amongst the toughest in the Horizon 2020 suite of funding schemes. The MESO-BRAIN proposal scored a perfect 5/5.

You can find out more about the MESO-BRAIN project on its ICFO webpage.

They don’t say anything about it but I can’t help wondering if the scientists aren’t also considering the possibility of creating an artificial brain.

5D data storage is forever

Combine nanostructured glass and femtosecond laser writing with five-dimensional digital data and you can wave goodbye to any anxieties about losing information. Researchers at Southampton University (UK) made the announcement in a Feb. 15, 2016 news item on ScienceDaily,

Scientists at the University of Southampton have made a major step forward in the development of digital data storage that is capable of surviving for billions of years.

Using nanostructured glass, scientists from the University’s Optoelectronics Research Centre (ORC) have developed the recording and retrieval processes of five dimensional (5D) digital data by femtosecond laser writing.

A Feb. 15, 2016 University of Southampton press release (also on EurekAlert), which originated the news item, offers more detail,

The storage allows unprecedented properties including 360 TB [Terabyte]/disc data capacity, thermal stability up to 1,000°C and virtually unlimited lifetime at room temperature (13.8 billion years at 190°C ) opening a new era of eternal data archiving. As a very stable and safe form of portable memory, the technology could be highly useful for organisations with big archives, such as national archives, museums and libraries, to preserve their information and records.

The technology was first experimentally demonstrated in 2013 when a 300 kb [kilobit] digital copy of a text file was successfully recorded in 5D.

Now, major documents from human history such as [the] Universal Declaration of Human Rights (UDHR), Newton’s Opticks, Magna Carta and Kings [sic] James Bible, have been saved as digital copies that could survive the human race. A copy of the UDHR encoded to 5D data storage was recently presented to UNESCO by the ORC at the International Year of Light (IYL) closing ceremony in Mexico.

The documents were recorded using ultrafast laser, producing extremely short and intense pulses of light. The file is written in three layers of nanostructured dots separated by five micrometres (one millionth of a metre).

The self-assembled nanostructures change the way light travels through glass, modifying polarisation of light that can then be read by combination of optical microscope and a polariser, similar to that found in Polaroid sunglasses.

Coined as the ‘Superman memory crystal’, as the glass memory has been compared to the “memory crystals” used in the Superman films, the data is recorded via self-assembled nanostructures created in fused quartz. The information encoding is realised in five dimensions: the size and orientation in addition to the three dimensional position of these nanostructures.

Professor Peter Kazansky, from the ORC, says: “It is thrilling to think that we have created the technology to preserve documents and information and store it in space for future generations. This technology can secure the last evidence of our civilisation: all we’ve learnt will not be forgotten.”

The researchers will present their research at the photonics industry’s renowned SPIE—The International Society for Optical Engineering Conference in San Francisco, USA this week. The invited paper, ‘5D Data Storage by Ultrafast Laser Writing in Glass’ will be presented on Wednesday 17 February [2016].

The team are now looking for industry partners to further develop and commercialise this ground-breaking new technology.

I have written a number of pieces about digitization, data storage, and memory such as this Jan. 30, 2014 post titled, Does digitizing material mean it’s safe? A tale of Canada’s Fisheries and Oceans scientific libraries. If you scroll down about 50% of the way, you’ll find some material that provides an overview.

Universal Declaration of Human Rights recorded into 5D optical data

Universal Declaration of Human Rights recorded into 5D optical data

 

Getting back to incandescent light (recycling the military way)

MIT (Massachusetts Institute of Technology) issued two news releases about this research into reclaiming incandescent light or as they call it “recycling light.” First off, there’s the Jan. 11, 2016 MIT Institute of Soldier Nanotechnologies news release by Paola Rebusco on EurekAlert,

Humanity started recycling relatively early in its evolution: there are proofs that trash recycling was taking place as early as in the 500 BC. What about light recycling? Consider light bulbs: more than one hundred and thirty years ago Thomas Edison patented the first commercially viable incandescent light bulb, so that “none but the extravagant” would ever “burn tallow candles”, paving the way for more than a century of incandescent lighting. In fact, emergence of electric lighting was the main motivating factor for deployment of electricity into every home in the world. The incandescent bulb is an example of a high temperature thermal emitter. It is very useful, but only a small fraction of the emitted light (and therefore energy) is used: most of the light is emitted in the infrared, invisible to the human eye, and in this context wasted.

Now, in a study published in Nature Nanotechnology on January 11th 2016 (online), a team of MIT researchers describes another way to recycle light emitted at unwanted infrared wavelengths while optimizing the emission at useful visible wavelengths. …

“For a thermal emitter at moderate temperatures one usually nano-patterns its surface to alter the emission,” says Ilic [postdoc Ognjen Ilic], the lead author of the study. “At high temperatures” – a light bulb filament reaches 3000K! – “such nanostructures deteriorate and it is impossible to alter the emission spectrum by having a nanostructure directly on the surface of the emitter.” The team solved the problem by surrounding the hot object with special nanophotonic structures that spectrally filter the emitted light, meaning that they let the light reflect or pass through based on its color (i.e. its wavelength). Because the filters are not in direct physical contact with the emitter, temperatures can be very high.

To showcase this idea, the team picked one of the highest temperature thermal emitters available – an incandescent light bulb. The authors designed nanofilters to recycle the infrared light, while allowing the visible light to go through. “The key advance was to design a photonic structure that transmits visible light and reflects infrared light for a very wide range of angles,” explains Ilic. “Conventional photonic filters usually operate for a single incidence angle. The challenge for us was to extend the desired optical properties across all directions,” a feat the authors achieved using special numerical optimization techniques.

However, for this scheme to work, the authors had to redesign the incandescent filament from scratch. “In a regular light bulb, the filament is a long and curly piece of tungsten wire. Here, the filament is laser-machined out of a flat sheet of tungsten: it is completely planar,” says Bermel [professor Peter Bermel now at Purdue University]. A planar filament has a large area, and is therefore very efficient in re-absorbing the light that was reflected by the filter. In describing how the new device differs from previously suggested concepts, Soljačić [professor Marin Soljačić], the project lead, emphasizes that “it is the combination of the exceptional properties of the filter and the shape of the filament that enabled substantial recycling of unwanted radiated light.”

In the new-concept light bulb prototype built by the authors, the efficiency approaches some fluorescent and LED bulbs. Nonetheless, the theoretical model predicts plenty of room for improvement. “This experimental device is a proof-of-concept, at the low end of performance that could be ultimately achieved by this approach,” argues Celanovic [principal research scientist Ivan Celanovic]. There are other advantages of this approach: “An important feature is that our demonstrated device achieves near-ideal rendering of colors,” notes Ilic, referring to the requirement of light sources to faithfully reproduce surrounding colors. That is precisely the reason why incandescent lights remained dominant for so long: their warm light has remained preferable to drab fluorescent lighting for decades.

Some practical questions need to be addressed before this technology can be widely adopted. “We will work closely with our mechanical engineering colleagues at MIT to try to tackle the issues of thermal stability and long-lifetime,” says Soljačić. The authors are particularly excited about the potential for producing these devices cheaply. “The materials we need are abundant and inexpensive,” Joannopoulos [professor John Joannopoulos] notes, “and the filters themselves–consisting of stacks of commonly deposited materials–are amenable to large-scale deposition.”

Chen [professor Gang Chen] comments further: “The lighting potential of this technology is exciting, but the same approach could also be used to improve the performance of energy conversion schemes such as thermo-photovoltaics.” In a thermo-photovoltaic device, external heat causes the material to glow, emitting light that is converted into an electric current by an absorbing photovoltaic element.

The last point captures the main motivation behind the work. “Light radiated from a hot object can be quite useful, whether that object is an incandescent filament or the Sun,” Ilic says. At its core, this work is about recycling thermal light for a specific application; “a 3000-degree filament is one of the hottest and the most challenging sources to work with,” Ilic continues. “It’s also what makes it a crucial test of our approach.”

There are a few more details in the 2nd Jan. 11, 2016 MIT news release on EurekAlert,

Light recycling

The key is to create a two-stage process, the researchers report. The first stage involves a conventional heated metal filament, with all its attendant losses. But instead of allowing the waste heat to dissipate in the form of infrared radiation, secondary structures surrounding the filament capture this radiation and reflect it back to the filament to be re-absorbed and re-emitted as visible light. These structures, a form of photonic crystal, are made of Earth-abundant elements and can be made using conventional material-deposition technology.

That second step makes a dramatic difference in how efficiently the system converts light into electricity. The efficiency of conventional incandescent lights is between 2 and 3 percent, while that of fluorescents (including CFLs) is currently between 7 and 13 percent, and that of LEDs between 5 and 13 percent. In contrast, the new two-stage incandescents could reach efficiencies as high as 40 percent, the team says.

The first proof-of-concept units made by the team do not yet reach that level, achieving about 6.6 percent efficiency. But even that preliminary result matches the efficiency of some of today’s CFLs and LEDs, they point out. And it is already a threefold improvement over the efficiency of today’s incandescents.

The team refers to their approach as “light recycling,” says Ilic, since their material takes in the unwanted, useless wavelengths of energy and converts them into the visible light wavelengths that are desired. “It recycles the energy that would otherwise be wasted,” says Soljačić.

Bulbs and beyond

One key to their success was designing a photonic crystal that works for a very wide range of wavelengths and angles. The photonic crystal itself is made as a stack of thin layers, deposited on a substrate. “When you put together layers, with the right thicknesses and sequence,” Ilic explains, you can get very efficient tuning of how the material interacts with light. In their system, the desired visible wavelengths pass right through the material and on out of the bulb, but the infrared wavelengths get reflected as if from a mirror. They then travel back to the filament, adding more heat that then gets converted to more light. Since only the visible ever gets out, the heat just keeps bouncing back in toward the filament until it finally ends up as visible light.

I appreciate both MIT news release writers for “Thomas Edison patented the first commercially viable incandescent light bulb” (Rebusco) and the unidentified writer of the 2nd MIT news release for this, from the news release, “Incandescent bulbs, commercially developed by Thomas Edison (and still used by cartoonists as the symbol of inventive insight) … .” Edison did not invent the light bulb. BTW, the emphases are mine.

For interested parties, here’s a link to and a citation for the paper,

Tailoring high-temperature radiation and the resurrection of the incandescent source by Ognjen Ilic, Peter Bermel, Gang Chen, John D. Joannopoulos, Ivan Celanovic, & Marin Soljačić. Nature Nanotechnology  (2016) doi:10.1038/nnano.2015.309 Published online 11 January 2016

This paper is behind a paywall.

Building architecture inspires new light-bending material

Usually, it’s nature which inspires scientists but not this time. Instead, a building in Canberra, Australia has provided the inspiration according to a March 24, 2015 news item on Nanowerk,

Physicists inspired by the radical shape of a Canberra building have created a new type of material which enables scientists to put a perfect bend in light.

The creation of a so-called topological insulator could transform the telecommunications industry’s drive to build an improved computer chip using light.

Leader of the team, Professor Yuri Kivshar from The Australian National University (ANU) said the revolutionary material might also be useful in microscopes, antenna design, and even quantum computers.

“There has been a hunt for similar materials in photonics based on large complicated structures,” said Professor Kivshar, who is the head of the Nonlinear Physics Centre in ANU Research School of Physics and Engineering.

“Instead we used a simple, small-scale zigzag structure to create a prototype of these novel materials with amazing properties.”

The structure was inspired by the Nishi building near ANU, which consists of rows of offset zigzag walls.

Here’s what the building looks like,

Caption: Alex Slobozhanyuk (L) and Andrey Miroshnichenko with models of their material structures in front of the Nishi building that inspired them. Credit: Stuart Hay, ANU

Caption: Alex Slobozhanyuk (L) and Andrey Miroshnichenko with models of their material structures in front of the Nishi building that inspired them.
Credit: Stuart Hay, ANU

A March 24, 2015 Australian National University press release, which originated the news item, goes on to describe topological insulators and what makes this ‘zigzag’ approach so exciting,

Topological insulators have been initially developed for electronics, and the possibility of building an optical counterpart is attracting a lot of attention.

The original zigzag structure of the material was suggested in the team’s earlier collaboration with Dr Alexander Poddubny, from Ioffe Institute in Russia, said PhD student Alexey Slobozhanyuk.

“The zigzag structure creates a coupling throughout the material that prevents light from travelling through its centre,” Mr Slobozhanyuk said.

“Instead light is channelled to the edges of the material, where it becomes completely localised by means of a kind of quantum entanglement known as topological order.”

Fellow researcher Dr Andrew Miroshnichenko said the building inspired the researchers to think of multiple zigzags.

“We had been searching for a new topology and one day I looked at the building and a bell went off in my brain,” said fellow researcher Dr Andrey Miroshnichenko.

“On the edges of such a material the light should travel completely unhindered, surfing around irregularities that would normally scatter the light.

“These materials will allow light to be bent around corners with no loss of signal,” he said.

The team showed that the exceptional attributes of the material are related to its structure, or topology, and not to the molecules it is made from.

“In our experiment we used an array of ceramic spheres, although the initial theoretical model used metallic subwavelength particles,” said Dr Miroshnichenko.

“Even though they are very different materials they gave the same result.”

In contrast with other international groups attempting to create topological insulators with large scale structures, the team used spheres that were smaller than the wavelength of the microwaves in their successful experiments.

Dr Poddubny devised the theory when he realised there was a direct analogy between quantum Kitaev’s model of Majorana fermions and optically coupled subwavelength scatterers.

Mr Slobozhanyuk said the team could control which parts of the material surface the light is channelled to by changing the polarisation of the light.

“This opens possibilities ranging from nanoscale light sources for enhancing microscopes, highly efficient antennas or even quantum computing,” he said.

“The structure couples the two sides of the material, so they could be used as entangled qubits for quantum computing.”

It would be nice to offer a link to a published paper but I cannot find one.